MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caofinvl Structured version   Visualization version   GIF version

Theorem caofinvl 7297
Description: Transfer a left inverse law to the function operation. (Contributed by NM, 22-Oct-2014.)
Hypotheses
Ref Expression
caofref.1 (𝜑𝐴𝑉)
caofref.2 (𝜑𝐹:𝐴𝑆)
caofinv.3 (𝜑𝐵𝑊)
caofinv.4 (𝜑𝑁:𝑆𝑆)
caofinv.5 (𝜑𝐺 = (𝑣𝐴 ↦ (𝑁‘(𝐹𝑣))))
caofinvl.6 ((𝜑𝑥𝑆) → ((𝑁𝑥)𝑅𝑥) = 𝐵)
Assertion
Ref Expression
caofinvl (𝜑 → (𝐺𝑓 𝑅𝐹) = (𝐴 × {𝐵}))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐹   𝑥,𝐺   𝜑,𝑥   𝑥,𝑅   𝑥,𝑆   𝑣,𝐴   𝑣,𝐹,𝑥   𝑥,𝑁,𝑣   𝑣,𝑆   𝜑,𝑣
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑣)   𝑅(𝑣)   𝐺(𝑣)   𝑉(𝑥,𝑣)   𝑊(𝑥,𝑣)

Proof of Theorem caofinvl
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 caofref.1 . . . 4 (𝜑𝐴𝑉)
2 caofinv.5 . . . . . 6 (𝜑𝐺 = (𝑣𝐴 ↦ (𝑁‘(𝐹𝑣))))
3 caofinv.4 . . . . . . . 8 (𝜑𝑁:𝑆𝑆)
43adantr 481 . . . . . . 7 ((𝜑𝑣𝐴) → 𝑁:𝑆𝑆)
5 caofref.2 . . . . . . . 8 (𝜑𝐹:𝐴𝑆)
65ffvelrnda 6719 . . . . . . 7 ((𝜑𝑣𝐴) → (𝐹𝑣) ∈ 𝑆)
74, 6ffvelrnd 6720 . . . . . 6 ((𝜑𝑣𝐴) → (𝑁‘(𝐹𝑣)) ∈ 𝑆)
82, 7fmpt3d 6746 . . . . 5 (𝜑𝐺:𝐴𝑆)
98ffvelrnda 6719 . . . 4 ((𝜑𝑤𝐴) → (𝐺𝑤) ∈ 𝑆)
105ffvelrnda 6719 . . . 4 ((𝜑𝑤𝐴) → (𝐹𝑤) ∈ 𝑆)
11 fvex 6554 . . . . . . 7 (𝑁‘(𝐹𝑣)) ∈ V
12 eqid 2794 . . . . . . 7 (𝑣𝐴 ↦ (𝑁‘(𝐹𝑣))) = (𝑣𝐴 ↦ (𝑁‘(𝐹𝑣)))
1311, 12fnmpti 6362 . . . . . 6 (𝑣𝐴 ↦ (𝑁‘(𝐹𝑣))) Fn 𝐴
142fneq1d 6319 . . . . . 6 (𝜑 → (𝐺 Fn 𝐴 ↔ (𝑣𝐴 ↦ (𝑁‘(𝐹𝑣))) Fn 𝐴))
1513, 14mpbiri 259 . . . . 5 (𝜑𝐺 Fn 𝐴)
16 dffn5 6595 . . . . 5 (𝐺 Fn 𝐴𝐺 = (𝑤𝐴 ↦ (𝐺𝑤)))
1715, 16sylib 219 . . . 4 (𝜑𝐺 = (𝑤𝐴 ↦ (𝐺𝑤)))
185feqmptd 6604 . . . 4 (𝜑𝐹 = (𝑤𝐴 ↦ (𝐹𝑤)))
191, 9, 10, 17, 18offval2 7287 . . 3 (𝜑 → (𝐺𝑓 𝑅𝐹) = (𝑤𝐴 ↦ ((𝐺𝑤)𝑅(𝐹𝑤))))
202fveq1d 6543 . . . . . . 7 (𝜑 → (𝐺𝑤) = ((𝑣𝐴 ↦ (𝑁‘(𝐹𝑣)))‘𝑤))
21 2fveq3 6546 . . . . . . . 8 (𝑣 = 𝑤 → (𝑁‘(𝐹𝑣)) = (𝑁‘(𝐹𝑤)))
22 fvex 6554 . . . . . . . 8 (𝑁‘(𝐹𝑤)) ∈ V
2321, 12, 22fvmpt 6638 . . . . . . 7 (𝑤𝐴 → ((𝑣𝐴 ↦ (𝑁‘(𝐹𝑣)))‘𝑤) = (𝑁‘(𝐹𝑤)))
2420, 23sylan9eq 2850 . . . . . 6 ((𝜑𝑤𝐴) → (𝐺𝑤) = (𝑁‘(𝐹𝑤)))
2524oveq1d 7034 . . . . 5 ((𝜑𝑤𝐴) → ((𝐺𝑤)𝑅(𝐹𝑤)) = ((𝑁‘(𝐹𝑤))𝑅(𝐹𝑤)))
26 fveq2 6541 . . . . . . . 8 (𝑥 = (𝐹𝑤) → (𝑁𝑥) = (𝑁‘(𝐹𝑤)))
27 id 22 . . . . . . . 8 (𝑥 = (𝐹𝑤) → 𝑥 = (𝐹𝑤))
2826, 27oveq12d 7037 . . . . . . 7 (𝑥 = (𝐹𝑤) → ((𝑁𝑥)𝑅𝑥) = ((𝑁‘(𝐹𝑤))𝑅(𝐹𝑤)))
2928eqeq1d 2796 . . . . . 6 (𝑥 = (𝐹𝑤) → (((𝑁𝑥)𝑅𝑥) = 𝐵 ↔ ((𝑁‘(𝐹𝑤))𝑅(𝐹𝑤)) = 𝐵))
30 caofinvl.6 . . . . . . . 8 ((𝜑𝑥𝑆) → ((𝑁𝑥)𝑅𝑥) = 𝐵)
3130ralrimiva 3148 . . . . . . 7 (𝜑 → ∀𝑥𝑆 ((𝑁𝑥)𝑅𝑥) = 𝐵)
3231adantr 481 . . . . . 6 ((𝜑𝑤𝐴) → ∀𝑥𝑆 ((𝑁𝑥)𝑅𝑥) = 𝐵)
3329, 32, 10rspcdva 3563 . . . . 5 ((𝜑𝑤𝐴) → ((𝑁‘(𝐹𝑤))𝑅(𝐹𝑤)) = 𝐵)
3425, 33eqtrd 2830 . . . 4 ((𝜑𝑤𝐴) → ((𝐺𝑤)𝑅(𝐹𝑤)) = 𝐵)
3534mpteq2dva 5058 . . 3 (𝜑 → (𝑤𝐴 ↦ ((𝐺𝑤)𝑅(𝐹𝑤))) = (𝑤𝐴𝐵))
3619, 35eqtrd 2830 . 2 (𝜑 → (𝐺𝑓 𝑅𝐹) = (𝑤𝐴𝐵))
37 fconstmpt 5503 . 2 (𝐴 × {𝐵}) = (𝑤𝐴𝐵)
3836, 37syl6eqr 2848 1 (𝜑 → (𝐺𝑓 𝑅𝐹) = (𝐴 × {𝐵}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1522  wcel 2080  wral 3104  {csn 4474  cmpt 5043   × cxp 5444   Fn wfn 6223  wf 6224  cfv 6228  (class class class)co 7019  𝑓 cof 7268
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1778  ax-4 1792  ax-5 1889  ax-6 1948  ax-7 1993  ax-8 2082  ax-9 2090  ax-10 2111  ax-11 2125  ax-12 2140  ax-13 2343  ax-ext 2768  ax-rep 5084  ax-sep 5097  ax-nul 5104  ax-pow 5160  ax-pr 5224
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3an 1082  df-tru 1525  df-ex 1763  df-nf 1767  df-sb 2042  df-mo 2575  df-eu 2611  df-clab 2775  df-cleq 2787  df-clel 2862  df-nfc 2934  df-ne 2984  df-ral 3109  df-rex 3110  df-reu 3111  df-rab 3113  df-v 3438  df-sbc 3708  df-csb 3814  df-dif 3864  df-un 3866  df-in 3868  df-ss 3876  df-nul 4214  df-if 4384  df-sn 4475  df-pr 4477  df-op 4481  df-uni 4748  df-iun 4829  df-br 4965  df-opab 5027  df-mpt 5044  df-id 5351  df-xp 5452  df-rel 5453  df-cnv 5454  df-co 5455  df-dm 5456  df-rn 5457  df-res 5458  df-ima 5459  df-iota 6192  df-fun 6230  df-fn 6231  df-f 6232  df-f1 6233  df-fo 6234  df-f1o 6235  df-fv 6236  df-ov 7022  df-oprab 7023  df-mpo 7024  df-of 7270
This theorem is referenced by:  grpvlinv  20688  lflnegl  35756
  Copyright terms: Public domain W3C validator