MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caofinvl Structured version   Visualization version   GIF version

Theorem caofinvl 7745
Description: Transfer a left inverse law to the function operation. (Contributed by NM, 22-Oct-2014.)
Hypotheses
Ref Expression
caofref.1 (𝜑𝐴𝑉)
caofref.2 (𝜑𝐹:𝐴𝑆)
caofinv.3 (𝜑𝐵𝑊)
caofinv.4 (𝜑𝑁:𝑆𝑆)
caofinv.5 (𝜑𝐺 = (𝑣𝐴 ↦ (𝑁‘(𝐹𝑣))))
caofinvl.6 ((𝜑𝑥𝑆) → ((𝑁𝑥)𝑅𝑥) = 𝐵)
Assertion
Ref Expression
caofinvl (𝜑 → (𝐺f 𝑅𝐹) = (𝐴 × {𝐵}))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐹   𝑥,𝐺   𝜑,𝑥   𝑥,𝑅   𝑥,𝑆   𝑣,𝐴   𝑣,𝐹,𝑥   𝑥,𝑁,𝑣   𝑣,𝑆   𝜑,𝑣
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑣)   𝑅(𝑣)   𝐺(𝑣)   𝑉(𝑥,𝑣)   𝑊(𝑥,𝑣)

Proof of Theorem caofinvl
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 caofref.1 . . . 4 (𝜑𝐴𝑉)
2 caofinv.5 . . . . . 6 (𝜑𝐺 = (𝑣𝐴 ↦ (𝑁‘(𝐹𝑣))))
3 caofinv.4 . . . . . . . 8 (𝜑𝑁:𝑆𝑆)
43adantr 480 . . . . . . 7 ((𝜑𝑣𝐴) → 𝑁:𝑆𝑆)
5 caofref.2 . . . . . . . 8 (𝜑𝐹:𝐴𝑆)
65ffvelcdmda 7118 . . . . . . 7 ((𝜑𝑣𝐴) → (𝐹𝑣) ∈ 𝑆)
74, 6ffvelcdmd 7119 . . . . . 6 ((𝜑𝑣𝐴) → (𝑁‘(𝐹𝑣)) ∈ 𝑆)
82, 7fmpt3d 7150 . . . . 5 (𝜑𝐺:𝐴𝑆)
98ffvelcdmda 7118 . . . 4 ((𝜑𝑤𝐴) → (𝐺𝑤) ∈ 𝑆)
105ffvelcdmda 7118 . . . 4 ((𝜑𝑤𝐴) → (𝐹𝑤) ∈ 𝑆)
11 fvex 6933 . . . . . . 7 (𝑁‘(𝐹𝑣)) ∈ V
12 eqid 2740 . . . . . . 7 (𝑣𝐴 ↦ (𝑁‘(𝐹𝑣))) = (𝑣𝐴 ↦ (𝑁‘(𝐹𝑣)))
1311, 12fnmpti 6723 . . . . . 6 (𝑣𝐴 ↦ (𝑁‘(𝐹𝑣))) Fn 𝐴
142fneq1d 6672 . . . . . 6 (𝜑 → (𝐺 Fn 𝐴 ↔ (𝑣𝐴 ↦ (𝑁‘(𝐹𝑣))) Fn 𝐴))
1513, 14mpbiri 258 . . . . 5 (𝜑𝐺 Fn 𝐴)
16 dffn5 6980 . . . . 5 (𝐺 Fn 𝐴𝐺 = (𝑤𝐴 ↦ (𝐺𝑤)))
1715, 16sylib 218 . . . 4 (𝜑𝐺 = (𝑤𝐴 ↦ (𝐺𝑤)))
185feqmptd 6990 . . . 4 (𝜑𝐹 = (𝑤𝐴 ↦ (𝐹𝑤)))
191, 9, 10, 17, 18offval2 7734 . . 3 (𝜑 → (𝐺f 𝑅𝐹) = (𝑤𝐴 ↦ ((𝐺𝑤)𝑅(𝐹𝑤))))
202fveq1d 6922 . . . . . . 7 (𝜑 → (𝐺𝑤) = ((𝑣𝐴 ↦ (𝑁‘(𝐹𝑣)))‘𝑤))
21 2fveq3 6925 . . . . . . . 8 (𝑣 = 𝑤 → (𝑁‘(𝐹𝑣)) = (𝑁‘(𝐹𝑤)))
22 fvex 6933 . . . . . . . 8 (𝑁‘(𝐹𝑤)) ∈ V
2321, 12, 22fvmpt 7029 . . . . . . 7 (𝑤𝐴 → ((𝑣𝐴 ↦ (𝑁‘(𝐹𝑣)))‘𝑤) = (𝑁‘(𝐹𝑤)))
2420, 23sylan9eq 2800 . . . . . 6 ((𝜑𝑤𝐴) → (𝐺𝑤) = (𝑁‘(𝐹𝑤)))
2524oveq1d 7463 . . . . 5 ((𝜑𝑤𝐴) → ((𝐺𝑤)𝑅(𝐹𝑤)) = ((𝑁‘(𝐹𝑤))𝑅(𝐹𝑤)))
26 fveq2 6920 . . . . . . . 8 (𝑥 = (𝐹𝑤) → (𝑁𝑥) = (𝑁‘(𝐹𝑤)))
27 id 22 . . . . . . . 8 (𝑥 = (𝐹𝑤) → 𝑥 = (𝐹𝑤))
2826, 27oveq12d 7466 . . . . . . 7 (𝑥 = (𝐹𝑤) → ((𝑁𝑥)𝑅𝑥) = ((𝑁‘(𝐹𝑤))𝑅(𝐹𝑤)))
2928eqeq1d 2742 . . . . . 6 (𝑥 = (𝐹𝑤) → (((𝑁𝑥)𝑅𝑥) = 𝐵 ↔ ((𝑁‘(𝐹𝑤))𝑅(𝐹𝑤)) = 𝐵))
30 caofinvl.6 . . . . . . . 8 ((𝜑𝑥𝑆) → ((𝑁𝑥)𝑅𝑥) = 𝐵)
3130ralrimiva 3152 . . . . . . 7 (𝜑 → ∀𝑥𝑆 ((𝑁𝑥)𝑅𝑥) = 𝐵)
3231adantr 480 . . . . . 6 ((𝜑𝑤𝐴) → ∀𝑥𝑆 ((𝑁𝑥)𝑅𝑥) = 𝐵)
3329, 32, 10rspcdva 3636 . . . . 5 ((𝜑𝑤𝐴) → ((𝑁‘(𝐹𝑤))𝑅(𝐹𝑤)) = 𝐵)
3425, 33eqtrd 2780 . . . 4 ((𝜑𝑤𝐴) → ((𝐺𝑤)𝑅(𝐹𝑤)) = 𝐵)
3534mpteq2dva 5266 . . 3 (𝜑 → (𝑤𝐴 ↦ ((𝐺𝑤)𝑅(𝐹𝑤))) = (𝑤𝐴𝐵))
3619, 35eqtrd 2780 . 2 (𝜑 → (𝐺f 𝑅𝐹) = (𝑤𝐴𝐵))
37 fconstmpt 5762 . 2 (𝐴 × {𝐵}) = (𝑤𝐴𝐵)
3836, 37eqtr4di 2798 1 (𝜑 → (𝐺f 𝑅𝐹) = (𝐴 × {𝐵}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wral 3067  {csn 4648  cmpt 5249   × cxp 5698   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448  f cof 7712
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714
This theorem is referenced by:  grpvlinv  22423  lflnegl  39032
  Copyright terms: Public domain W3C validator