![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > itg2itg1 | Structured version Visualization version GIF version |
Description: The integral of a nonnegative simple function using β«2 is the same as its value under β«1. (Contributed by Mario Carneiro, 28-Jun-2014.) |
Ref | Expression |
---|---|
itg2itg1 | β’ ((πΉ β dom β«1 β§ 0π βr β€ πΉ) β (β«2βπΉ) = (β«1βπΉ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | i1ff 25526 | . . . 4 β’ (πΉ β dom β«1 β πΉ:ββΆβ) | |
2 | xrge0f 25582 | . . . 4 β’ ((πΉ:ββΆβ β§ 0π βr β€ πΉ) β πΉ:ββΆ(0[,]+β)) | |
3 | 1, 2 | sylan 579 | . . 3 β’ ((πΉ β dom β«1 β§ 0π βr β€ πΉ) β πΉ:ββΆ(0[,]+β)) |
4 | itg2cl 25583 | . . 3 β’ (πΉ:ββΆ(0[,]+β) β (β«2βπΉ) β β*) | |
5 | 3, 4 | syl 17 | . 2 β’ ((πΉ β dom β«1 β§ 0π βr β€ πΉ) β (β«2βπΉ) β β*) |
6 | itg1cl 25535 | . . . 4 β’ (πΉ β dom β«1 β (β«1βπΉ) β β) | |
7 | 6 | adantr 480 | . . 3 β’ ((πΉ β dom β«1 β§ 0π βr β€ πΉ) β (β«1βπΉ) β β) |
8 | 7 | rexrd 11271 | . 2 β’ ((πΉ β dom β«1 β§ 0π βr β€ πΉ) β (β«1βπΉ) β β*) |
9 | itg1le 25564 | . . . . . . 7 β’ ((π β dom β«1 β§ πΉ β dom β«1 β§ π βr β€ πΉ) β (β«1βπ) β€ (β«1βπΉ)) | |
10 | 9 | 3expia 1120 | . . . . . 6 β’ ((π β dom β«1 β§ πΉ β dom β«1) β (π βr β€ πΉ β (β«1βπ) β€ (β«1βπΉ))) |
11 | 10 | ancoms 458 | . . . . 5 β’ ((πΉ β dom β«1 β§ π β dom β«1) β (π βr β€ πΉ β (β«1βπ) β€ (β«1βπΉ))) |
12 | 11 | ralrimiva 3145 | . . . 4 β’ (πΉ β dom β«1 β βπ β dom β«1(π βr β€ πΉ β (β«1βπ) β€ (β«1βπΉ))) |
13 | 12 | adantr 480 | . . 3 β’ ((πΉ β dom β«1 β§ 0π βr β€ πΉ) β βπ β dom β«1(π βr β€ πΉ β (β«1βπ) β€ (β«1βπΉ))) |
14 | itg2leub 25585 | . . . 4 β’ ((πΉ:ββΆ(0[,]+β) β§ (β«1βπΉ) β β*) β ((β«2βπΉ) β€ (β«1βπΉ) β βπ β dom β«1(π βr β€ πΉ β (β«1βπ) β€ (β«1βπΉ)))) | |
15 | 3, 8, 14 | syl2anc 583 | . . 3 β’ ((πΉ β dom β«1 β§ 0π βr β€ πΉ) β ((β«2βπΉ) β€ (β«1βπΉ) β βπ β dom β«1(π βr β€ πΉ β (β«1βπ) β€ (β«1βπΉ)))) |
16 | 13, 15 | mpbird 257 | . 2 β’ ((πΉ β dom β«1 β§ 0π βr β€ πΉ) β (β«2βπΉ) β€ (β«1βπΉ)) |
17 | simpl 482 | . . 3 β’ ((πΉ β dom β«1 β§ 0π βr β€ πΉ) β πΉ β dom β«1) | |
18 | reex 11207 | . . . . . 6 β’ β β V | |
19 | 18 | a1i 11 | . . . . 5 β’ (πΉ β dom β«1 β β β V) |
20 | leid 11317 | . . . . . 6 β’ (π₯ β β β π₯ β€ π₯) | |
21 | 20 | adantl 481 | . . . . 5 β’ ((πΉ β dom β«1 β§ π₯ β β) β π₯ β€ π₯) |
22 | 19, 1, 21 | caofref 7703 | . . . 4 β’ (πΉ β dom β«1 β πΉ βr β€ πΉ) |
23 | 22 | adantr 480 | . . 3 β’ ((πΉ β dom β«1 β§ 0π βr β€ πΉ) β πΉ βr β€ πΉ) |
24 | itg2ub 25584 | . . 3 β’ ((πΉ:ββΆ(0[,]+β) β§ πΉ β dom β«1 β§ πΉ βr β€ πΉ) β (β«1βπΉ) β€ (β«2βπΉ)) | |
25 | 3, 17, 23, 24 | syl3anc 1370 | . 2 β’ ((πΉ β dom β«1 β§ 0π βr β€ πΉ) β (β«1βπΉ) β€ (β«2βπΉ)) |
26 | 5, 8, 16, 25 | xrletrid 13141 | 1 β’ ((πΉ β dom β«1 β§ 0π βr β€ πΉ) β (β«2βπΉ) = (β«1βπΉ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 395 = wceq 1540 β wcel 2105 βwral 3060 Vcvv 3473 class class class wbr 5148 dom cdm 5676 βΆwf 6539 βcfv 6543 (class class class)co 7412 βr cofr 7673 βcr 11115 0cc0 11116 +βcpnf 11252 β*cxr 11254 β€ cle 11256 [,]cicc 13334 β«1citg1 25465 β«2citg2 25466 0πc0p 25519 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-inf2 9642 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 ax-pre-sup 11194 ax-addf 11195 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-disj 5114 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-of 7674 df-ofr 7675 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-1o 8472 df-2o 8473 df-er 8709 df-map 8828 df-pm 8829 df-en 8946 df-dom 8947 df-sdom 8948 df-fin 8949 df-sup 9443 df-inf 9444 df-oi 9511 df-dju 9902 df-card 9940 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-div 11879 df-nn 12220 df-2 12282 df-3 12283 df-n0 12480 df-z 12566 df-uz 12830 df-q 12940 df-rp 12982 df-xadd 13100 df-ioo 13335 df-ico 13337 df-icc 13338 df-fz 13492 df-fzo 13635 df-fl 13764 df-seq 13974 df-exp 14035 df-hash 14298 df-cj 15053 df-re 15054 df-im 15055 df-sqrt 15189 df-abs 15190 df-clim 15439 df-sum 15640 df-xmet 21227 df-met 21228 df-ovol 25314 df-vol 25315 df-mbf 25469 df-itg1 25470 df-itg2 25471 df-0p 25520 |
This theorem is referenced by: itg20 25588 itg2const 25591 itg2i1fseq 25606 i1fibl 25658 itgitg1 25659 ftc1anclem5 37032 ftc1anclem7 37034 ftc1anclem8 37035 |
Copyright terms: Public domain | W3C validator |