MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ofc12 Structured version   Visualization version   GIF version

Theorem ofc12 7743
Description: Function operation on two constant functions. (Contributed by Mario Carneiro, 28-Jul-2014.)
Hypotheses
Ref Expression
ofc12.1 (𝜑𝐴𝑉)
ofc12.2 (𝜑𝐵𝑊)
ofc12.3 (𝜑𝐶𝑋)
Assertion
Ref Expression
ofc12 (𝜑 → ((𝐴 × {𝐵}) ∘f 𝑅(𝐴 × {𝐶})) = (𝐴 × {(𝐵𝑅𝐶)}))

Proof of Theorem ofc12
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ofc12.1 . . 3 (𝜑𝐴𝑉)
2 ofc12.2 . . . 4 (𝜑𝐵𝑊)
32adantr 480 . . 3 ((𝜑𝑥𝐴) → 𝐵𝑊)
4 ofc12.3 . . . 4 (𝜑𝐶𝑋)
54adantr 480 . . 3 ((𝜑𝑥𝐴) → 𝐶𝑋)
6 fconstmpt 5762 . . . 4 (𝐴 × {𝐵}) = (𝑥𝐴𝐵)
76a1i 11 . . 3 (𝜑 → (𝐴 × {𝐵}) = (𝑥𝐴𝐵))
8 fconstmpt 5762 . . . 4 (𝐴 × {𝐶}) = (𝑥𝐴𝐶)
98a1i 11 . . 3 (𝜑 → (𝐴 × {𝐶}) = (𝑥𝐴𝐶))
101, 3, 5, 7, 9offval2 7734 . 2 (𝜑 → ((𝐴 × {𝐵}) ∘f 𝑅(𝐴 × {𝐶})) = (𝑥𝐴 ↦ (𝐵𝑅𝐶)))
11 fconstmpt 5762 . 2 (𝐴 × {(𝐵𝑅𝐶)}) = (𝑥𝐴 ↦ (𝐵𝑅𝐶))
1210, 11eqtr4di 2798 1 (𝜑 → ((𝐴 × {𝐵}) ∘f 𝑅(𝐴 × {𝐶})) = (𝐴 × {(𝐵𝑅𝐶)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  {csn 4648  cmpt 5249   × cxp 5698  (class class class)co 7448  f cof 7712
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714
This theorem is referenced by:  pwsdiagmhm  18866  pwsdiaglmhm  21079  psrlmod  22003  coe1mul2  22293  itg2mulc  25802  dgrmulc  26331  lflvsdi2a  39036  lflvsass  39037  lflsc0N  39039  mendlmod  43150  expgrowth  44304
  Copyright terms: Public domain W3C validator