MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sectmon Structured version   Visualization version   GIF version

Theorem sectmon 17707
Description: If 𝐹 is a section of 𝐺, then 𝐹 is a monomorphism. Proposition 7.35 of [Adamek] p. 110. A monomorphism that arises from a section is also known as a split monomorphism. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
sectmon.b 𝐵 = (Base‘𝐶)
sectmon.m 𝑀 = (Mono‘𝐶)
sectmon.s 𝑆 = (Sect‘𝐶)
sectmon.c (𝜑𝐶 ∈ Cat)
sectmon.x (𝜑𝑋𝐵)
sectmon.y (𝜑𝑌𝐵)
sectmon.1 (𝜑𝐹(𝑋𝑆𝑌)𝐺)
Assertion
Ref Expression
sectmon (𝜑𝐹 ∈ (𝑋𝑀𝑌))

Proof of Theorem sectmon
Dummy variables 𝑔 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sectmon.1 . . . 4 (𝜑𝐹(𝑋𝑆𝑌)𝐺)
2 sectmon.b . . . . 5 𝐵 = (Base‘𝐶)
3 eqid 2729 . . . . 5 (Hom ‘𝐶) = (Hom ‘𝐶)
4 eqid 2729 . . . . 5 (comp‘𝐶) = (comp‘𝐶)
5 eqid 2729 . . . . 5 (Id‘𝐶) = (Id‘𝐶)
6 sectmon.s . . . . 5 𝑆 = (Sect‘𝐶)
7 sectmon.c . . . . 5 (𝜑𝐶 ∈ Cat)
8 sectmon.x . . . . 5 (𝜑𝑋𝐵)
9 sectmon.y . . . . 5 (𝜑𝑌𝐵)
102, 3, 4, 5, 6, 7, 8, 9issect 17678 . . . 4 (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺 ↔ (𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋) ∧ (𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋))))
111, 10mpbid 232 . . 3 (𝜑 → (𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋) ∧ (𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)))
1211simp1d 1142 . 2 (𝜑𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌))
13 oveq2 7361 . . . . 5 ((𝐹(⟨𝑥, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = (𝐹(⟨𝑥, 𝑋⟩(comp‘𝐶)𝑌)) → (𝐺(⟨𝑥, 𝑌⟩(comp‘𝐶)𝑋)(𝐹(⟨𝑥, 𝑋⟩(comp‘𝐶)𝑌)𝑔)) = (𝐺(⟨𝑥, 𝑌⟩(comp‘𝐶)𝑋)(𝐹(⟨𝑥, 𝑋⟩(comp‘𝐶)𝑌))))
1411simp3d 1144 . . . . . . . . 9 (𝜑 → (𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋))
1514ad2antrr 726 . . . . . . . 8 (((𝜑𝑥𝐵) ∧ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑋) ∧ ∈ (𝑥(Hom ‘𝐶)𝑋))) → (𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋))
1615oveq1d 7368 . . . . . . 7 (((𝜑𝑥𝐵) ∧ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑋) ∧ ∈ (𝑥(Hom ‘𝐶)𝑋))) → ((𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹)(⟨𝑥, 𝑋⟩(comp‘𝐶)𝑋)𝑔) = (((Id‘𝐶)‘𝑋)(⟨𝑥, 𝑋⟩(comp‘𝐶)𝑋)𝑔))
177ad2antrr 726 . . . . . . . 8 (((𝜑𝑥𝐵) ∧ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑋) ∧ ∈ (𝑥(Hom ‘𝐶)𝑋))) → 𝐶 ∈ Cat)
18 simplr 768 . . . . . . . 8 (((𝜑𝑥𝐵) ∧ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑋) ∧ ∈ (𝑥(Hom ‘𝐶)𝑋))) → 𝑥𝐵)
198ad2antrr 726 . . . . . . . 8 (((𝜑𝑥𝐵) ∧ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑋) ∧ ∈ (𝑥(Hom ‘𝐶)𝑋))) → 𝑋𝐵)
209ad2antrr 726 . . . . . . . 8 (((𝜑𝑥𝐵) ∧ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑋) ∧ ∈ (𝑥(Hom ‘𝐶)𝑋))) → 𝑌𝐵)
21 simprl 770 . . . . . . . 8 (((𝜑𝑥𝐵) ∧ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑋) ∧ ∈ (𝑥(Hom ‘𝐶)𝑋))) → 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑋))
2212ad2antrr 726 . . . . . . . 8 (((𝜑𝑥𝐵) ∧ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑋) ∧ ∈ (𝑥(Hom ‘𝐶)𝑋))) → 𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌))
2311simp2d 1143 . . . . . . . . 9 (𝜑𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋))
2423ad2antrr 726 . . . . . . . 8 (((𝜑𝑥𝐵) ∧ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑋) ∧ ∈ (𝑥(Hom ‘𝐶)𝑋))) → 𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋))
252, 3, 4, 17, 18, 19, 20, 21, 22, 19, 24catass 17610 . . . . . . 7 (((𝜑𝑥𝐵) ∧ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑋) ∧ ∈ (𝑥(Hom ‘𝐶)𝑋))) → ((𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹)(⟨𝑥, 𝑋⟩(comp‘𝐶)𝑋)𝑔) = (𝐺(⟨𝑥, 𝑌⟩(comp‘𝐶)𝑋)(𝐹(⟨𝑥, 𝑋⟩(comp‘𝐶)𝑌)𝑔)))
262, 3, 5, 17, 18, 4, 19, 21catlid 17607 . . . . . . 7 (((𝜑𝑥𝐵) ∧ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑋) ∧ ∈ (𝑥(Hom ‘𝐶)𝑋))) → (((Id‘𝐶)‘𝑋)(⟨𝑥, 𝑋⟩(comp‘𝐶)𝑋)𝑔) = 𝑔)
2716, 25, 263eqtr3d 2772 . . . . . 6 (((𝜑𝑥𝐵) ∧ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑋) ∧ ∈ (𝑥(Hom ‘𝐶)𝑋))) → (𝐺(⟨𝑥, 𝑌⟩(comp‘𝐶)𝑋)(𝐹(⟨𝑥, 𝑋⟩(comp‘𝐶)𝑌)𝑔)) = 𝑔)
2815oveq1d 7368 . . . . . . 7 (((𝜑𝑥𝐵) ∧ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑋) ∧ ∈ (𝑥(Hom ‘𝐶)𝑋))) → ((𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹)(⟨𝑥, 𝑋⟩(comp‘𝐶)𝑋)) = (((Id‘𝐶)‘𝑋)(⟨𝑥, 𝑋⟩(comp‘𝐶)𝑋)))
29 simprr 772 . . . . . . . 8 (((𝜑𝑥𝐵) ∧ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑋) ∧ ∈ (𝑥(Hom ‘𝐶)𝑋))) → ∈ (𝑥(Hom ‘𝐶)𝑋))
302, 3, 4, 17, 18, 19, 20, 29, 22, 19, 24catass 17610 . . . . . . 7 (((𝜑𝑥𝐵) ∧ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑋) ∧ ∈ (𝑥(Hom ‘𝐶)𝑋))) → ((𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹)(⟨𝑥, 𝑋⟩(comp‘𝐶)𝑋)) = (𝐺(⟨𝑥, 𝑌⟩(comp‘𝐶)𝑋)(𝐹(⟨𝑥, 𝑋⟩(comp‘𝐶)𝑌))))
312, 3, 5, 17, 18, 4, 19, 29catlid 17607 . . . . . . 7 (((𝜑𝑥𝐵) ∧ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑋) ∧ ∈ (𝑥(Hom ‘𝐶)𝑋))) → (((Id‘𝐶)‘𝑋)(⟨𝑥, 𝑋⟩(comp‘𝐶)𝑋)) = )
3228, 30, 313eqtr3d 2772 . . . . . 6 (((𝜑𝑥𝐵) ∧ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑋) ∧ ∈ (𝑥(Hom ‘𝐶)𝑋))) → (𝐺(⟨𝑥, 𝑌⟩(comp‘𝐶)𝑋)(𝐹(⟨𝑥, 𝑋⟩(comp‘𝐶)𝑌))) = )
3327, 32eqeq12d 2745 . . . . 5 (((𝜑𝑥𝐵) ∧ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑋) ∧ ∈ (𝑥(Hom ‘𝐶)𝑋))) → ((𝐺(⟨𝑥, 𝑌⟩(comp‘𝐶)𝑋)(𝐹(⟨𝑥, 𝑋⟩(comp‘𝐶)𝑌)𝑔)) = (𝐺(⟨𝑥, 𝑌⟩(comp‘𝐶)𝑋)(𝐹(⟨𝑥, 𝑋⟩(comp‘𝐶)𝑌))) ↔ 𝑔 = ))
3413, 33imbitrid 244 . . . 4 (((𝜑𝑥𝐵) ∧ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑋) ∧ ∈ (𝑥(Hom ‘𝐶)𝑋))) → ((𝐹(⟨𝑥, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = (𝐹(⟨𝑥, 𝑋⟩(comp‘𝐶)𝑌)) → 𝑔 = ))
3534ralrimivva 3172 . . 3 ((𝜑𝑥𝐵) → ∀𝑔 ∈ (𝑥(Hom ‘𝐶)𝑋)∀ ∈ (𝑥(Hom ‘𝐶)𝑋)((𝐹(⟨𝑥, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = (𝐹(⟨𝑥, 𝑋⟩(comp‘𝐶)𝑌)) → 𝑔 = ))
3635ralrimiva 3121 . 2 (𝜑 → ∀𝑥𝐵𝑔 ∈ (𝑥(Hom ‘𝐶)𝑋)∀ ∈ (𝑥(Hom ‘𝐶)𝑋)((𝐹(⟨𝑥, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = (𝐹(⟨𝑥, 𝑋⟩(comp‘𝐶)𝑌)) → 𝑔 = ))
37 sectmon.m . . 3 𝑀 = (Mono‘𝐶)
382, 3, 4, 37, 7, 8, 9ismon2 17659 . 2 (𝜑 → (𝐹 ∈ (𝑋𝑀𝑌) ↔ (𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ ∀𝑥𝐵𝑔 ∈ (𝑥(Hom ‘𝐶)𝑋)∀ ∈ (𝑥(Hom ‘𝐶)𝑋)((𝐹(⟨𝑥, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = (𝐹(⟨𝑥, 𝑋⟩(comp‘𝐶)𝑌)) → 𝑔 = ))))
3912, 36, 38mpbir2and 713 1 (𝜑𝐹 ∈ (𝑋𝑀𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  cop 4585   class class class wbr 5095  cfv 6486  (class class class)co 7353  Basecbs 17138  Hom chom 17190  compcco 17191  Catccat 17588  Idccid 17589  Monocmon 17653  Sectcsect 17669
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1st 7931  df-2nd 7932  df-cat 17592  df-cid 17593  df-mon 17655  df-sect 17672
This theorem is referenced by:  sectepi  17709
  Copyright terms: Public domain W3C validator