Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brfullfun Structured version   Visualization version   GIF version

Theorem brfullfun 35943
Description: A binary relation form condition for the full function. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Hypotheses
Ref Expression
brfullfun.1 𝐴 ∈ V
brfullfun.2 𝐵 ∈ V
Assertion
Ref Expression
brfullfun (𝐴FullFun𝐹𝐵𝐵 = (𝐹𝐴))

Proof of Theorem brfullfun
StepHypRef Expression
1 eqcom 2737 . 2 ((FullFun𝐹𝐴) = 𝐵𝐵 = (FullFun𝐹𝐴))
2 fullfunfnv 35941 . . 3 FullFun𝐹 Fn V
3 brfullfun.1 . . 3 𝐴 ∈ V
4 fnbrfvb 6914 . . 3 ((FullFun𝐹 Fn V ∧ 𝐴 ∈ V) → ((FullFun𝐹𝐴) = 𝐵𝐴FullFun𝐹𝐵))
52, 3, 4mp2an 692 . 2 ((FullFun𝐹𝐴) = 𝐵𝐴FullFun𝐹𝐵)
6 fullfunfv 35942 . . 3 (FullFun𝐹𝐴) = (𝐹𝐴)
76eqeq2i 2743 . 2 (𝐵 = (FullFun𝐹𝐴) ↔ 𝐵 = (𝐹𝐴))
81, 5, 73bitr3i 301 1 (𝐴FullFun𝐹𝐵𝐵 = (𝐹𝐴))
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  wcel 2109  Vcvv 3450   class class class wbr 5110   Fn wfn 6509  cfv 6514  FullFuncfullfn 35845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-symdif 4219  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-eprel 5541  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fo 6520  df-fv 6522  df-1st 7971  df-2nd 7972  df-txp 35849  df-singleton 35857  df-singles 35858  df-image 35859  df-funpart 35869  df-fullfun 35870
This theorem is referenced by:  dfrecs2  35945  dfrdg4  35946
  Copyright terms: Public domain W3C validator