Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brfullfun Structured version   Visualization version   GIF version

Theorem brfullfun 35943
Description: A binary relation form condition for the full function. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Hypotheses
Ref Expression
brfullfun.1 𝐴 ∈ V
brfullfun.2 𝐵 ∈ V
Assertion
Ref Expression
brfullfun (𝐴FullFun𝐹𝐵𝐵 = (𝐹𝐴))

Proof of Theorem brfullfun
StepHypRef Expression
1 eqcom 2744 . 2 ((FullFun𝐹𝐴) = 𝐵𝐵 = (FullFun𝐹𝐴))
2 fullfunfnv 35941 . . 3 FullFun𝐹 Fn V
3 brfullfun.1 . . 3 𝐴 ∈ V
4 fnbrfvb 6967 . . 3 ((FullFun𝐹 Fn V ∧ 𝐴 ∈ V) → ((FullFun𝐹𝐴) = 𝐵𝐴FullFun𝐹𝐵))
52, 3, 4mp2an 692 . 2 ((FullFun𝐹𝐴) = 𝐵𝐴FullFun𝐹𝐵)
6 fullfunfv 35942 . . 3 (FullFun𝐹𝐴) = (𝐹𝐴)
76eqeq2i 2750 . 2 (𝐵 = (FullFun𝐹𝐴) ↔ 𝐵 = (𝐹𝐴))
81, 5, 73bitr3i 301 1 (𝐴FullFun𝐹𝐵𝐵 = (𝐹𝐴))
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1539  wcel 2108  Vcvv 3481   class class class wbr 5151   Fn wfn 6564  cfv 6569  FullFuncfullfn 35845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5305  ax-nul 5315  ax-pr 5441  ax-un 7761
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3483  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-symdif 4262  df-nul 4343  df-if 4535  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-br 5152  df-opab 5214  df-mpt 5235  df-id 5587  df-eprel 5593  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-fo 6575  df-fv 6577  df-1st 8022  df-2nd 8023  df-txp 35849  df-singleton 35857  df-singles 35858  df-image 35859  df-funpart 35869  df-fullfun 35870
This theorem is referenced by:  dfrecs2  35945  dfrdg4  35946
  Copyright terms: Public domain W3C validator