![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > itg2itg1 | Structured version Visualization version GIF version |
Description: The integral of a nonnegative simple function using ∫2 is the same as its value under ∫1. (Contributed by Mario Carneiro, 28-Jun-2014.) |
Ref | Expression |
---|---|
itg2itg1 | ⊢ ((𝐹 ∈ dom ∫1 ∧ 0𝑝 ∘r ≤ 𝐹) → (∫2‘𝐹) = (∫1‘𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | i1ff 25592 | . . . 4 ⊢ (𝐹 ∈ dom ∫1 → 𝐹:ℝ⟶ℝ) | |
2 | xrge0f 25648 | . . . 4 ⊢ ((𝐹:ℝ⟶ℝ ∧ 0𝑝 ∘r ≤ 𝐹) → 𝐹:ℝ⟶(0[,]+∞)) | |
3 | 1, 2 | sylan 579 | . . 3 ⊢ ((𝐹 ∈ dom ∫1 ∧ 0𝑝 ∘r ≤ 𝐹) → 𝐹:ℝ⟶(0[,]+∞)) |
4 | itg2cl 25649 | . . 3 ⊢ (𝐹:ℝ⟶(0[,]+∞) → (∫2‘𝐹) ∈ ℝ*) | |
5 | 3, 4 | syl 17 | . 2 ⊢ ((𝐹 ∈ dom ∫1 ∧ 0𝑝 ∘r ≤ 𝐹) → (∫2‘𝐹) ∈ ℝ*) |
6 | itg1cl 25601 | . . . 4 ⊢ (𝐹 ∈ dom ∫1 → (∫1‘𝐹) ∈ ℝ) | |
7 | 6 | adantr 480 | . . 3 ⊢ ((𝐹 ∈ dom ∫1 ∧ 0𝑝 ∘r ≤ 𝐹) → (∫1‘𝐹) ∈ ℝ) |
8 | 7 | rexrd 11286 | . 2 ⊢ ((𝐹 ∈ dom ∫1 ∧ 0𝑝 ∘r ≤ 𝐹) → (∫1‘𝐹) ∈ ℝ*) |
9 | itg1le 25630 | . . . . . . 7 ⊢ ((𝑔 ∈ dom ∫1 ∧ 𝐹 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐹) → (∫1‘𝑔) ≤ (∫1‘𝐹)) | |
10 | 9 | 3expia 1119 | . . . . . 6 ⊢ ((𝑔 ∈ dom ∫1 ∧ 𝐹 ∈ dom ∫1) → (𝑔 ∘r ≤ 𝐹 → (∫1‘𝑔) ≤ (∫1‘𝐹))) |
11 | 10 | ancoms 458 | . . . . 5 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1) → (𝑔 ∘r ≤ 𝐹 → (∫1‘𝑔) ≤ (∫1‘𝐹))) |
12 | 11 | ralrimiva 3141 | . . . 4 ⊢ (𝐹 ∈ dom ∫1 → ∀𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 → (∫1‘𝑔) ≤ (∫1‘𝐹))) |
13 | 12 | adantr 480 | . . 3 ⊢ ((𝐹 ∈ dom ∫1 ∧ 0𝑝 ∘r ≤ 𝐹) → ∀𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 → (∫1‘𝑔) ≤ (∫1‘𝐹))) |
14 | itg2leub 25651 | . . . 4 ⊢ ((𝐹:ℝ⟶(0[,]+∞) ∧ (∫1‘𝐹) ∈ ℝ*) → ((∫2‘𝐹) ≤ (∫1‘𝐹) ↔ ∀𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 → (∫1‘𝑔) ≤ (∫1‘𝐹)))) | |
15 | 3, 8, 14 | syl2anc 583 | . . 3 ⊢ ((𝐹 ∈ dom ∫1 ∧ 0𝑝 ∘r ≤ 𝐹) → ((∫2‘𝐹) ≤ (∫1‘𝐹) ↔ ∀𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 → (∫1‘𝑔) ≤ (∫1‘𝐹)))) |
16 | 13, 15 | mpbird 257 | . 2 ⊢ ((𝐹 ∈ dom ∫1 ∧ 0𝑝 ∘r ≤ 𝐹) → (∫2‘𝐹) ≤ (∫1‘𝐹)) |
17 | simpl 482 | . . 3 ⊢ ((𝐹 ∈ dom ∫1 ∧ 0𝑝 ∘r ≤ 𝐹) → 𝐹 ∈ dom ∫1) | |
18 | reex 11221 | . . . . . 6 ⊢ ℝ ∈ V | |
19 | 18 | a1i 11 | . . . . 5 ⊢ (𝐹 ∈ dom ∫1 → ℝ ∈ V) |
20 | leid 11332 | . . . . . 6 ⊢ (𝑥 ∈ ℝ → 𝑥 ≤ 𝑥) | |
21 | 20 | adantl 481 | . . . . 5 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝑥 ∈ ℝ) → 𝑥 ≤ 𝑥) |
22 | 19, 1, 21 | caofref 7708 | . . . 4 ⊢ (𝐹 ∈ dom ∫1 → 𝐹 ∘r ≤ 𝐹) |
23 | 22 | adantr 480 | . . 3 ⊢ ((𝐹 ∈ dom ∫1 ∧ 0𝑝 ∘r ≤ 𝐹) → 𝐹 ∘r ≤ 𝐹) |
24 | itg2ub 25650 | . . 3 ⊢ ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐹 ∈ dom ∫1 ∧ 𝐹 ∘r ≤ 𝐹) → (∫1‘𝐹) ≤ (∫2‘𝐹)) | |
25 | 3, 17, 23, 24 | syl3anc 1369 | . 2 ⊢ ((𝐹 ∈ dom ∫1 ∧ 0𝑝 ∘r ≤ 𝐹) → (∫1‘𝐹) ≤ (∫2‘𝐹)) |
26 | 5, 8, 16, 25 | xrletrid 13158 | 1 ⊢ ((𝐹 ∈ dom ∫1 ∧ 0𝑝 ∘r ≤ 𝐹) → (∫2‘𝐹) = (∫1‘𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ∀wral 3056 Vcvv 3469 class class class wbr 5142 dom cdm 5672 ⟶wf 6538 ‘cfv 6542 (class class class)co 7414 ∘r cofr 7678 ℝcr 11129 0cc0 11130 +∞cpnf 11267 ℝ*cxr 11269 ≤ cle 11271 [,]cicc 13351 ∫1citg1 25531 ∫2citg2 25532 0𝑝c0p 25585 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-inf2 9656 ax-cnex 11186 ax-resscn 11187 ax-1cn 11188 ax-icn 11189 ax-addcl 11190 ax-addrcl 11191 ax-mulcl 11192 ax-mulrcl 11193 ax-mulcom 11194 ax-addass 11195 ax-mulass 11196 ax-distr 11197 ax-i2m1 11198 ax-1ne0 11199 ax-1rid 11200 ax-rnegex 11201 ax-rrecex 11202 ax-cnre 11203 ax-pre-lttri 11204 ax-pre-lttrn 11205 ax-pre-ltadd 11206 ax-pre-mulgt0 11207 ax-pre-sup 11208 ax-addf 11209 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-disj 5108 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-se 5628 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-of 7679 df-ofr 7680 df-om 7865 df-1st 7987 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-er 8718 df-map 8838 df-pm 8839 df-en 8956 df-dom 8957 df-sdom 8958 df-fin 8959 df-sup 9457 df-inf 9458 df-oi 9525 df-dju 9916 df-card 9954 df-pnf 11272 df-mnf 11273 df-xr 11274 df-ltxr 11275 df-le 11276 df-sub 11468 df-neg 11469 df-div 11894 df-nn 12235 df-2 12297 df-3 12298 df-n0 12495 df-z 12581 df-uz 12845 df-q 12955 df-rp 12999 df-xadd 13117 df-ioo 13352 df-ico 13354 df-icc 13355 df-fz 13509 df-fzo 13652 df-fl 13781 df-seq 13991 df-exp 14051 df-hash 14314 df-cj 15070 df-re 15071 df-im 15072 df-sqrt 15206 df-abs 15207 df-clim 15456 df-sum 15657 df-xmet 21259 df-met 21260 df-ovol 25380 df-vol 25381 df-mbf 25535 df-itg1 25536 df-itg2 25537 df-0p 25586 |
This theorem is referenced by: itg20 25654 itg2const 25657 itg2i1fseq 25672 i1fibl 25724 itgitg1 25725 ftc1anclem5 37105 ftc1anclem7 37107 ftc1anclem8 37108 |
Copyright terms: Public domain | W3C validator |