MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sectmon Structured version   Visualization version   GIF version

Theorem sectmon 17800
Description: If 𝐹 is a section of 𝐺, then 𝐹 is a monomorphism. A monomorphism that arises from a section is also known as a split monomorphism. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
sectmon.b 𝐵 = (Base‘𝐶)
sectmon.m 𝑀 = (Mono‘𝐶)
sectmon.s 𝑆 = (Sect‘𝐶)
sectmon.c (𝜑𝐶 ∈ Cat)
sectmon.x (𝜑𝑋𝐵)
sectmon.y (𝜑𝑌𝐵)
sectmon.1 (𝜑𝐹(𝑋𝑆𝑌)𝐺)
Assertion
Ref Expression
sectmon (𝜑𝐹 ∈ (𝑋𝑀𝑌))

Proof of Theorem sectmon
Dummy variables 𝑔 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sectmon.1 . . . 4 (𝜑𝐹(𝑋𝑆𝑌)𝐺)
2 sectmon.b . . . . 5 𝐵 = (Base‘𝐶)
3 eqid 2736 . . . . 5 (Hom ‘𝐶) = (Hom ‘𝐶)
4 eqid 2736 . . . . 5 (comp‘𝐶) = (comp‘𝐶)
5 eqid 2736 . . . . 5 (Id‘𝐶) = (Id‘𝐶)
6 sectmon.s . . . . 5 𝑆 = (Sect‘𝐶)
7 sectmon.c . . . . 5 (𝜑𝐶 ∈ Cat)
8 sectmon.x . . . . 5 (𝜑𝑋𝐵)
9 sectmon.y . . . . 5 (𝜑𝑌𝐵)
102, 3, 4, 5, 6, 7, 8, 9issect 17771 . . . 4 (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺 ↔ (𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋) ∧ (𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋))))
111, 10mpbid 232 . . 3 (𝜑 → (𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋) ∧ (𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)))
1211simp1d 1142 . 2 (𝜑𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌))
13 oveq2 7418 . . . . 5 ((𝐹(⟨𝑥, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = (𝐹(⟨𝑥, 𝑋⟩(comp‘𝐶)𝑌)) → (𝐺(⟨𝑥, 𝑌⟩(comp‘𝐶)𝑋)(𝐹(⟨𝑥, 𝑋⟩(comp‘𝐶)𝑌)𝑔)) = (𝐺(⟨𝑥, 𝑌⟩(comp‘𝐶)𝑋)(𝐹(⟨𝑥, 𝑋⟩(comp‘𝐶)𝑌))))
1411simp3d 1144 . . . . . . . . 9 (𝜑 → (𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋))
1514ad2antrr 726 . . . . . . . 8 (((𝜑𝑥𝐵) ∧ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑋) ∧ ∈ (𝑥(Hom ‘𝐶)𝑋))) → (𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋))
1615oveq1d 7425 . . . . . . 7 (((𝜑𝑥𝐵) ∧ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑋) ∧ ∈ (𝑥(Hom ‘𝐶)𝑋))) → ((𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹)(⟨𝑥, 𝑋⟩(comp‘𝐶)𝑋)𝑔) = (((Id‘𝐶)‘𝑋)(⟨𝑥, 𝑋⟩(comp‘𝐶)𝑋)𝑔))
177ad2antrr 726 . . . . . . . 8 (((𝜑𝑥𝐵) ∧ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑋) ∧ ∈ (𝑥(Hom ‘𝐶)𝑋))) → 𝐶 ∈ Cat)
18 simplr 768 . . . . . . . 8 (((𝜑𝑥𝐵) ∧ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑋) ∧ ∈ (𝑥(Hom ‘𝐶)𝑋))) → 𝑥𝐵)
198ad2antrr 726 . . . . . . . 8 (((𝜑𝑥𝐵) ∧ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑋) ∧ ∈ (𝑥(Hom ‘𝐶)𝑋))) → 𝑋𝐵)
209ad2antrr 726 . . . . . . . 8 (((𝜑𝑥𝐵) ∧ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑋) ∧ ∈ (𝑥(Hom ‘𝐶)𝑋))) → 𝑌𝐵)
21 simprl 770 . . . . . . . 8 (((𝜑𝑥𝐵) ∧ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑋) ∧ ∈ (𝑥(Hom ‘𝐶)𝑋))) → 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑋))
2212ad2antrr 726 . . . . . . . 8 (((𝜑𝑥𝐵) ∧ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑋) ∧ ∈ (𝑥(Hom ‘𝐶)𝑋))) → 𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌))
2311simp2d 1143 . . . . . . . . 9 (𝜑𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋))
2423ad2antrr 726 . . . . . . . 8 (((𝜑𝑥𝐵) ∧ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑋) ∧ ∈ (𝑥(Hom ‘𝐶)𝑋))) → 𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋))
252, 3, 4, 17, 18, 19, 20, 21, 22, 19, 24catass 17703 . . . . . . 7 (((𝜑𝑥𝐵) ∧ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑋) ∧ ∈ (𝑥(Hom ‘𝐶)𝑋))) → ((𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹)(⟨𝑥, 𝑋⟩(comp‘𝐶)𝑋)𝑔) = (𝐺(⟨𝑥, 𝑌⟩(comp‘𝐶)𝑋)(𝐹(⟨𝑥, 𝑋⟩(comp‘𝐶)𝑌)𝑔)))
262, 3, 5, 17, 18, 4, 19, 21catlid 17700 . . . . . . 7 (((𝜑𝑥𝐵) ∧ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑋) ∧ ∈ (𝑥(Hom ‘𝐶)𝑋))) → (((Id‘𝐶)‘𝑋)(⟨𝑥, 𝑋⟩(comp‘𝐶)𝑋)𝑔) = 𝑔)
2716, 25, 263eqtr3d 2779 . . . . . 6 (((𝜑𝑥𝐵) ∧ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑋) ∧ ∈ (𝑥(Hom ‘𝐶)𝑋))) → (𝐺(⟨𝑥, 𝑌⟩(comp‘𝐶)𝑋)(𝐹(⟨𝑥, 𝑋⟩(comp‘𝐶)𝑌)𝑔)) = 𝑔)
2815oveq1d 7425 . . . . . . 7 (((𝜑𝑥𝐵) ∧ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑋) ∧ ∈ (𝑥(Hom ‘𝐶)𝑋))) → ((𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹)(⟨𝑥, 𝑋⟩(comp‘𝐶)𝑋)) = (((Id‘𝐶)‘𝑋)(⟨𝑥, 𝑋⟩(comp‘𝐶)𝑋)))
29 simprr 772 . . . . . . . 8 (((𝜑𝑥𝐵) ∧ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑋) ∧ ∈ (𝑥(Hom ‘𝐶)𝑋))) → ∈ (𝑥(Hom ‘𝐶)𝑋))
302, 3, 4, 17, 18, 19, 20, 29, 22, 19, 24catass 17703 . . . . . . 7 (((𝜑𝑥𝐵) ∧ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑋) ∧ ∈ (𝑥(Hom ‘𝐶)𝑋))) → ((𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹)(⟨𝑥, 𝑋⟩(comp‘𝐶)𝑋)) = (𝐺(⟨𝑥, 𝑌⟩(comp‘𝐶)𝑋)(𝐹(⟨𝑥, 𝑋⟩(comp‘𝐶)𝑌))))
312, 3, 5, 17, 18, 4, 19, 29catlid 17700 . . . . . . 7 (((𝜑𝑥𝐵) ∧ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑋) ∧ ∈ (𝑥(Hom ‘𝐶)𝑋))) → (((Id‘𝐶)‘𝑋)(⟨𝑥, 𝑋⟩(comp‘𝐶)𝑋)) = )
3228, 30, 313eqtr3d 2779 . . . . . 6 (((𝜑𝑥𝐵) ∧ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑋) ∧ ∈ (𝑥(Hom ‘𝐶)𝑋))) → (𝐺(⟨𝑥, 𝑌⟩(comp‘𝐶)𝑋)(𝐹(⟨𝑥, 𝑋⟩(comp‘𝐶)𝑌))) = )
3327, 32eqeq12d 2752 . . . . 5 (((𝜑𝑥𝐵) ∧ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑋) ∧ ∈ (𝑥(Hom ‘𝐶)𝑋))) → ((𝐺(⟨𝑥, 𝑌⟩(comp‘𝐶)𝑋)(𝐹(⟨𝑥, 𝑋⟩(comp‘𝐶)𝑌)𝑔)) = (𝐺(⟨𝑥, 𝑌⟩(comp‘𝐶)𝑋)(𝐹(⟨𝑥, 𝑋⟩(comp‘𝐶)𝑌))) ↔ 𝑔 = ))
3413, 33imbitrid 244 . . . 4 (((𝜑𝑥𝐵) ∧ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑋) ∧ ∈ (𝑥(Hom ‘𝐶)𝑋))) → ((𝐹(⟨𝑥, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = (𝐹(⟨𝑥, 𝑋⟩(comp‘𝐶)𝑌)) → 𝑔 = ))
3534ralrimivva 3188 . . 3 ((𝜑𝑥𝐵) → ∀𝑔 ∈ (𝑥(Hom ‘𝐶)𝑋)∀ ∈ (𝑥(Hom ‘𝐶)𝑋)((𝐹(⟨𝑥, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = (𝐹(⟨𝑥, 𝑋⟩(comp‘𝐶)𝑌)) → 𝑔 = ))
3635ralrimiva 3133 . 2 (𝜑 → ∀𝑥𝐵𝑔 ∈ (𝑥(Hom ‘𝐶)𝑋)∀ ∈ (𝑥(Hom ‘𝐶)𝑋)((𝐹(⟨𝑥, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = (𝐹(⟨𝑥, 𝑋⟩(comp‘𝐶)𝑌)) → 𝑔 = ))
37 sectmon.m . . 3 𝑀 = (Mono‘𝐶)
382, 3, 4, 37, 7, 8, 9ismon2 17752 . 2 (𝜑 → (𝐹 ∈ (𝑋𝑀𝑌) ↔ (𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ ∀𝑥𝐵𝑔 ∈ (𝑥(Hom ‘𝐶)𝑋)∀ ∈ (𝑥(Hom ‘𝐶)𝑋)((𝐹(⟨𝑥, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = (𝐹(⟨𝑥, 𝑋⟩(comp‘𝐶)𝑌)) → 𝑔 = ))))
3912, 36, 38mpbir2and 713 1 (𝜑𝐹 ∈ (𝑋𝑀𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3052  cop 4612   class class class wbr 5124  cfv 6536  (class class class)co 7410  Basecbs 17233  Hom chom 17287  compcco 17288  Catccat 17681  Idccid 17682  Monocmon 17746  Sectcsect 17762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-1st 7993  df-2nd 7994  df-cat 17685  df-cid 17686  df-mon 17748  df-sect 17765
This theorem is referenced by:  sectepi  17802
  Copyright terms: Public domain W3C validator