![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ofc12 | Structured version Visualization version GIF version |
Description: Function operation on two constant functions. (Contributed by Mario Carneiro, 28-Jul-2014.) |
Ref | Expression |
---|---|
ofc12.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
ofc12.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
ofc12.3 | ⊢ (𝜑 → 𝐶 ∈ 𝑋) |
Ref | Expression |
---|---|
ofc12 | ⊢ (𝜑 → ((𝐴 × {𝐵}) ∘𝑓 𝑅(𝐴 × {𝐶})) = (𝐴 × {(𝐵𝑅𝐶)})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ofc12.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
2 | ofc12.2 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
3 | 2 | adantr 473 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑊) |
4 | ofc12.3 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑋) | |
5 | 4 | adantr 473 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝑋) |
6 | fconstmpt 5369 | . . . 4 ⊢ (𝐴 × {𝐵}) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
7 | 6 | a1i 11 | . . 3 ⊢ (𝜑 → (𝐴 × {𝐵}) = (𝑥 ∈ 𝐴 ↦ 𝐵)) |
8 | fconstmpt 5369 | . . . 4 ⊢ (𝐴 × {𝐶}) = (𝑥 ∈ 𝐴 ↦ 𝐶) | |
9 | 8 | a1i 11 | . . 3 ⊢ (𝜑 → (𝐴 × {𝐶}) = (𝑥 ∈ 𝐴 ↦ 𝐶)) |
10 | 1, 3, 5, 7, 9 | offval2 7149 | . 2 ⊢ (𝜑 → ((𝐴 × {𝐵}) ∘𝑓 𝑅(𝐴 × {𝐶})) = (𝑥 ∈ 𝐴 ↦ (𝐵𝑅𝐶))) |
11 | fconstmpt 5369 | . 2 ⊢ (𝐴 × {(𝐵𝑅𝐶)}) = (𝑥 ∈ 𝐴 ↦ (𝐵𝑅𝐶)) | |
12 | 10, 11 | syl6eqr 2852 | 1 ⊢ (𝜑 → ((𝐴 × {𝐵}) ∘𝑓 𝑅(𝐴 × {𝐶})) = (𝐴 × {(𝐵𝑅𝐶)})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1653 ∈ wcel 2157 {csn 4369 ↦ cmpt 4923 × cxp 5311 (class class class)co 6879 ∘𝑓 cof 7130 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2378 ax-ext 2778 ax-rep 4965 ax-sep 4976 ax-nul 4984 ax-pow 5036 ax-pr 5098 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2592 df-eu 2610 df-clab 2787 df-cleq 2793 df-clel 2796 df-nfc 2931 df-ne 2973 df-ral 3095 df-rex 3096 df-reu 3097 df-rab 3099 df-v 3388 df-sbc 3635 df-csb 3730 df-dif 3773 df-un 3775 df-in 3777 df-ss 3784 df-nul 4117 df-if 4279 df-sn 4370 df-pr 4372 df-op 4376 df-uni 4630 df-iun 4713 df-br 4845 df-opab 4907 df-mpt 4924 df-id 5221 df-xp 5319 df-rel 5320 df-cnv 5321 df-co 5322 df-dm 5323 df-rn 5324 df-res 5325 df-ima 5326 df-iota 6065 df-fun 6104 df-fn 6105 df-f 6106 df-f1 6107 df-fo 6108 df-f1o 6109 df-fv 6110 df-ov 6882 df-oprab 6883 df-mpt2 6884 df-of 7132 |
This theorem is referenced by: pwsdiagmhm 17683 pwsdiaglmhm 19377 psrlmod 19723 coe1mul2 19960 itg2mulc 23854 dgrmulc 24367 lflvsdi2a 35100 lflvsass 35101 lflsc0N 35103 mendlmod 38543 expgrowth 39311 |
Copyright terms: Public domain | W3C validator |