| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > brfullfun | Structured version Visualization version GIF version | ||
| Description: A binary relation form condition for the full function. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| Ref | Expression |
|---|---|
| brfullfun.1 | ⊢ 𝐴 ∈ V |
| brfullfun.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| brfullfun | ⊢ (𝐴FullFun𝐹𝐵 ↔ 𝐵 = (𝐹‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqcom 2737 | . 2 ⊢ ((FullFun𝐹‘𝐴) = 𝐵 ↔ 𝐵 = (FullFun𝐹‘𝐴)) | |
| 2 | fullfunfnv 35941 | . . 3 ⊢ FullFun𝐹 Fn V | |
| 3 | brfullfun.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 4 | fnbrfvb 6914 | . . 3 ⊢ ((FullFun𝐹 Fn V ∧ 𝐴 ∈ V) → ((FullFun𝐹‘𝐴) = 𝐵 ↔ 𝐴FullFun𝐹𝐵)) | |
| 5 | 2, 3, 4 | mp2an 692 | . 2 ⊢ ((FullFun𝐹‘𝐴) = 𝐵 ↔ 𝐴FullFun𝐹𝐵) |
| 6 | fullfunfv 35942 | . . 3 ⊢ (FullFun𝐹‘𝐴) = (𝐹‘𝐴) | |
| 7 | 6 | eqeq2i 2743 | . 2 ⊢ (𝐵 = (FullFun𝐹‘𝐴) ↔ 𝐵 = (𝐹‘𝐴)) |
| 8 | 1, 5, 7 | 3bitr3i 301 | 1 ⊢ (𝐴FullFun𝐹𝐵 ↔ 𝐵 = (𝐹‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 Vcvv 3450 class class class wbr 5110 Fn wfn 6509 ‘cfv 6514 FullFuncfullfn 35845 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-symdif 4219 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-eprel 5541 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fo 6520 df-fv 6522 df-1st 7971 df-2nd 7972 df-txp 35849 df-singleton 35857 df-singles 35858 df-image 35859 df-funpart 35869 df-fullfun 35870 |
| This theorem is referenced by: dfrecs2 35945 dfrdg4 35946 |
| Copyright terms: Public domain | W3C validator |