MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caofref Structured version   Visualization version   GIF version

Theorem caofref 7744
Description: Transfer a reflexive law to the function relation. (Contributed by Mario Carneiro, 28-Jul-2014.)
Hypotheses
Ref Expression
caofref.1 (𝜑𝐴𝑉)
caofref.2 (𝜑𝐹:𝐴𝑆)
caofref.3 ((𝜑𝑥𝑆) → 𝑥𝑅𝑥)
Assertion
Ref Expression
caofref (𝜑𝐹r 𝑅𝐹)
Distinct variable groups:   𝑥,𝐹   𝜑,𝑥   𝑥,𝑅   𝑥,𝑆
Allowed substitution hints:   𝐴(𝑥)   𝑉(𝑥)

Proof of Theorem caofref
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 id 22 . . . . 5 (𝑥 = (𝐹𝑤) → 𝑥 = (𝐹𝑤))
21, 1breq12d 5179 . . . 4 (𝑥 = (𝐹𝑤) → (𝑥𝑅𝑥 ↔ (𝐹𝑤)𝑅(𝐹𝑤)))
3 caofref.3 . . . . . 6 ((𝜑𝑥𝑆) → 𝑥𝑅𝑥)
43ralrimiva 3152 . . . . 5 (𝜑 → ∀𝑥𝑆 𝑥𝑅𝑥)
54adantr 480 . . . 4 ((𝜑𝑤𝐴) → ∀𝑥𝑆 𝑥𝑅𝑥)
6 caofref.2 . . . . 5 (𝜑𝐹:𝐴𝑆)
76ffvelcdmda 7118 . . . 4 ((𝜑𝑤𝐴) → (𝐹𝑤) ∈ 𝑆)
82, 5, 7rspcdva 3636 . . 3 ((𝜑𝑤𝐴) → (𝐹𝑤)𝑅(𝐹𝑤))
98ralrimiva 3152 . 2 (𝜑 → ∀𝑤𝐴 (𝐹𝑤)𝑅(𝐹𝑤))
106ffnd 6748 . . 3 (𝜑𝐹 Fn 𝐴)
11 caofref.1 . . 3 (𝜑𝐴𝑉)
12 inidm 4248 . . 3 (𝐴𝐴) = 𝐴
13 eqidd 2741 . . 3 ((𝜑𝑤𝐴) → (𝐹𝑤) = (𝐹𝑤))
1410, 10, 11, 11, 12, 13, 13ofrfval 7724 . 2 (𝜑 → (𝐹r 𝑅𝐹 ↔ ∀𝑤𝐴 (𝐹𝑤)𝑅(𝐹𝑤)))
159, 14mpbird 257 1 (𝜑𝐹r 𝑅𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wral 3067   class class class wbr 5166  wf 6569  cfv 6573  r cofr 7713
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ofr 7715
This theorem is referenced by:  psrridm  22006  itg2itg1  25791  itg20  25792
  Copyright terms: Public domain W3C validator