Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  caragenuni Structured version   Visualization version   GIF version

Theorem caragenuni 45213
Description: The base set of the sigma-algebra generated by the Caratheodory's construction is the whole base set of the original outer measure. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
caragenuni.o (πœ‘ β†’ 𝑂 ∈ OutMeas)
caragenuni.s 𝑆 = (CaraGenβ€˜π‘‚)
Assertion
Ref Expression
caragenuni (πœ‘ β†’ βˆͺ 𝑆 = βˆͺ dom 𝑂)

Proof of Theorem caragenuni
StepHypRef Expression
1 caragenuni.o . . . 4 (πœ‘ β†’ 𝑂 ∈ OutMeas)
2 caragenuni.s . . . . 5 𝑆 = (CaraGenβ€˜π‘‚)
32caragenss 45206 . . . 4 (𝑂 ∈ OutMeas β†’ 𝑆 βŠ† dom 𝑂)
41, 3syl 17 . . 3 (πœ‘ β†’ 𝑆 βŠ† dom 𝑂)
54unissd 4917 . 2 (πœ‘ β†’ βˆͺ 𝑆 βŠ† βˆͺ dom 𝑂)
6 eqid 2732 . . . 4 βˆͺ dom 𝑂 = βˆͺ dom 𝑂
71, 6, 2caragenunidm 45210 . . 3 (πœ‘ β†’ βˆͺ dom 𝑂 ∈ 𝑆)
8 elssuni 4940 . . 3 (βˆͺ dom 𝑂 ∈ 𝑆 β†’ βˆͺ dom 𝑂 βŠ† βˆͺ 𝑆)
97, 8syl 17 . 2 (πœ‘ β†’ βˆͺ dom 𝑂 βŠ† βˆͺ 𝑆)
105, 9eqssd 3998 1 (πœ‘ β†’ βˆͺ 𝑆 = βˆͺ dom 𝑂)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1541   ∈ wcel 2106   βŠ† wss 3947  βˆͺ cuni 4907  dom cdm 5675  β€˜cfv 6540  OutMeascome 45191  CaraGenccaragen 45193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-po 5587  df-so 5588  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7971  df-2nd 7972  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-xadd 13089  df-icc 13327  df-ome 45192  df-caragen 45194
This theorem is referenced by:  caragendifcl  45216  carageniuncl  45225  unidmvon  45319
  Copyright terms: Public domain W3C validator