| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > brfullfun | Structured version Visualization version GIF version | ||
| Description: A binary relation form condition for the full function. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| Ref | Expression |
|---|---|
| brfullfun.1 | ⊢ 𝐴 ∈ V |
| brfullfun.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| brfullfun | ⊢ (𝐴FullFun𝐹𝐵 ↔ 𝐵 = (𝐹‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqcom 2741 | . 2 ⊢ ((FullFun𝐹‘𝐴) = 𝐵 ↔ 𝐵 = (FullFun𝐹‘𝐴)) | |
| 2 | fullfunfnv 35906 | . . 3 ⊢ FullFun𝐹 Fn V | |
| 3 | brfullfun.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 4 | fnbrfvb 6939 | . . 3 ⊢ ((FullFun𝐹 Fn V ∧ 𝐴 ∈ V) → ((FullFun𝐹‘𝐴) = 𝐵 ↔ 𝐴FullFun𝐹𝐵)) | |
| 5 | 2, 3, 4 | mp2an 692 | . 2 ⊢ ((FullFun𝐹‘𝐴) = 𝐵 ↔ 𝐴FullFun𝐹𝐵) |
| 6 | fullfunfv 35907 | . . 3 ⊢ (FullFun𝐹‘𝐴) = (𝐹‘𝐴) | |
| 7 | 6 | eqeq2i 2747 | . 2 ⊢ (𝐵 = (FullFun𝐹‘𝐴) ↔ 𝐵 = (𝐹‘𝐴)) |
| 8 | 1, 5, 7 | 3bitr3i 301 | 1 ⊢ (𝐴FullFun𝐹𝐵 ↔ 𝐵 = (𝐹‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1539 ∈ wcel 2107 Vcvv 3463 class class class wbr 5123 Fn wfn 6536 ‘cfv 6541 FullFuncfullfn 35810 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-symdif 4233 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-eprel 5564 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-fo 6547 df-fv 6549 df-1st 7996 df-2nd 7997 df-txp 35814 df-singleton 35822 df-singles 35823 df-image 35824 df-funpart 35834 df-fullfun 35835 |
| This theorem is referenced by: dfrecs2 35910 dfrdg4 35911 |
| Copyright terms: Public domain | W3C validator |