Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  caragenuni Structured version   Visualization version   GIF version

Theorem caragenuni 43148
Description: The base set of the sigma-algebra generated by the Caratheodory's construction is the whole base set of the original outer measure. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
caragenuni.o (𝜑𝑂 ∈ OutMeas)
caragenuni.s 𝑆 = (CaraGen‘𝑂)
Assertion
Ref Expression
caragenuni (𝜑 𝑆 = dom 𝑂)

Proof of Theorem caragenuni
StepHypRef Expression
1 caragenuni.o . . . 4 (𝜑𝑂 ∈ OutMeas)
2 caragenuni.s . . . . 5 𝑆 = (CaraGen‘𝑂)
32caragenss 43141 . . . 4 (𝑂 ∈ OutMeas → 𝑆 ⊆ dom 𝑂)
41, 3syl 17 . . 3 (𝜑𝑆 ⊆ dom 𝑂)
54unissd 4810 . 2 (𝜑 𝑆 dom 𝑂)
6 eqid 2798 . . . 4 dom 𝑂 = dom 𝑂
71, 6, 2caragenunidm 43145 . . 3 (𝜑 dom 𝑂𝑆)
8 elssuni 4830 . . 3 ( dom 𝑂𝑆 dom 𝑂 𝑆)
97, 8syl 17 . 2 (𝜑 dom 𝑂 𝑆)
105, 9eqssd 3932 1 (𝜑 𝑆 = dom 𝑂)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  wcel 2111  wss 3881   cuni 4800  dom cdm 5519  cfv 6324  OutMeascome 43126  CaraGenccaragen 43128
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-po 5438  df-so 5439  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-1st 7671  df-2nd 7672  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-xadd 12496  df-icc 12733  df-ome 43127  df-caragen 43129
This theorem is referenced by:  caragendifcl  43151  carageniuncl  43160  unidmvon  43254
  Copyright terms: Public domain W3C validator