![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ofc12 | Structured version Visualization version GIF version |
Description: Function operation on two constant functions. (Contributed by Mario Carneiro, 28-Jul-2014.) |
Ref | Expression |
---|---|
ofc12.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
ofc12.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
ofc12.3 | ⊢ (𝜑 → 𝐶 ∈ 𝑋) |
Ref | Expression |
---|---|
ofc12 | ⊢ (𝜑 → ((𝐴 × {𝐵}) ∘f 𝑅(𝐴 × {𝐶})) = (𝐴 × {(𝐵𝑅𝐶)})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ofc12.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
2 | ofc12.2 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
3 | 2 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑊) |
4 | ofc12.3 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑋) | |
5 | 4 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝑋) |
6 | fconstmpt 5736 | . . . 4 ⊢ (𝐴 × {𝐵}) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
7 | 6 | a1i 11 | . . 3 ⊢ (𝜑 → (𝐴 × {𝐵}) = (𝑥 ∈ 𝐴 ↦ 𝐵)) |
8 | fconstmpt 5736 | . . . 4 ⊢ (𝐴 × {𝐶}) = (𝑥 ∈ 𝐴 ↦ 𝐶) | |
9 | 8 | a1i 11 | . . 3 ⊢ (𝜑 → (𝐴 × {𝐶}) = (𝑥 ∈ 𝐴 ↦ 𝐶)) |
10 | 1, 3, 5, 7, 9 | offval2 7686 | . 2 ⊢ (𝜑 → ((𝐴 × {𝐵}) ∘f 𝑅(𝐴 × {𝐶})) = (𝑥 ∈ 𝐴 ↦ (𝐵𝑅𝐶))) |
11 | fconstmpt 5736 | . 2 ⊢ (𝐴 × {(𝐵𝑅𝐶)}) = (𝑥 ∈ 𝐴 ↦ (𝐵𝑅𝐶)) | |
12 | 10, 11 | eqtr4di 2790 | 1 ⊢ (𝜑 → ((𝐴 × {𝐵}) ∘f 𝑅(𝐴 × {𝐶})) = (𝐴 × {(𝐵𝑅𝐶)})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 {csn 4627 ↦ cmpt 5230 × cxp 5673 (class class class)co 7405 ∘f cof 7664 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7666 |
This theorem is referenced by: pwsdiagmhm 18708 pwsdiaglmhm 20660 psrlmod 21512 coe1mul2 21782 itg2mulc 25256 dgrmulc 25776 lflvsdi2a 37938 lflvsass 37939 lflsc0N 37941 mendlmod 41920 expgrowth 43079 |
Copyright terms: Public domain | W3C validator |