![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > brfullfun | Structured version Visualization version GIF version |
Description: A binary relation form condition for the full function. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
Ref | Expression |
---|---|
brfullfun.1 | ⊢ 𝐴 ∈ V |
brfullfun.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
brfullfun | ⊢ (𝐴FullFun𝐹𝐵 ↔ 𝐵 = (𝐹‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqcom 2740 | . 2 ⊢ ((FullFun𝐹‘𝐴) = 𝐵 ↔ 𝐵 = (FullFun𝐹‘𝐴)) | |
2 | fullfunfnv 34918 | . . 3 ⊢ FullFun𝐹 Fn V | |
3 | brfullfun.1 | . . 3 ⊢ 𝐴 ∈ V | |
4 | fnbrfvb 6945 | . . 3 ⊢ ((FullFun𝐹 Fn V ∧ 𝐴 ∈ V) → ((FullFun𝐹‘𝐴) = 𝐵 ↔ 𝐴FullFun𝐹𝐵)) | |
5 | 2, 3, 4 | mp2an 691 | . 2 ⊢ ((FullFun𝐹‘𝐴) = 𝐵 ↔ 𝐴FullFun𝐹𝐵) |
6 | fullfunfv 34919 | . . 3 ⊢ (FullFun𝐹‘𝐴) = (𝐹‘𝐴) | |
7 | 6 | eqeq2i 2746 | . 2 ⊢ (𝐵 = (FullFun𝐹‘𝐴) ↔ 𝐵 = (𝐹‘𝐴)) |
8 | 1, 5, 7 | 3bitr3i 301 | 1 ⊢ (𝐴FullFun𝐹𝐵 ↔ 𝐵 = (𝐹‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1542 ∈ wcel 2107 Vcvv 3475 class class class wbr 5149 Fn wfn 6539 ‘cfv 6544 FullFuncfullfn 34822 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-symdif 4243 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-eprel 5581 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-fo 6550 df-fv 6552 df-1st 7975 df-2nd 7976 df-txp 34826 df-singleton 34834 df-singles 34835 df-image 34836 df-funpart 34846 df-fullfun 34847 |
This theorem is referenced by: dfrecs2 34922 dfrdg4 34923 |
Copyright terms: Public domain | W3C validator |