MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caofref Structured version   Visualization version   GIF version

Theorem caofref 7562
Description: Transfer a reflexive law to the function relation. (Contributed by Mario Carneiro, 28-Jul-2014.)
Hypotheses
Ref Expression
caofref.1 (𝜑𝐴𝑉)
caofref.2 (𝜑𝐹:𝐴𝑆)
caofref.3 ((𝜑𝑥𝑆) → 𝑥𝑅𝑥)
Assertion
Ref Expression
caofref (𝜑𝐹r 𝑅𝐹)
Distinct variable groups:   𝑥,𝐹   𝜑,𝑥   𝑥,𝑅   𝑥,𝑆
Allowed substitution hints:   𝐴(𝑥)   𝑉(𝑥)

Proof of Theorem caofref
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 id 22 . . . . 5 (𝑥 = (𝐹𝑤) → 𝑥 = (𝐹𝑤))
21, 1breq12d 5087 . . . 4 (𝑥 = (𝐹𝑤) → (𝑥𝑅𝑥 ↔ (𝐹𝑤)𝑅(𝐹𝑤)))
3 caofref.3 . . . . . 6 ((𝜑𝑥𝑆) → 𝑥𝑅𝑥)
43ralrimiva 3103 . . . . 5 (𝜑 → ∀𝑥𝑆 𝑥𝑅𝑥)
54adantr 481 . . . 4 ((𝜑𝑤𝐴) → ∀𝑥𝑆 𝑥𝑅𝑥)
6 caofref.2 . . . . 5 (𝜑𝐹:𝐴𝑆)
76ffvelrnda 6961 . . . 4 ((𝜑𝑤𝐴) → (𝐹𝑤) ∈ 𝑆)
82, 5, 7rspcdva 3562 . . 3 ((𝜑𝑤𝐴) → (𝐹𝑤)𝑅(𝐹𝑤))
98ralrimiva 3103 . 2 (𝜑 → ∀𝑤𝐴 (𝐹𝑤)𝑅(𝐹𝑤))
106ffnd 6601 . . 3 (𝜑𝐹 Fn 𝐴)
11 caofref.1 . . 3 (𝜑𝐴𝑉)
12 inidm 4152 . . 3 (𝐴𝐴) = 𝐴
13 eqidd 2739 . . 3 ((𝜑𝑤𝐴) → (𝐹𝑤) = (𝐹𝑤))
1410, 10, 11, 11, 12, 13, 13ofrfval 7543 . 2 (𝜑 → (𝐹r 𝑅𝐹 ↔ ∀𝑤𝐴 (𝐹𝑤)𝑅(𝐹𝑤)))
159, 14mpbird 256 1 (𝜑𝐹r 𝑅𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wral 3064   class class class wbr 5074  wf 6429  cfv 6433  r cofr 7532
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ofr 7534
This theorem is referenced by:  psrridm  21173  itg2itg1  24901  itg20  24902
  Copyright terms: Public domain W3C validator