![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > caofref | Structured version Visualization version GIF version |
Description: Transfer a reflexive law to the function relation. (Contributed by Mario Carneiro, 28-Jul-2014.) |
Ref | Expression |
---|---|
caofref.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
caofref.2 | ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) |
caofref.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑥𝑅𝑥) |
Ref | Expression |
---|---|
caofref | ⊢ (𝜑 → 𝐹 ∘r 𝑅𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . . . 5 ⊢ (𝑥 = (𝐹‘𝑤) → 𝑥 = (𝐹‘𝑤)) | |
2 | 1, 1 | breq12d 5123 | . . . 4 ⊢ (𝑥 = (𝐹‘𝑤) → (𝑥𝑅𝑥 ↔ (𝐹‘𝑤)𝑅(𝐹‘𝑤))) |
3 | caofref.3 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑥𝑅𝑥) | |
4 | 3 | ralrimiva 3144 | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ 𝑆 𝑥𝑅𝑥) |
5 | 4 | adantr 482 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → ∀𝑥 ∈ 𝑆 𝑥𝑅𝑥) |
6 | caofref.2 | . . . . 5 ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) | |
7 | 6 | ffvelcdmda 7040 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (𝐹‘𝑤) ∈ 𝑆) |
8 | 2, 5, 7 | rspcdva 3585 | . . 3 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (𝐹‘𝑤)𝑅(𝐹‘𝑤)) |
9 | 8 | ralrimiva 3144 | . 2 ⊢ (𝜑 → ∀𝑤 ∈ 𝐴 (𝐹‘𝑤)𝑅(𝐹‘𝑤)) |
10 | 6 | ffnd 6674 | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐴) |
11 | caofref.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
12 | inidm 4183 | . . 3 ⊢ (𝐴 ∩ 𝐴) = 𝐴 | |
13 | eqidd 2738 | . . 3 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (𝐹‘𝑤) = (𝐹‘𝑤)) | |
14 | 10, 10, 11, 11, 12, 13, 13 | ofrfval 7632 | . 2 ⊢ (𝜑 → (𝐹 ∘r 𝑅𝐹 ↔ ∀𝑤 ∈ 𝐴 (𝐹‘𝑤)𝑅(𝐹‘𝑤))) |
15 | 9, 14 | mpbird 257 | 1 ⊢ (𝜑 → 𝐹 ∘r 𝑅𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ∀wral 3065 class class class wbr 5110 ⟶wf 6497 ‘cfv 6501 ∘r cofr 7621 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-rep 5247 ax-sep 5261 ax-nul 5268 ax-pr 5389 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-ral 3066 df-rex 3075 df-reu 3357 df-rab 3411 df-v 3450 df-sbc 3745 df-csb 3861 df-dif 3918 df-un 3920 df-in 3922 df-ss 3932 df-nul 4288 df-if 4492 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4871 df-iun 4961 df-br 5111 df-opab 5173 df-mpt 5194 df-id 5536 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6453 df-fun 6503 df-fn 6504 df-f 6505 df-f1 6506 df-fo 6507 df-f1o 6508 df-fv 6509 df-ofr 7623 |
This theorem is referenced by: psrridm 21389 itg2itg1 25117 itg20 25118 |
Copyright terms: Public domain | W3C validator |