MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caofinvl Structured version   Visualization version   GIF version

Theorem caofinvl 7498
Description: Transfer a left inverse law to the function operation. (Contributed by NM, 22-Oct-2014.)
Hypotheses
Ref Expression
caofref.1 (𝜑𝐴𝑉)
caofref.2 (𝜑𝐹:𝐴𝑆)
caofinv.3 (𝜑𝐵𝑊)
caofinv.4 (𝜑𝑁:𝑆𝑆)
caofinv.5 (𝜑𝐺 = (𝑣𝐴 ↦ (𝑁‘(𝐹𝑣))))
caofinvl.6 ((𝜑𝑥𝑆) → ((𝑁𝑥)𝑅𝑥) = 𝐵)
Assertion
Ref Expression
caofinvl (𝜑 → (𝐺f 𝑅𝐹) = (𝐴 × {𝐵}))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐹   𝑥,𝐺   𝜑,𝑥   𝑥,𝑅   𝑥,𝑆   𝑣,𝐴   𝑣,𝐹,𝑥   𝑥,𝑁,𝑣   𝑣,𝑆   𝜑,𝑣
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑣)   𝑅(𝑣)   𝐺(𝑣)   𝑉(𝑥,𝑣)   𝑊(𝑥,𝑣)

Proof of Theorem caofinvl
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 caofref.1 . . . 4 (𝜑𝐴𝑉)
2 caofinv.5 . . . . . 6 (𝜑𝐺 = (𝑣𝐴 ↦ (𝑁‘(𝐹𝑣))))
3 caofinv.4 . . . . . . . 8 (𝜑𝑁:𝑆𝑆)
43adantr 484 . . . . . . 7 ((𝜑𝑣𝐴) → 𝑁:𝑆𝑆)
5 caofref.2 . . . . . . . 8 (𝜑𝐹:𝐴𝑆)
65ffvelrnda 6904 . . . . . . 7 ((𝜑𝑣𝐴) → (𝐹𝑣) ∈ 𝑆)
74, 6ffvelrnd 6905 . . . . . 6 ((𝜑𝑣𝐴) → (𝑁‘(𝐹𝑣)) ∈ 𝑆)
82, 7fmpt3d 6933 . . . . 5 (𝜑𝐺:𝐴𝑆)
98ffvelrnda 6904 . . . 4 ((𝜑𝑤𝐴) → (𝐺𝑤) ∈ 𝑆)
105ffvelrnda 6904 . . . 4 ((𝜑𝑤𝐴) → (𝐹𝑤) ∈ 𝑆)
11 fvex 6730 . . . . . . 7 (𝑁‘(𝐹𝑣)) ∈ V
12 eqid 2737 . . . . . . 7 (𝑣𝐴 ↦ (𝑁‘(𝐹𝑣))) = (𝑣𝐴 ↦ (𝑁‘(𝐹𝑣)))
1311, 12fnmpti 6521 . . . . . 6 (𝑣𝐴 ↦ (𝑁‘(𝐹𝑣))) Fn 𝐴
142fneq1d 6472 . . . . . 6 (𝜑 → (𝐺 Fn 𝐴 ↔ (𝑣𝐴 ↦ (𝑁‘(𝐹𝑣))) Fn 𝐴))
1513, 14mpbiri 261 . . . . 5 (𝜑𝐺 Fn 𝐴)
16 dffn5 6771 . . . . 5 (𝐺 Fn 𝐴𝐺 = (𝑤𝐴 ↦ (𝐺𝑤)))
1715, 16sylib 221 . . . 4 (𝜑𝐺 = (𝑤𝐴 ↦ (𝐺𝑤)))
185feqmptd 6780 . . . 4 (𝜑𝐹 = (𝑤𝐴 ↦ (𝐹𝑤)))
191, 9, 10, 17, 18offval2 7488 . . 3 (𝜑 → (𝐺f 𝑅𝐹) = (𝑤𝐴 ↦ ((𝐺𝑤)𝑅(𝐹𝑤))))
202fveq1d 6719 . . . . . . 7 (𝜑 → (𝐺𝑤) = ((𝑣𝐴 ↦ (𝑁‘(𝐹𝑣)))‘𝑤))
21 2fveq3 6722 . . . . . . . 8 (𝑣 = 𝑤 → (𝑁‘(𝐹𝑣)) = (𝑁‘(𝐹𝑤)))
22 fvex 6730 . . . . . . . 8 (𝑁‘(𝐹𝑤)) ∈ V
2321, 12, 22fvmpt 6818 . . . . . . 7 (𝑤𝐴 → ((𝑣𝐴 ↦ (𝑁‘(𝐹𝑣)))‘𝑤) = (𝑁‘(𝐹𝑤)))
2420, 23sylan9eq 2798 . . . . . 6 ((𝜑𝑤𝐴) → (𝐺𝑤) = (𝑁‘(𝐹𝑤)))
2524oveq1d 7228 . . . . 5 ((𝜑𝑤𝐴) → ((𝐺𝑤)𝑅(𝐹𝑤)) = ((𝑁‘(𝐹𝑤))𝑅(𝐹𝑤)))
26 fveq2 6717 . . . . . . . 8 (𝑥 = (𝐹𝑤) → (𝑁𝑥) = (𝑁‘(𝐹𝑤)))
27 id 22 . . . . . . . 8 (𝑥 = (𝐹𝑤) → 𝑥 = (𝐹𝑤))
2826, 27oveq12d 7231 . . . . . . 7 (𝑥 = (𝐹𝑤) → ((𝑁𝑥)𝑅𝑥) = ((𝑁‘(𝐹𝑤))𝑅(𝐹𝑤)))
2928eqeq1d 2739 . . . . . 6 (𝑥 = (𝐹𝑤) → (((𝑁𝑥)𝑅𝑥) = 𝐵 ↔ ((𝑁‘(𝐹𝑤))𝑅(𝐹𝑤)) = 𝐵))
30 caofinvl.6 . . . . . . . 8 ((𝜑𝑥𝑆) → ((𝑁𝑥)𝑅𝑥) = 𝐵)
3130ralrimiva 3105 . . . . . . 7 (𝜑 → ∀𝑥𝑆 ((𝑁𝑥)𝑅𝑥) = 𝐵)
3231adantr 484 . . . . . 6 ((𝜑𝑤𝐴) → ∀𝑥𝑆 ((𝑁𝑥)𝑅𝑥) = 𝐵)
3329, 32, 10rspcdva 3539 . . . . 5 ((𝜑𝑤𝐴) → ((𝑁‘(𝐹𝑤))𝑅(𝐹𝑤)) = 𝐵)
3425, 33eqtrd 2777 . . . 4 ((𝜑𝑤𝐴) → ((𝐺𝑤)𝑅(𝐹𝑤)) = 𝐵)
3534mpteq2dva 5150 . . 3 (𝜑 → (𝑤𝐴 ↦ ((𝐺𝑤)𝑅(𝐹𝑤))) = (𝑤𝐴𝐵))
3619, 35eqtrd 2777 . 2 (𝜑 → (𝐺f 𝑅𝐹) = (𝑤𝐴𝐵))
37 fconstmpt 5611 . 2 (𝐴 × {𝐵}) = (𝑤𝐴𝐵)
3836, 37eqtr4di 2796 1 (𝜑 → (𝐺f 𝑅𝐹) = (𝐴 × {𝐵}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2110  wral 3061  {csn 4541  cmpt 5135   × cxp 5549   Fn wfn 6375  wf 6376  cfv 6380  (class class class)co 7213  f cof 7467
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pr 5322
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-ov 7216  df-oprab 7217  df-mpo 7218  df-of 7469
This theorem is referenced by:  grpvlinv  21294  lflnegl  36827
  Copyright terms: Public domain W3C validator