MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg20 Structured version   Visualization version   GIF version

Theorem itg20 25690
Description: The integral of the zero function. (Contributed by Mario Carneiro, 28-Jun-2014.)
Assertion
Ref Expression
itg20 (∫2‘(ℝ × {0})) = 0

Proof of Theorem itg20
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 i1f0 25640 . . 3 (ℝ × {0}) ∈ dom ∫1
2 reex 11220 . . . . . . 7 ℝ ∈ V
32a1i 11 . . . . . 6 (⊤ → ℝ ∈ V)
4 i1ff 25629 . . . . . . 7 ((ℝ × {0}) ∈ dom ∫1 → (ℝ × {0}):ℝ⟶ℝ)
51, 4mp1i 13 . . . . . 6 (⊤ → (ℝ × {0}):ℝ⟶ℝ)
6 leid 11331 . . . . . . 7 (𝑥 ∈ ℝ → 𝑥𝑥)
76adantl 481 . . . . . 6 ((⊤ ∧ 𝑥 ∈ ℝ) → 𝑥𝑥)
83, 5, 7caofref 7702 . . . . 5 (⊤ → (ℝ × {0}) ∘r ≤ (ℝ × {0}))
9 ax-resscn 11186 . . . . . . 7 ℝ ⊆ ℂ
109a1i 11 . . . . . 6 (⊤ → ℝ ⊆ ℂ)
115ffnd 6707 . . . . . 6 (⊤ → (ℝ × {0}) Fn ℝ)
1210, 110pledm 25626 . . . . 5 (⊤ → (0𝑝r ≤ (ℝ × {0}) ↔ (ℝ × {0}) ∘r ≤ (ℝ × {0})))
138, 12mpbird 257 . . . 4 (⊤ → 0𝑝r ≤ (ℝ × {0}))
1413mptru 1547 . . 3 0𝑝r ≤ (ℝ × {0})
15 itg2itg1 25689 . . 3 (((ℝ × {0}) ∈ dom ∫1 ∧ 0𝑝r ≤ (ℝ × {0})) → (∫2‘(ℝ × {0})) = (∫1‘(ℝ × {0})))
161, 14, 15mp2an 692 . 2 (∫2‘(ℝ × {0})) = (∫1‘(ℝ × {0}))
17 itg10 25641 . 2 (∫1‘(ℝ × {0})) = 0
1816, 17eqtri 2758 1 (∫2‘(ℝ × {0})) = 0
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wtru 1541  wcel 2108  Vcvv 3459  wss 3926  {csn 4601   class class class wbr 5119   × cxp 5652  dom cdm 5654  wf 6527  cfv 6531  r cofr 7670  cc 11127  cr 11128  0cc0 11129  cle 11270  1citg1 25568  2citg2 25569  0𝑝c0p 25622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207  ax-addf 11208
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-disj 5087  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-ofr 7672  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8719  df-map 8842  df-pm 8843  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-sup 9454  df-inf 9455  df-oi 9524  df-dju 9915  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-n0 12502  df-z 12589  df-uz 12853  df-q 12965  df-rp 13009  df-xadd 13129  df-ioo 13366  df-ico 13368  df-icc 13369  df-fz 13525  df-fzo 13672  df-fl 13809  df-seq 14020  df-exp 14080  df-hash 14349  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-clim 15504  df-sum 15703  df-xmet 21308  df-met 21309  df-ovol 25417  df-vol 25418  df-mbf 25572  df-itg1 25573  df-itg2 25574  df-0p 25623
This theorem is referenced by:  itg2mulc  25700  itg0  25733  itgz  25734  itgvallem3  25739  iblposlem  25745  bddmulibl  25792  iblempty  45994
  Copyright terms: Public domain W3C validator