| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > itg20 | Structured version Visualization version GIF version | ||
| Description: The integral of the zero function. (Contributed by Mario Carneiro, 28-Jun-2014.) |
| Ref | Expression |
|---|---|
| itg20 | ⊢ (∫2‘(ℝ × {0})) = 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | i1f0 25640 | . . 3 ⊢ (ℝ × {0}) ∈ dom ∫1 | |
| 2 | reex 11220 | . . . . . . 7 ⊢ ℝ ∈ V | |
| 3 | 2 | a1i 11 | . . . . . 6 ⊢ (⊤ → ℝ ∈ V) |
| 4 | i1ff 25629 | . . . . . . 7 ⊢ ((ℝ × {0}) ∈ dom ∫1 → (ℝ × {0}):ℝ⟶ℝ) | |
| 5 | 1, 4 | mp1i 13 | . . . . . 6 ⊢ (⊤ → (ℝ × {0}):ℝ⟶ℝ) |
| 6 | leid 11331 | . . . . . . 7 ⊢ (𝑥 ∈ ℝ → 𝑥 ≤ 𝑥) | |
| 7 | 6 | adantl 481 | . . . . . 6 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ) → 𝑥 ≤ 𝑥) |
| 8 | 3, 5, 7 | caofref 7702 | . . . . 5 ⊢ (⊤ → (ℝ × {0}) ∘r ≤ (ℝ × {0})) |
| 9 | ax-resscn 11186 | . . . . . . 7 ⊢ ℝ ⊆ ℂ | |
| 10 | 9 | a1i 11 | . . . . . 6 ⊢ (⊤ → ℝ ⊆ ℂ) |
| 11 | 5 | ffnd 6707 | . . . . . 6 ⊢ (⊤ → (ℝ × {0}) Fn ℝ) |
| 12 | 10, 11 | 0pledm 25626 | . . . . 5 ⊢ (⊤ → (0𝑝 ∘r ≤ (ℝ × {0}) ↔ (ℝ × {0}) ∘r ≤ (ℝ × {0}))) |
| 13 | 8, 12 | mpbird 257 | . . . 4 ⊢ (⊤ → 0𝑝 ∘r ≤ (ℝ × {0})) |
| 14 | 13 | mptru 1547 | . . 3 ⊢ 0𝑝 ∘r ≤ (ℝ × {0}) |
| 15 | itg2itg1 25689 | . . 3 ⊢ (((ℝ × {0}) ∈ dom ∫1 ∧ 0𝑝 ∘r ≤ (ℝ × {0})) → (∫2‘(ℝ × {0})) = (∫1‘(ℝ × {0}))) | |
| 16 | 1, 14, 15 | mp2an 692 | . 2 ⊢ (∫2‘(ℝ × {0})) = (∫1‘(ℝ × {0})) |
| 17 | itg10 25641 | . 2 ⊢ (∫1‘(ℝ × {0})) = 0 | |
| 18 | 16, 17 | eqtri 2758 | 1 ⊢ (∫2‘(ℝ × {0})) = 0 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ⊤wtru 1541 ∈ wcel 2108 Vcvv 3459 ⊆ wss 3926 {csn 4601 class class class wbr 5119 × cxp 5652 dom cdm 5654 ⟶wf 6527 ‘cfv 6531 ∘r cofr 7670 ℂcc 11127 ℝcr 11128 0cc0 11129 ≤ cle 11270 ∫1citg1 25568 ∫2citg2 25569 0𝑝c0p 25622 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-inf2 9655 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 ax-addf 11208 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-disj 5087 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7671 df-ofr 7672 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-er 8719 df-map 8842 df-pm 8843 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-sup 9454 df-inf 9455 df-oi 9524 df-dju 9915 df-card 9953 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-n0 12502 df-z 12589 df-uz 12853 df-q 12965 df-rp 13009 df-xadd 13129 df-ioo 13366 df-ico 13368 df-icc 13369 df-fz 13525 df-fzo 13672 df-fl 13809 df-seq 14020 df-exp 14080 df-hash 14349 df-cj 15118 df-re 15119 df-im 15120 df-sqrt 15254 df-abs 15255 df-clim 15504 df-sum 15703 df-xmet 21308 df-met 21309 df-ovol 25417 df-vol 25418 df-mbf 25572 df-itg1 25573 df-itg2 25574 df-0p 25623 |
| This theorem is referenced by: itg2mulc 25700 itg0 25733 itgz 25734 itgvallem3 25739 iblposlem 25745 bddmulibl 25792 iblempty 45994 |
| Copyright terms: Public domain | W3C validator |