| Step | Hyp | Ref
| Expression |
| 1 | | caofref.1 |
. . . 4
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| 2 | | caofinv.5 |
. . . . . 6
⊢ (𝜑 → 𝐺 = (𝑣 ∈ 𝐴 ↦ (𝑁‘(𝐹‘𝑣)))) |
| 3 | | caofinv.4 |
. . . . . . . 8
⊢ (𝜑 → 𝑁:𝑆⟶𝑆) |
| 4 | 3 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑣 ∈ 𝐴) → 𝑁:𝑆⟶𝑆) |
| 5 | | caofref.2 |
. . . . . . . 8
⊢ (𝜑 → 𝐹:𝐴⟶𝑆) |
| 6 | 5 | ffvelcdmda 7079 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑣 ∈ 𝐴) → (𝐹‘𝑣) ∈ 𝑆) |
| 7 | 4, 6 | ffvelcdmd 7080 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑣 ∈ 𝐴) → (𝑁‘(𝐹‘𝑣)) ∈ 𝑆) |
| 8 | 2, 7 | fmpt3d 7111 |
. . . . 5
⊢ (𝜑 → 𝐺:𝐴⟶𝑆) |
| 9 | 8 | ffvelcdmda 7079 |
. . . 4
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (𝐺‘𝑤) ∈ 𝑆) |
| 10 | 5 | ffvelcdmda 7079 |
. . . 4
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (𝐹‘𝑤) ∈ 𝑆) |
| 11 | | fvex 6894 |
. . . . . . 7
⊢ (𝑁‘(𝐹‘𝑣)) ∈ V |
| 12 | | eqid 2736 |
. . . . . . 7
⊢ (𝑣 ∈ 𝐴 ↦ (𝑁‘(𝐹‘𝑣))) = (𝑣 ∈ 𝐴 ↦ (𝑁‘(𝐹‘𝑣))) |
| 13 | 11, 12 | fnmpti 6686 |
. . . . . 6
⊢ (𝑣 ∈ 𝐴 ↦ (𝑁‘(𝐹‘𝑣))) Fn 𝐴 |
| 14 | 2 | fneq1d 6636 |
. . . . . 6
⊢ (𝜑 → (𝐺 Fn 𝐴 ↔ (𝑣 ∈ 𝐴 ↦ (𝑁‘(𝐹‘𝑣))) Fn 𝐴)) |
| 15 | 13, 14 | mpbiri 258 |
. . . . 5
⊢ (𝜑 → 𝐺 Fn 𝐴) |
| 16 | | dffn5 6942 |
. . . . 5
⊢ (𝐺 Fn 𝐴 ↔ 𝐺 = (𝑤 ∈ 𝐴 ↦ (𝐺‘𝑤))) |
| 17 | 15, 16 | sylib 218 |
. . . 4
⊢ (𝜑 → 𝐺 = (𝑤 ∈ 𝐴 ↦ (𝐺‘𝑤))) |
| 18 | 5 | feqmptd 6952 |
. . . 4
⊢ (𝜑 → 𝐹 = (𝑤 ∈ 𝐴 ↦ (𝐹‘𝑤))) |
| 19 | 1, 9, 10, 17, 18 | offval2 7696 |
. . 3
⊢ (𝜑 → (𝐺 ∘f 𝑅𝐹) = (𝑤 ∈ 𝐴 ↦ ((𝐺‘𝑤)𝑅(𝐹‘𝑤)))) |
| 20 | 2 | fveq1d 6883 |
. . . . . . 7
⊢ (𝜑 → (𝐺‘𝑤) = ((𝑣 ∈ 𝐴 ↦ (𝑁‘(𝐹‘𝑣)))‘𝑤)) |
| 21 | | 2fveq3 6886 |
. . . . . . . 8
⊢ (𝑣 = 𝑤 → (𝑁‘(𝐹‘𝑣)) = (𝑁‘(𝐹‘𝑤))) |
| 22 | | fvex 6894 |
. . . . . . . 8
⊢ (𝑁‘(𝐹‘𝑤)) ∈ V |
| 23 | 21, 12, 22 | fvmpt 6991 |
. . . . . . 7
⊢ (𝑤 ∈ 𝐴 → ((𝑣 ∈ 𝐴 ↦ (𝑁‘(𝐹‘𝑣)))‘𝑤) = (𝑁‘(𝐹‘𝑤))) |
| 24 | 20, 23 | sylan9eq 2791 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (𝐺‘𝑤) = (𝑁‘(𝐹‘𝑤))) |
| 25 | 24 | oveq1d 7425 |
. . . . 5
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → ((𝐺‘𝑤)𝑅(𝐹‘𝑤)) = ((𝑁‘(𝐹‘𝑤))𝑅(𝐹‘𝑤))) |
| 26 | | fveq2 6881 |
. . . . . . . 8
⊢ (𝑥 = (𝐹‘𝑤) → (𝑁‘𝑥) = (𝑁‘(𝐹‘𝑤))) |
| 27 | | id 22 |
. . . . . . . 8
⊢ (𝑥 = (𝐹‘𝑤) → 𝑥 = (𝐹‘𝑤)) |
| 28 | 26, 27 | oveq12d 7428 |
. . . . . . 7
⊢ (𝑥 = (𝐹‘𝑤) → ((𝑁‘𝑥)𝑅𝑥) = ((𝑁‘(𝐹‘𝑤))𝑅(𝐹‘𝑤))) |
| 29 | 28 | eqeq1d 2738 |
. . . . . 6
⊢ (𝑥 = (𝐹‘𝑤) → (((𝑁‘𝑥)𝑅𝑥) = 𝐵 ↔ ((𝑁‘(𝐹‘𝑤))𝑅(𝐹‘𝑤)) = 𝐵)) |
| 30 | | caofinvl.6 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → ((𝑁‘𝑥)𝑅𝑥) = 𝐵) |
| 31 | 30 | ralrimiva 3133 |
. . . . . . 7
⊢ (𝜑 → ∀𝑥 ∈ 𝑆 ((𝑁‘𝑥)𝑅𝑥) = 𝐵) |
| 32 | 31 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → ∀𝑥 ∈ 𝑆 ((𝑁‘𝑥)𝑅𝑥) = 𝐵) |
| 33 | 29, 32, 10 | rspcdva 3607 |
. . . . 5
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → ((𝑁‘(𝐹‘𝑤))𝑅(𝐹‘𝑤)) = 𝐵) |
| 34 | 25, 33 | eqtrd 2771 |
. . . 4
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → ((𝐺‘𝑤)𝑅(𝐹‘𝑤)) = 𝐵) |
| 35 | 34 | mpteq2dva 5219 |
. . 3
⊢ (𝜑 → (𝑤 ∈ 𝐴 ↦ ((𝐺‘𝑤)𝑅(𝐹‘𝑤))) = (𝑤 ∈ 𝐴 ↦ 𝐵)) |
| 36 | 19, 35 | eqtrd 2771 |
. 2
⊢ (𝜑 → (𝐺 ∘f 𝑅𝐹) = (𝑤 ∈ 𝐴 ↦ 𝐵)) |
| 37 | | fconstmpt 5721 |
. 2
⊢ (𝐴 × {𝐵}) = (𝑤 ∈ 𝐴 ↦ 𝐵) |
| 38 | 36, 37 | eqtr4di 2789 |
1
⊢ (𝜑 → (𝐺 ∘f 𝑅𝐹) = (𝐴 × {𝐵})) |