| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > itg20 | Structured version Visualization version GIF version | ||
| Description: The integral of the zero function. (Contributed by Mario Carneiro, 28-Jun-2014.) |
| Ref | Expression |
|---|---|
| itg20 | ⊢ (∫2‘(ℝ × {0})) = 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | i1f0 25588 | . . 3 ⊢ (ℝ × {0}) ∈ dom ∫1 | |
| 2 | reex 11159 | . . . . . . 7 ⊢ ℝ ∈ V | |
| 3 | 2 | a1i 11 | . . . . . 6 ⊢ (⊤ → ℝ ∈ V) |
| 4 | i1ff 25577 | . . . . . . 7 ⊢ ((ℝ × {0}) ∈ dom ∫1 → (ℝ × {0}):ℝ⟶ℝ) | |
| 5 | 1, 4 | mp1i 13 | . . . . . 6 ⊢ (⊤ → (ℝ × {0}):ℝ⟶ℝ) |
| 6 | leid 11270 | . . . . . . 7 ⊢ (𝑥 ∈ ℝ → 𝑥 ≤ 𝑥) | |
| 7 | 6 | adantl 481 | . . . . . 6 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ) → 𝑥 ≤ 𝑥) |
| 8 | 3, 5, 7 | caofref 7684 | . . . . 5 ⊢ (⊤ → (ℝ × {0}) ∘r ≤ (ℝ × {0})) |
| 9 | ax-resscn 11125 | . . . . . . 7 ⊢ ℝ ⊆ ℂ | |
| 10 | 9 | a1i 11 | . . . . . 6 ⊢ (⊤ → ℝ ⊆ ℂ) |
| 11 | 5 | ffnd 6689 | . . . . . 6 ⊢ (⊤ → (ℝ × {0}) Fn ℝ) |
| 12 | 10, 11 | 0pledm 25574 | . . . . 5 ⊢ (⊤ → (0𝑝 ∘r ≤ (ℝ × {0}) ↔ (ℝ × {0}) ∘r ≤ (ℝ × {0}))) |
| 13 | 8, 12 | mpbird 257 | . . . 4 ⊢ (⊤ → 0𝑝 ∘r ≤ (ℝ × {0})) |
| 14 | 13 | mptru 1547 | . . 3 ⊢ 0𝑝 ∘r ≤ (ℝ × {0}) |
| 15 | itg2itg1 25637 | . . 3 ⊢ (((ℝ × {0}) ∈ dom ∫1 ∧ 0𝑝 ∘r ≤ (ℝ × {0})) → (∫2‘(ℝ × {0})) = (∫1‘(ℝ × {0}))) | |
| 16 | 1, 14, 15 | mp2an 692 | . 2 ⊢ (∫2‘(ℝ × {0})) = (∫1‘(ℝ × {0})) |
| 17 | itg10 25589 | . 2 ⊢ (∫1‘(ℝ × {0})) = 0 | |
| 18 | 16, 17 | eqtri 2752 | 1 ⊢ (∫2‘(ℝ × {0})) = 0 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ⊤wtru 1541 ∈ wcel 2109 Vcvv 3447 ⊆ wss 3914 {csn 4589 class class class wbr 5107 × cxp 5636 dom cdm 5638 ⟶wf 6507 ‘cfv 6511 ∘r cofr 7652 ℂcc 11066 ℝcr 11067 0cc0 11068 ≤ cle 11209 ∫1citg1 25516 ∫2citg2 25517 0𝑝c0p 25570 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 ax-addf 11147 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-disj 5075 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 df-ofr 7654 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-er 8671 df-map 8801 df-pm 8802 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-sup 9393 df-inf 9394 df-oi 9463 df-dju 9854 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-n0 12443 df-z 12530 df-uz 12794 df-q 12908 df-rp 12952 df-xadd 13073 df-ioo 13310 df-ico 13312 df-icc 13313 df-fz 13469 df-fzo 13616 df-fl 13754 df-seq 13967 df-exp 14027 df-hash 14296 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-clim 15454 df-sum 15653 df-xmet 21257 df-met 21258 df-ovol 25365 df-vol 25366 df-mbf 25520 df-itg1 25521 df-itg2 25522 df-0p 25571 |
| This theorem is referenced by: itg2mulc 25648 itg0 25681 itgz 25682 itgvallem3 25687 iblposlem 25693 bddmulibl 25740 iblempty 45963 |
| Copyright terms: Public domain | W3C validator |