MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg20 Structured version   Visualization version   GIF version

Theorem itg20 25658
Description: The integral of the zero function. (Contributed by Mario Carneiro, 28-Jun-2014.)
Assertion
Ref Expression
itg20 (∫2‘(ℝ × {0})) = 0

Proof of Theorem itg20
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 i1f0 25608 . . 3 (ℝ × {0}) ∈ dom ∫1
2 reex 11089 . . . . . . 7 ℝ ∈ V
32a1i 11 . . . . . 6 (⊤ → ℝ ∈ V)
4 i1ff 25597 . . . . . . 7 ((ℝ × {0}) ∈ dom ∫1 → (ℝ × {0}):ℝ⟶ℝ)
51, 4mp1i 13 . . . . . 6 (⊤ → (ℝ × {0}):ℝ⟶ℝ)
6 leid 11201 . . . . . . 7 (𝑥 ∈ ℝ → 𝑥𝑥)
76adantl 481 . . . . . 6 ((⊤ ∧ 𝑥 ∈ ℝ) → 𝑥𝑥)
83, 5, 7caofref 7636 . . . . 5 (⊤ → (ℝ × {0}) ∘r ≤ (ℝ × {0}))
9 ax-resscn 11055 . . . . . . 7 ℝ ⊆ ℂ
109a1i 11 . . . . . 6 (⊤ → ℝ ⊆ ℂ)
115ffnd 6648 . . . . . 6 (⊤ → (ℝ × {0}) Fn ℝ)
1210, 110pledm 25594 . . . . 5 (⊤ → (0𝑝r ≤ (ℝ × {0}) ↔ (ℝ × {0}) ∘r ≤ (ℝ × {0})))
138, 12mpbird 257 . . . 4 (⊤ → 0𝑝r ≤ (ℝ × {0}))
1413mptru 1548 . . 3 0𝑝r ≤ (ℝ × {0})
15 itg2itg1 25657 . . 3 (((ℝ × {0}) ∈ dom ∫1 ∧ 0𝑝r ≤ (ℝ × {0})) → (∫2‘(ℝ × {0})) = (∫1‘(ℝ × {0})))
161, 14, 15mp2an 692 . 2 (∫2‘(ℝ × {0})) = (∫1‘(ℝ × {0}))
17 itg10 25609 . 2 (∫1‘(ℝ × {0})) = 0
1816, 17eqtri 2753 1 (∫2‘(ℝ × {0})) = 0
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wtru 1542  wcel 2110  Vcvv 3434  wss 3900  {csn 4574   class class class wbr 5089   × cxp 5612  dom cdm 5614  wf 6473  cfv 6477  r cofr 7604  cc 10996  cr 10997  0cc0 10998  cle 11139  1citg1 25536  2citg2 25537  0𝑝c0p 25590
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-inf2 9526  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075  ax-pre-sup 11076  ax-addf 11077
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-int 4896  df-iun 4941  df-disj 5057  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-isom 6486  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-of 7605  df-ofr 7606  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-er 8617  df-map 8747  df-pm 8748  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-sup 9321  df-inf 9322  df-oi 9391  df-dju 9786  df-card 9824  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-div 11767  df-nn 12118  df-2 12180  df-3 12181  df-n0 12374  df-z 12461  df-uz 12725  df-q 12839  df-rp 12883  df-xadd 13004  df-ioo 13241  df-ico 13243  df-icc 13244  df-fz 13400  df-fzo 13547  df-fl 13688  df-seq 13901  df-exp 13961  df-hash 14230  df-cj 14998  df-re 14999  df-im 15000  df-sqrt 15134  df-abs 15135  df-clim 15387  df-sum 15586  df-xmet 21277  df-met 21278  df-ovol 25385  df-vol 25386  df-mbf 25540  df-itg1 25541  df-itg2 25542  df-0p 25591
This theorem is referenced by:  itg2mulc  25668  itg0  25701  itgz  25702  itgvallem3  25707  iblposlem  25713  bddmulibl  25760  iblempty  45982
  Copyright terms: Public domain W3C validator