| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > itg20 | Structured version Visualization version GIF version | ||
| Description: The integral of the zero function. (Contributed by Mario Carneiro, 28-Jun-2014.) |
| Ref | Expression |
|---|---|
| itg20 | ⊢ (∫2‘(ℝ × {0})) = 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | i1f0 25722 | . . 3 ⊢ (ℝ × {0}) ∈ dom ∫1 | |
| 2 | reex 11246 | . . . . . . 7 ⊢ ℝ ∈ V | |
| 3 | 2 | a1i 11 | . . . . . 6 ⊢ (⊤ → ℝ ∈ V) |
| 4 | i1ff 25711 | . . . . . . 7 ⊢ ((ℝ × {0}) ∈ dom ∫1 → (ℝ × {0}):ℝ⟶ℝ) | |
| 5 | 1, 4 | mp1i 13 | . . . . . 6 ⊢ (⊤ → (ℝ × {0}):ℝ⟶ℝ) |
| 6 | leid 11357 | . . . . . . 7 ⊢ (𝑥 ∈ ℝ → 𝑥 ≤ 𝑥) | |
| 7 | 6 | adantl 481 | . . . . . 6 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ) → 𝑥 ≤ 𝑥) |
| 8 | 3, 5, 7 | caofref 7728 | . . . . 5 ⊢ (⊤ → (ℝ × {0}) ∘r ≤ (ℝ × {0})) |
| 9 | ax-resscn 11212 | . . . . . . 7 ⊢ ℝ ⊆ ℂ | |
| 10 | 9 | a1i 11 | . . . . . 6 ⊢ (⊤ → ℝ ⊆ ℂ) |
| 11 | 5 | ffnd 6737 | . . . . . 6 ⊢ (⊤ → (ℝ × {0}) Fn ℝ) |
| 12 | 10, 11 | 0pledm 25708 | . . . . 5 ⊢ (⊤ → (0𝑝 ∘r ≤ (ℝ × {0}) ↔ (ℝ × {0}) ∘r ≤ (ℝ × {0}))) |
| 13 | 8, 12 | mpbird 257 | . . . 4 ⊢ (⊤ → 0𝑝 ∘r ≤ (ℝ × {0})) |
| 14 | 13 | mptru 1547 | . . 3 ⊢ 0𝑝 ∘r ≤ (ℝ × {0}) |
| 15 | itg2itg1 25771 | . . 3 ⊢ (((ℝ × {0}) ∈ dom ∫1 ∧ 0𝑝 ∘r ≤ (ℝ × {0})) → (∫2‘(ℝ × {0})) = (∫1‘(ℝ × {0}))) | |
| 16 | 1, 14, 15 | mp2an 692 | . 2 ⊢ (∫2‘(ℝ × {0})) = (∫1‘(ℝ × {0})) |
| 17 | itg10 25723 | . 2 ⊢ (∫1‘(ℝ × {0})) = 0 | |
| 18 | 16, 17 | eqtri 2765 | 1 ⊢ (∫2‘(ℝ × {0})) = 0 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ⊤wtru 1541 ∈ wcel 2108 Vcvv 3480 ⊆ wss 3951 {csn 4626 class class class wbr 5143 × cxp 5683 dom cdm 5685 ⟶wf 6557 ‘cfv 6561 ∘r cofr 7696 ℂcc 11153 ℝcr 11154 0cc0 11155 ≤ cle 11296 ∫1citg1 25650 ∫2citg2 25651 0𝑝c0p 25704 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-inf2 9681 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 ax-addf 11234 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-disj 5111 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-se 5638 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-isom 6570 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-ofr 7698 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-2o 8507 df-er 8745 df-map 8868 df-pm 8869 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-sup 9482 df-inf 9483 df-oi 9550 df-dju 9941 df-card 9979 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-nn 12267 df-2 12329 df-3 12330 df-n0 12527 df-z 12614 df-uz 12879 df-q 12991 df-rp 13035 df-xadd 13155 df-ioo 13391 df-ico 13393 df-icc 13394 df-fz 13548 df-fzo 13695 df-fl 13832 df-seq 14043 df-exp 14103 df-hash 14370 df-cj 15138 df-re 15139 df-im 15140 df-sqrt 15274 df-abs 15275 df-clim 15524 df-sum 15723 df-xmet 21357 df-met 21358 df-ovol 25499 df-vol 25500 df-mbf 25654 df-itg1 25655 df-itg2 25656 df-0p 25705 |
| This theorem is referenced by: itg2mulc 25782 itg0 25815 itgz 25816 itgvallem3 25821 iblposlem 25827 bddmulibl 25874 iblempty 45980 |
| Copyright terms: Public domain | W3C validator |