| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ofc12 | Structured version Visualization version GIF version | ||
| Description: Function operation on two constant functions. (Contributed by Mario Carneiro, 28-Jul-2014.) |
| Ref | Expression |
|---|---|
| ofc12.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| ofc12.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| ofc12.3 | ⊢ (𝜑 → 𝐶 ∈ 𝑋) |
| Ref | Expression |
|---|---|
| ofc12 | ⊢ (𝜑 → ((𝐴 × {𝐵}) ∘f 𝑅(𝐴 × {𝐶})) = (𝐴 × {(𝐵𝑅𝐶)})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ofc12.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 2 | ofc12.2 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 3 | 2 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑊) |
| 4 | ofc12.3 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑋) | |
| 5 | 4 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝑋) |
| 6 | fconstmpt 5716 | . . . 4 ⊢ (𝐴 × {𝐵}) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 7 | 6 | a1i 11 | . . 3 ⊢ (𝜑 → (𝐴 × {𝐵}) = (𝑥 ∈ 𝐴 ↦ 𝐵)) |
| 8 | fconstmpt 5716 | . . . 4 ⊢ (𝐴 × {𝐶}) = (𝑥 ∈ 𝐴 ↦ 𝐶) | |
| 9 | 8 | a1i 11 | . . 3 ⊢ (𝜑 → (𝐴 × {𝐶}) = (𝑥 ∈ 𝐴 ↦ 𝐶)) |
| 10 | 1, 3, 5, 7, 9 | offval2 7691 | . 2 ⊢ (𝜑 → ((𝐴 × {𝐵}) ∘f 𝑅(𝐴 × {𝐶})) = (𝑥 ∈ 𝐴 ↦ (𝐵𝑅𝐶))) |
| 11 | fconstmpt 5716 | . 2 ⊢ (𝐴 × {(𝐵𝑅𝐶)}) = (𝑥 ∈ 𝐴 ↦ (𝐵𝑅𝐶)) | |
| 12 | 10, 11 | eqtr4di 2788 | 1 ⊢ (𝜑 → ((𝐴 × {𝐵}) ∘f 𝑅(𝐴 × {𝐶})) = (𝐴 × {(𝐵𝑅𝐶)})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 {csn 4601 ↦ cmpt 5201 × cxp 5652 (class class class)co 7405 ∘f cof 7669 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7671 |
| This theorem is referenced by: pwsdiagmhm 18809 pwsdiaglmhm 21015 psrlmod 21920 coe1mul2 22206 itg2mulc 25700 dgrmulc 26229 lflvsdi2a 39098 lflvsass 39099 lflsc0N 39101 mendlmod 43213 expgrowth 44359 |
| Copyright terms: Public domain | W3C validator |