Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > brfullfun | Structured version Visualization version GIF version |
Description: A binary relation form condition for the full function. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
Ref | Expression |
---|---|
brfullfun.1 | ⊢ 𝐴 ∈ V |
brfullfun.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
brfullfun | ⊢ (𝐴FullFun𝐹𝐵 ↔ 𝐵 = (𝐹‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqcom 2745 | . 2 ⊢ ((FullFun𝐹‘𝐴) = 𝐵 ↔ 𝐵 = (FullFun𝐹‘𝐴)) | |
2 | fullfunfnv 34248 | . . 3 ⊢ FullFun𝐹 Fn V | |
3 | brfullfun.1 | . . 3 ⊢ 𝐴 ∈ V | |
4 | fnbrfvb 6822 | . . 3 ⊢ ((FullFun𝐹 Fn V ∧ 𝐴 ∈ V) → ((FullFun𝐹‘𝐴) = 𝐵 ↔ 𝐴FullFun𝐹𝐵)) | |
5 | 2, 3, 4 | mp2an 689 | . 2 ⊢ ((FullFun𝐹‘𝐴) = 𝐵 ↔ 𝐴FullFun𝐹𝐵) |
6 | fullfunfv 34249 | . . 3 ⊢ (FullFun𝐹‘𝐴) = (𝐹‘𝐴) | |
7 | 6 | eqeq2i 2751 | . 2 ⊢ (𝐵 = (FullFun𝐹‘𝐴) ↔ 𝐵 = (𝐹‘𝐴)) |
8 | 1, 5, 7 | 3bitr3i 301 | 1 ⊢ (𝐴FullFun𝐹𝐵 ↔ 𝐵 = (𝐹‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 ∈ wcel 2106 Vcvv 3432 class class class wbr 5074 Fn wfn 6428 ‘cfv 6433 FullFuncfullfn 34152 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-symdif 4176 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-eprel 5495 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fo 6439 df-fv 6441 df-1st 7831 df-2nd 7832 df-txp 34156 df-singleton 34164 df-singles 34165 df-image 34166 df-funpart 34176 df-fullfun 34177 |
This theorem is referenced by: dfrecs2 34252 dfrdg4 34253 |
Copyright terms: Public domain | W3C validator |