![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > caofref | Structured version Visualization version GIF version |
Description: Transfer a reflexive law to the function relation. (Contributed by Mario Carneiro, 28-Jul-2014.) |
Ref | Expression |
---|---|
caofref.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
caofref.2 | ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) |
caofref.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑥𝑅𝑥) |
Ref | Expression |
---|---|
caofref | ⊢ (𝜑 → 𝐹 ∘r 𝑅𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . . . 5 ⊢ (𝑥 = (𝐹‘𝑤) → 𝑥 = (𝐹‘𝑤)) | |
2 | 1, 1 | breq12d 5154 | . . . 4 ⊢ (𝑥 = (𝐹‘𝑤) → (𝑥𝑅𝑥 ↔ (𝐹‘𝑤)𝑅(𝐹‘𝑤))) |
3 | caofref.3 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑥𝑅𝑥) | |
4 | 3 | ralrimiva 3140 | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ 𝑆 𝑥𝑅𝑥) |
5 | 4 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → ∀𝑥 ∈ 𝑆 𝑥𝑅𝑥) |
6 | caofref.2 | . . . . 5 ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) | |
7 | 6 | ffvelcdmda 7079 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (𝐹‘𝑤) ∈ 𝑆) |
8 | 2, 5, 7 | rspcdva 3607 | . . 3 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (𝐹‘𝑤)𝑅(𝐹‘𝑤)) |
9 | 8 | ralrimiva 3140 | . 2 ⊢ (𝜑 → ∀𝑤 ∈ 𝐴 (𝐹‘𝑤)𝑅(𝐹‘𝑤)) |
10 | 6 | ffnd 6711 | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐴) |
11 | caofref.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
12 | inidm 4213 | . . 3 ⊢ (𝐴 ∩ 𝐴) = 𝐴 | |
13 | eqidd 2727 | . . 3 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (𝐹‘𝑤) = (𝐹‘𝑤)) | |
14 | 10, 10, 11, 11, 12, 13, 13 | ofrfval 7676 | . 2 ⊢ (𝜑 → (𝐹 ∘r 𝑅𝐹 ↔ ∀𝑤 ∈ 𝐴 (𝐹‘𝑤)𝑅(𝐹‘𝑤))) |
15 | 9, 14 | mpbird 257 | 1 ⊢ (𝜑 → 𝐹 ∘r 𝑅𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ∀wral 3055 class class class wbr 5141 ⟶wf 6532 ‘cfv 6536 ∘r cofr 7665 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ofr 7667 |
This theorem is referenced by: psrridm 21862 itg2itg1 25617 itg20 25618 |
Copyright terms: Public domain | W3C validator |