Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brfullfun Structured version   Visualization version   GIF version

Theorem brfullfun 34920
Description: A binary relation form condition for the full function. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Hypotheses
Ref Expression
brfullfun.1 𝐴 ∈ V
brfullfun.2 𝐵 ∈ V
Assertion
Ref Expression
brfullfun (𝐴FullFun𝐹𝐵𝐵 = (𝐹𝐴))

Proof of Theorem brfullfun
StepHypRef Expression
1 eqcom 2740 . 2 ((FullFun𝐹𝐴) = 𝐵𝐵 = (FullFun𝐹𝐴))
2 fullfunfnv 34918 . . 3 FullFun𝐹 Fn V
3 brfullfun.1 . . 3 𝐴 ∈ V
4 fnbrfvb 6945 . . 3 ((FullFun𝐹 Fn V ∧ 𝐴 ∈ V) → ((FullFun𝐹𝐴) = 𝐵𝐴FullFun𝐹𝐵))
52, 3, 4mp2an 691 . 2 ((FullFun𝐹𝐴) = 𝐵𝐴FullFun𝐹𝐵)
6 fullfunfv 34919 . . 3 (FullFun𝐹𝐴) = (𝐹𝐴)
76eqeq2i 2746 . 2 (𝐵 = (FullFun𝐹𝐴) ↔ 𝐵 = (𝐹𝐴))
81, 5, 73bitr3i 301 1 (𝐴FullFun𝐹𝐵𝐵 = (𝐹𝐴))
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1542  wcel 2107  Vcvv 3475   class class class wbr 5149   Fn wfn 6539  cfv 6544  FullFuncfullfn 34822
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-symdif 4243  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-eprel 5581  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-fo 6550  df-fv 6552  df-1st 7975  df-2nd 7976  df-txp 34826  df-singleton 34834  df-singles 34835  df-image 34836  df-funpart 34846  df-fullfun 34847
This theorem is referenced by:  dfrecs2  34922  dfrdg4  34923
  Copyright terms: Public domain W3C validator