Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > itg2itg1 | Structured version Visualization version GIF version |
Description: The integral of a nonnegative simple function using ∫2 is the same as its value under ∫1. (Contributed by Mario Carneiro, 28-Jun-2014.) |
Ref | Expression |
---|---|
itg2itg1 | ⊢ ((𝐹 ∈ dom ∫1 ∧ 0𝑝 ∘r ≤ 𝐹) → (∫2‘𝐹) = (∫1‘𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | i1ff 24838 | . . . 4 ⊢ (𝐹 ∈ dom ∫1 → 𝐹:ℝ⟶ℝ) | |
2 | xrge0f 24894 | . . . 4 ⊢ ((𝐹:ℝ⟶ℝ ∧ 0𝑝 ∘r ≤ 𝐹) → 𝐹:ℝ⟶(0[,]+∞)) | |
3 | 1, 2 | sylan 580 | . . 3 ⊢ ((𝐹 ∈ dom ∫1 ∧ 0𝑝 ∘r ≤ 𝐹) → 𝐹:ℝ⟶(0[,]+∞)) |
4 | itg2cl 24895 | . . 3 ⊢ (𝐹:ℝ⟶(0[,]+∞) → (∫2‘𝐹) ∈ ℝ*) | |
5 | 3, 4 | syl 17 | . 2 ⊢ ((𝐹 ∈ dom ∫1 ∧ 0𝑝 ∘r ≤ 𝐹) → (∫2‘𝐹) ∈ ℝ*) |
6 | itg1cl 24847 | . . . 4 ⊢ (𝐹 ∈ dom ∫1 → (∫1‘𝐹) ∈ ℝ) | |
7 | 6 | adantr 481 | . . 3 ⊢ ((𝐹 ∈ dom ∫1 ∧ 0𝑝 ∘r ≤ 𝐹) → (∫1‘𝐹) ∈ ℝ) |
8 | 7 | rexrd 11026 | . 2 ⊢ ((𝐹 ∈ dom ∫1 ∧ 0𝑝 ∘r ≤ 𝐹) → (∫1‘𝐹) ∈ ℝ*) |
9 | itg1le 24876 | . . . . . . 7 ⊢ ((𝑔 ∈ dom ∫1 ∧ 𝐹 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐹) → (∫1‘𝑔) ≤ (∫1‘𝐹)) | |
10 | 9 | 3expia 1120 | . . . . . 6 ⊢ ((𝑔 ∈ dom ∫1 ∧ 𝐹 ∈ dom ∫1) → (𝑔 ∘r ≤ 𝐹 → (∫1‘𝑔) ≤ (∫1‘𝐹))) |
11 | 10 | ancoms 459 | . . . . 5 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1) → (𝑔 ∘r ≤ 𝐹 → (∫1‘𝑔) ≤ (∫1‘𝐹))) |
12 | 11 | ralrimiva 3110 | . . . 4 ⊢ (𝐹 ∈ dom ∫1 → ∀𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 → (∫1‘𝑔) ≤ (∫1‘𝐹))) |
13 | 12 | adantr 481 | . . 3 ⊢ ((𝐹 ∈ dom ∫1 ∧ 0𝑝 ∘r ≤ 𝐹) → ∀𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 → (∫1‘𝑔) ≤ (∫1‘𝐹))) |
14 | itg2leub 24897 | . . . 4 ⊢ ((𝐹:ℝ⟶(0[,]+∞) ∧ (∫1‘𝐹) ∈ ℝ*) → ((∫2‘𝐹) ≤ (∫1‘𝐹) ↔ ∀𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 → (∫1‘𝑔) ≤ (∫1‘𝐹)))) | |
15 | 3, 8, 14 | syl2anc 584 | . . 3 ⊢ ((𝐹 ∈ dom ∫1 ∧ 0𝑝 ∘r ≤ 𝐹) → ((∫2‘𝐹) ≤ (∫1‘𝐹) ↔ ∀𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 → (∫1‘𝑔) ≤ (∫1‘𝐹)))) |
16 | 13, 15 | mpbird 256 | . 2 ⊢ ((𝐹 ∈ dom ∫1 ∧ 0𝑝 ∘r ≤ 𝐹) → (∫2‘𝐹) ≤ (∫1‘𝐹)) |
17 | simpl 483 | . . 3 ⊢ ((𝐹 ∈ dom ∫1 ∧ 0𝑝 ∘r ≤ 𝐹) → 𝐹 ∈ dom ∫1) | |
18 | reex 10963 | . . . . . 6 ⊢ ℝ ∈ V | |
19 | 18 | a1i 11 | . . . . 5 ⊢ (𝐹 ∈ dom ∫1 → ℝ ∈ V) |
20 | leid 11071 | . . . . . 6 ⊢ (𝑥 ∈ ℝ → 𝑥 ≤ 𝑥) | |
21 | 20 | adantl 482 | . . . . 5 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝑥 ∈ ℝ) → 𝑥 ≤ 𝑥) |
22 | 19, 1, 21 | caofref 7556 | . . . 4 ⊢ (𝐹 ∈ dom ∫1 → 𝐹 ∘r ≤ 𝐹) |
23 | 22 | adantr 481 | . . 3 ⊢ ((𝐹 ∈ dom ∫1 ∧ 0𝑝 ∘r ≤ 𝐹) → 𝐹 ∘r ≤ 𝐹) |
24 | itg2ub 24896 | . . 3 ⊢ ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐹 ∈ dom ∫1 ∧ 𝐹 ∘r ≤ 𝐹) → (∫1‘𝐹) ≤ (∫2‘𝐹)) | |
25 | 3, 17, 23, 24 | syl3anc 1370 | . 2 ⊢ ((𝐹 ∈ dom ∫1 ∧ 0𝑝 ∘r ≤ 𝐹) → (∫1‘𝐹) ≤ (∫2‘𝐹)) |
26 | 5, 8, 16, 25 | xrletrid 12888 | 1 ⊢ ((𝐹 ∈ dom ∫1 ∧ 0𝑝 ∘r ≤ 𝐹) → (∫2‘𝐹) = (∫1‘𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1542 ∈ wcel 2110 ∀wral 3066 Vcvv 3431 class class class wbr 5079 dom cdm 5590 ⟶wf 6428 ‘cfv 6432 (class class class)co 7271 ∘r cofr 7526 ℝcr 10871 0cc0 10872 +∞cpnf 11007 ℝ*cxr 11009 ≤ cle 11011 [,]cicc 13081 ∫1citg1 24777 ∫2citg2 24778 0𝑝c0p 24831 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 ax-inf2 9377 ax-cnex 10928 ax-resscn 10929 ax-1cn 10930 ax-icn 10931 ax-addcl 10932 ax-addrcl 10933 ax-mulcl 10934 ax-mulrcl 10935 ax-mulcom 10936 ax-addass 10937 ax-mulass 10938 ax-distr 10939 ax-i2m1 10940 ax-1ne0 10941 ax-1rid 10942 ax-rnegex 10943 ax-rrecex 10944 ax-cnre 10945 ax-pre-lttri 10946 ax-pre-lttrn 10947 ax-pre-ltadd 10948 ax-pre-mulgt0 10949 ax-pre-sup 10950 ax-addf 10951 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-int 4886 df-iun 4932 df-disj 5045 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-se 5546 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6201 df-ord 6268 df-on 6269 df-lim 6270 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-isom 6441 df-riota 7228 df-ov 7274 df-oprab 7275 df-mpo 7276 df-of 7527 df-ofr 7528 df-om 7707 df-1st 7824 df-2nd 7825 df-frecs 8088 df-wrecs 8119 df-recs 8193 df-rdg 8232 df-1o 8288 df-2o 8289 df-er 8481 df-map 8600 df-pm 8601 df-en 8717 df-dom 8718 df-sdom 8719 df-fin 8720 df-sup 9179 df-inf 9180 df-oi 9247 df-dju 9660 df-card 9698 df-pnf 11012 df-mnf 11013 df-xr 11014 df-ltxr 11015 df-le 11016 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-n0 12234 df-z 12320 df-uz 12582 df-q 12688 df-rp 12730 df-xadd 12848 df-ioo 13082 df-ico 13084 df-icc 13085 df-fz 13239 df-fzo 13382 df-fl 13510 df-seq 13720 df-exp 13781 df-hash 14043 df-cj 14808 df-re 14809 df-im 14810 df-sqrt 14944 df-abs 14945 df-clim 15195 df-sum 15396 df-xmet 20588 df-met 20589 df-ovol 24626 df-vol 24627 df-mbf 24781 df-itg1 24782 df-itg2 24783 df-0p 24832 |
This theorem is referenced by: itg20 24900 itg2const 24903 itg2i1fseq 24918 i1fibl 24970 itgitg1 24971 ftc1anclem5 35850 ftc1anclem7 35852 ftc1anclem8 35853 |
Copyright terms: Public domain | W3C validator |