![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > brfullfun | Structured version Visualization version GIF version |
Description: A binary relation form condition for the full function. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
Ref | Expression |
---|---|
brfullfun.1 | ⊢ 𝐴 ∈ V |
brfullfun.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
brfullfun | ⊢ (𝐴FullFun𝐹𝐵 ↔ 𝐵 = (𝐹‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqcom 2732 | . 2 ⊢ ((FullFun𝐹‘𝐴) = 𝐵 ↔ 𝐵 = (FullFun𝐹‘𝐴)) | |
2 | fullfunfnv 35571 | . . 3 ⊢ FullFun𝐹 Fn V | |
3 | brfullfun.1 | . . 3 ⊢ 𝐴 ∈ V | |
4 | fnbrfvb 6943 | . . 3 ⊢ ((FullFun𝐹 Fn V ∧ 𝐴 ∈ V) → ((FullFun𝐹‘𝐴) = 𝐵 ↔ 𝐴FullFun𝐹𝐵)) | |
5 | 2, 3, 4 | mp2an 690 | . 2 ⊢ ((FullFun𝐹‘𝐴) = 𝐵 ↔ 𝐴FullFun𝐹𝐵) |
6 | fullfunfv 35572 | . . 3 ⊢ (FullFun𝐹‘𝐴) = (𝐹‘𝐴) | |
7 | 6 | eqeq2i 2738 | . 2 ⊢ (𝐵 = (FullFun𝐹‘𝐴) ↔ 𝐵 = (𝐹‘𝐴)) |
8 | 1, 5, 7 | 3bitr3i 300 | 1 ⊢ (𝐴FullFun𝐹𝐵 ↔ 𝐵 = (𝐹‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1533 ∈ wcel 2098 Vcvv 3463 class class class wbr 5141 Fn wfn 6536 ‘cfv 6541 FullFuncfullfn 35475 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5292 ax-nul 5299 ax-pr 5421 ax-un 7736 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3465 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-symdif 4235 df-nul 4317 df-if 4523 df-sn 4623 df-pr 4625 df-op 4629 df-uni 4902 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5568 df-eprel 5574 df-xp 5676 df-rel 5677 df-cnv 5678 df-co 5679 df-dm 5680 df-rn 5681 df-res 5682 df-ima 5683 df-iota 6493 df-fun 6543 df-fn 6544 df-f 6545 df-fo 6547 df-fv 6549 df-1st 7989 df-2nd 7990 df-txp 35479 df-singleton 35487 df-singles 35488 df-image 35489 df-funpart 35499 df-fullfun 35500 |
This theorem is referenced by: dfrecs2 35575 dfrdg4 35576 |
Copyright terms: Public domain | W3C validator |