MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ofc12 Structured version   Visualization version   GIF version

Theorem ofc12 7692
Description: Function operation on two constant functions. (Contributed by Mario Carneiro, 28-Jul-2014.)
Hypotheses
Ref Expression
ofc12.1 (𝜑𝐴𝑉)
ofc12.2 (𝜑𝐵𝑊)
ofc12.3 (𝜑𝐶𝑋)
Assertion
Ref Expression
ofc12 (𝜑 → ((𝐴 × {𝐵}) ∘f 𝑅(𝐴 × {𝐶})) = (𝐴 × {(𝐵𝑅𝐶)}))

Proof of Theorem ofc12
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ofc12.1 . . 3 (𝜑𝐴𝑉)
2 ofc12.2 . . . 4 (𝜑𝐵𝑊)
32adantr 480 . . 3 ((𝜑𝑥𝐴) → 𝐵𝑊)
4 ofc12.3 . . . 4 (𝜑𝐶𝑋)
54adantr 480 . . 3 ((𝜑𝑥𝐴) → 𝐶𝑋)
6 fconstmpt 5729 . . . 4 (𝐴 × {𝐵}) = (𝑥𝐴𝐵)
76a1i 11 . . 3 (𝜑 → (𝐴 × {𝐵}) = (𝑥𝐴𝐵))
8 fconstmpt 5729 . . . 4 (𝐴 × {𝐶}) = (𝑥𝐴𝐶)
98a1i 11 . . 3 (𝜑 → (𝐴 × {𝐶}) = (𝑥𝐴𝐶))
101, 3, 5, 7, 9offval2 7684 . 2 (𝜑 → ((𝐴 × {𝐵}) ∘f 𝑅(𝐴 × {𝐶})) = (𝑥𝐴 ↦ (𝐵𝑅𝐶)))
11 fconstmpt 5729 . 2 (𝐴 × {(𝐵𝑅𝐶)}) = (𝑥𝐴 ↦ (𝐵𝑅𝐶))
1210, 11eqtr4di 2782 1 (𝜑 → ((𝐴 × {𝐵}) ∘f 𝑅(𝐴 × {𝐶})) = (𝐴 × {(𝐵𝑅𝐶)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  {csn 4621  cmpt 5222   × cxp 5665  (class class class)co 7402  f cof 7662
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5276  ax-sep 5290  ax-nul 5297  ax-pr 5418
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-iun 4990  df-br 5140  df-opab 5202  df-mpt 5223  df-id 5565  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-ov 7405  df-oprab 7406  df-mpo 7407  df-of 7664
This theorem is referenced by:  pwsdiagmhm  18748  pwsdiaglmhm  20897  psrlmod  21833  coe1mul2  22112  itg2mulc  25601  dgrmulc  26128  lflvsdi2a  38444  lflvsass  38445  lflsc0N  38447  mendlmod  42449  expgrowth  43608
  Copyright terms: Public domain W3C validator