| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > caofref | Structured version Visualization version GIF version | ||
| Description: Transfer a reflexive law to the function relation. (Contributed by Mario Carneiro, 28-Jul-2014.) |
| Ref | Expression |
|---|---|
| caofref.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| caofref.2 | ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) |
| caofref.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑥𝑅𝑥) |
| Ref | Expression |
|---|---|
| caofref | ⊢ (𝜑 → 𝐹 ∘r 𝑅𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . . . . 5 ⊢ (𝑥 = (𝐹‘𝑤) → 𝑥 = (𝐹‘𝑤)) | |
| 2 | 1, 1 | breq12d 5120 | . . . 4 ⊢ (𝑥 = (𝐹‘𝑤) → (𝑥𝑅𝑥 ↔ (𝐹‘𝑤)𝑅(𝐹‘𝑤))) |
| 3 | caofref.3 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑥𝑅𝑥) | |
| 4 | 3 | ralrimiva 3125 | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ 𝑆 𝑥𝑅𝑥) |
| 5 | 4 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → ∀𝑥 ∈ 𝑆 𝑥𝑅𝑥) |
| 6 | caofref.2 | . . . . 5 ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) | |
| 7 | 6 | ffvelcdmda 7056 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (𝐹‘𝑤) ∈ 𝑆) |
| 8 | 2, 5, 7 | rspcdva 3589 | . . 3 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (𝐹‘𝑤)𝑅(𝐹‘𝑤)) |
| 9 | 8 | ralrimiva 3125 | . 2 ⊢ (𝜑 → ∀𝑤 ∈ 𝐴 (𝐹‘𝑤)𝑅(𝐹‘𝑤)) |
| 10 | 6 | ffnd 6689 | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐴) |
| 11 | caofref.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 12 | inidm 4190 | . . 3 ⊢ (𝐴 ∩ 𝐴) = 𝐴 | |
| 13 | eqidd 2730 | . . 3 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (𝐹‘𝑤) = (𝐹‘𝑤)) | |
| 14 | 10, 10, 11, 11, 12, 13, 13 | ofrfval 7663 | . 2 ⊢ (𝜑 → (𝐹 ∘r 𝑅𝐹 ↔ ∀𝑤 ∈ 𝐴 (𝐹‘𝑤)𝑅(𝐹‘𝑤))) |
| 15 | 9, 14 | mpbird 257 | 1 ⊢ (𝜑 → 𝐹 ∘r 𝑅𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 class class class wbr 5107 ⟶wf 6507 ‘cfv 6511 ∘r cofr 7652 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ofr 7654 |
| This theorem is referenced by: psrridm 21872 itg2itg1 25637 itg20 25638 |
| Copyright terms: Public domain | W3C validator |