MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg20 Structured version   Visualization version   GIF version

Theorem itg20 24341
Description: The integral of the zero function. (Contributed by Mario Carneiro, 28-Jun-2014.)
Assertion
Ref Expression
itg20 (∫2‘(ℝ × {0})) = 0

Proof of Theorem itg20
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 i1f0 24291 . . 3 (ℝ × {0}) ∈ dom ∫1
2 reex 10617 . . . . . . 7 ℝ ∈ V
32a1i 11 . . . . . 6 (⊤ → ℝ ∈ V)
4 i1ff 24280 . . . . . . 7 ((ℝ × {0}) ∈ dom ∫1 → (ℝ × {0}):ℝ⟶ℝ)
51, 4mp1i 13 . . . . . 6 (⊤ → (ℝ × {0}):ℝ⟶ℝ)
6 leid 10725 . . . . . . 7 (𝑥 ∈ ℝ → 𝑥𝑥)
76adantl 485 . . . . . 6 ((⊤ ∧ 𝑥 ∈ ℝ) → 𝑥𝑥)
83, 5, 7caofref 7415 . . . . 5 (⊤ → (ℝ × {0}) ∘r ≤ (ℝ × {0}))
9 ax-resscn 10583 . . . . . . 7 ℝ ⊆ ℂ
109a1i 11 . . . . . 6 (⊤ → ℝ ⊆ ℂ)
115ffnd 6488 . . . . . 6 (⊤ → (ℝ × {0}) Fn ℝ)
1210, 110pledm 24277 . . . . 5 (⊤ → (0𝑝r ≤ (ℝ × {0}) ↔ (ℝ × {0}) ∘r ≤ (ℝ × {0})))
138, 12mpbird 260 . . . 4 (⊤ → 0𝑝r ≤ (ℝ × {0}))
1413mptru 1545 . . 3 0𝑝r ≤ (ℝ × {0})
15 itg2itg1 24340 . . 3 (((ℝ × {0}) ∈ dom ∫1 ∧ 0𝑝r ≤ (ℝ × {0})) → (∫2‘(ℝ × {0})) = (∫1‘(ℝ × {0})))
161, 14, 15mp2an 691 . 2 (∫2‘(ℝ × {0})) = (∫1‘(ℝ × {0}))
17 itg10 24292 . 2 (∫1‘(ℝ × {0})) = 0
1816, 17eqtri 2821 1 (∫2‘(ℝ × {0})) = 0
Colors of variables: wff setvar class
Syntax hints:   = wceq 1538  wtru 1539  wcel 2111  Vcvv 3441  wss 3881  {csn 4525   class class class wbr 5030   × cxp 5517  dom cdm 5519  wf 6320  cfv 6324  r cofr 7388  cc 10524  cr 10525  0cc0 10526  cle 10665  1citg1 24219  2citg2 24220  0𝑝c0p 24273
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-disj 4996  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-ofr 7390  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-inf 8891  df-oi 8958  df-dju 9314  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-q 12337  df-rp 12378  df-xadd 12496  df-ioo 12730  df-ico 12732  df-icc 12733  df-fz 12886  df-fzo 13029  df-fl 13157  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-sum 15035  df-xmet 20084  df-met 20085  df-ovol 24068  df-vol 24069  df-mbf 24223  df-itg1 24224  df-itg2 24225  df-0p 24274
This theorem is referenced by:  itg2mulc  24351  itg0  24383  itgz  24384  itgvallem3  24389  iblposlem  24395  bddmulibl  24442  iblempty  42607
  Copyright terms: Public domain W3C validator