Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > itg2itg1 | Structured version Visualization version GIF version |
Description: The integral of a nonnegative simple function using ∫2 is the same as its value under ∫1. (Contributed by Mario Carneiro, 28-Jun-2014.) |
Ref | Expression |
---|---|
itg2itg1 | ⊢ ((𝐹 ∈ dom ∫1 ∧ 0𝑝 ∘r ≤ 𝐹) → (∫2‘𝐹) = (∫1‘𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | i1ff 24745 | . . . 4 ⊢ (𝐹 ∈ dom ∫1 → 𝐹:ℝ⟶ℝ) | |
2 | xrge0f 24801 | . . . 4 ⊢ ((𝐹:ℝ⟶ℝ ∧ 0𝑝 ∘r ≤ 𝐹) → 𝐹:ℝ⟶(0[,]+∞)) | |
3 | 1, 2 | sylan 579 | . . 3 ⊢ ((𝐹 ∈ dom ∫1 ∧ 0𝑝 ∘r ≤ 𝐹) → 𝐹:ℝ⟶(0[,]+∞)) |
4 | itg2cl 24802 | . . 3 ⊢ (𝐹:ℝ⟶(0[,]+∞) → (∫2‘𝐹) ∈ ℝ*) | |
5 | 3, 4 | syl 17 | . 2 ⊢ ((𝐹 ∈ dom ∫1 ∧ 0𝑝 ∘r ≤ 𝐹) → (∫2‘𝐹) ∈ ℝ*) |
6 | itg1cl 24754 | . . . 4 ⊢ (𝐹 ∈ dom ∫1 → (∫1‘𝐹) ∈ ℝ) | |
7 | 6 | adantr 480 | . . 3 ⊢ ((𝐹 ∈ dom ∫1 ∧ 0𝑝 ∘r ≤ 𝐹) → (∫1‘𝐹) ∈ ℝ) |
8 | 7 | rexrd 10956 | . 2 ⊢ ((𝐹 ∈ dom ∫1 ∧ 0𝑝 ∘r ≤ 𝐹) → (∫1‘𝐹) ∈ ℝ*) |
9 | itg1le 24783 | . . . . . . 7 ⊢ ((𝑔 ∈ dom ∫1 ∧ 𝐹 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐹) → (∫1‘𝑔) ≤ (∫1‘𝐹)) | |
10 | 9 | 3expia 1119 | . . . . . 6 ⊢ ((𝑔 ∈ dom ∫1 ∧ 𝐹 ∈ dom ∫1) → (𝑔 ∘r ≤ 𝐹 → (∫1‘𝑔) ≤ (∫1‘𝐹))) |
11 | 10 | ancoms 458 | . . . . 5 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1) → (𝑔 ∘r ≤ 𝐹 → (∫1‘𝑔) ≤ (∫1‘𝐹))) |
12 | 11 | ralrimiva 3107 | . . . 4 ⊢ (𝐹 ∈ dom ∫1 → ∀𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 → (∫1‘𝑔) ≤ (∫1‘𝐹))) |
13 | 12 | adantr 480 | . . 3 ⊢ ((𝐹 ∈ dom ∫1 ∧ 0𝑝 ∘r ≤ 𝐹) → ∀𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 → (∫1‘𝑔) ≤ (∫1‘𝐹))) |
14 | itg2leub 24804 | . . . 4 ⊢ ((𝐹:ℝ⟶(0[,]+∞) ∧ (∫1‘𝐹) ∈ ℝ*) → ((∫2‘𝐹) ≤ (∫1‘𝐹) ↔ ∀𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 → (∫1‘𝑔) ≤ (∫1‘𝐹)))) | |
15 | 3, 8, 14 | syl2anc 583 | . . 3 ⊢ ((𝐹 ∈ dom ∫1 ∧ 0𝑝 ∘r ≤ 𝐹) → ((∫2‘𝐹) ≤ (∫1‘𝐹) ↔ ∀𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 → (∫1‘𝑔) ≤ (∫1‘𝐹)))) |
16 | 13, 15 | mpbird 256 | . 2 ⊢ ((𝐹 ∈ dom ∫1 ∧ 0𝑝 ∘r ≤ 𝐹) → (∫2‘𝐹) ≤ (∫1‘𝐹)) |
17 | simpl 482 | . . 3 ⊢ ((𝐹 ∈ dom ∫1 ∧ 0𝑝 ∘r ≤ 𝐹) → 𝐹 ∈ dom ∫1) | |
18 | reex 10893 | . . . . . 6 ⊢ ℝ ∈ V | |
19 | 18 | a1i 11 | . . . . 5 ⊢ (𝐹 ∈ dom ∫1 → ℝ ∈ V) |
20 | leid 11001 | . . . . . 6 ⊢ (𝑥 ∈ ℝ → 𝑥 ≤ 𝑥) | |
21 | 20 | adantl 481 | . . . . 5 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝑥 ∈ ℝ) → 𝑥 ≤ 𝑥) |
22 | 19, 1, 21 | caofref 7540 | . . . 4 ⊢ (𝐹 ∈ dom ∫1 → 𝐹 ∘r ≤ 𝐹) |
23 | 22 | adantr 480 | . . 3 ⊢ ((𝐹 ∈ dom ∫1 ∧ 0𝑝 ∘r ≤ 𝐹) → 𝐹 ∘r ≤ 𝐹) |
24 | itg2ub 24803 | . . 3 ⊢ ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐹 ∈ dom ∫1 ∧ 𝐹 ∘r ≤ 𝐹) → (∫1‘𝐹) ≤ (∫2‘𝐹)) | |
25 | 3, 17, 23, 24 | syl3anc 1369 | . 2 ⊢ ((𝐹 ∈ dom ∫1 ∧ 0𝑝 ∘r ≤ 𝐹) → (∫1‘𝐹) ≤ (∫2‘𝐹)) |
26 | 5, 8, 16, 25 | xrletrid 12818 | 1 ⊢ ((𝐹 ∈ dom ∫1 ∧ 0𝑝 ∘r ≤ 𝐹) → (∫2‘𝐹) = (∫1‘𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 Vcvv 3422 class class class wbr 5070 dom cdm 5580 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 ∘r cofr 7510 ℝcr 10801 0cc0 10802 +∞cpnf 10937 ℝ*cxr 10939 ≤ cle 10941 [,]cicc 13011 ∫1citg1 24684 ∫2citg2 24685 0𝑝c0p 24738 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 ax-addf 10881 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-disj 5036 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-ofr 7512 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-er 8456 df-map 8575 df-pm 8576 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-inf 9132 df-oi 9199 df-dju 9590 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-z 12250 df-uz 12512 df-q 12618 df-rp 12660 df-xadd 12778 df-ioo 13012 df-ico 13014 df-icc 13015 df-fz 13169 df-fzo 13312 df-fl 13440 df-seq 13650 df-exp 13711 df-hash 13973 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-clim 15125 df-sum 15326 df-xmet 20503 df-met 20504 df-ovol 24533 df-vol 24534 df-mbf 24688 df-itg1 24689 df-itg2 24690 df-0p 24739 |
This theorem is referenced by: itg20 24807 itg2const 24810 itg2i1fseq 24825 i1fibl 24877 itgitg1 24878 ftc1anclem5 35781 ftc1anclem7 35783 ftc1anclem8 35784 |
Copyright terms: Public domain | W3C validator |