MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sectmon Structured version   Visualization version   GIF version

Theorem sectmon 17826
Description: If 𝐹 is a section of 𝐺, then 𝐹 is a monomorphism. A monomorphism that arises from a section is also known as a split monomorphism. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
sectmon.b 𝐵 = (Base‘𝐶)
sectmon.m 𝑀 = (Mono‘𝐶)
sectmon.s 𝑆 = (Sect‘𝐶)
sectmon.c (𝜑𝐶 ∈ Cat)
sectmon.x (𝜑𝑋𝐵)
sectmon.y (𝜑𝑌𝐵)
sectmon.1 (𝜑𝐹(𝑋𝑆𝑌)𝐺)
Assertion
Ref Expression
sectmon (𝜑𝐹 ∈ (𝑋𝑀𝑌))

Proof of Theorem sectmon
Dummy variables 𝑔 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sectmon.1 . . . 4 (𝜑𝐹(𝑋𝑆𝑌)𝐺)
2 sectmon.b . . . . 5 𝐵 = (Base‘𝐶)
3 eqid 2737 . . . . 5 (Hom ‘𝐶) = (Hom ‘𝐶)
4 eqid 2737 . . . . 5 (comp‘𝐶) = (comp‘𝐶)
5 eqid 2737 . . . . 5 (Id‘𝐶) = (Id‘𝐶)
6 sectmon.s . . . . 5 𝑆 = (Sect‘𝐶)
7 sectmon.c . . . . 5 (𝜑𝐶 ∈ Cat)
8 sectmon.x . . . . 5 (𝜑𝑋𝐵)
9 sectmon.y . . . . 5 (𝜑𝑌𝐵)
102, 3, 4, 5, 6, 7, 8, 9issect 17797 . . . 4 (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺 ↔ (𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋) ∧ (𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋))))
111, 10mpbid 232 . . 3 (𝜑 → (𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋) ∧ (𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)))
1211simp1d 1143 . 2 (𝜑𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌))
13 oveq2 7439 . . . . 5 ((𝐹(⟨𝑥, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = (𝐹(⟨𝑥, 𝑋⟩(comp‘𝐶)𝑌)) → (𝐺(⟨𝑥, 𝑌⟩(comp‘𝐶)𝑋)(𝐹(⟨𝑥, 𝑋⟩(comp‘𝐶)𝑌)𝑔)) = (𝐺(⟨𝑥, 𝑌⟩(comp‘𝐶)𝑋)(𝐹(⟨𝑥, 𝑋⟩(comp‘𝐶)𝑌))))
1411simp3d 1145 . . . . . . . . 9 (𝜑 → (𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋))
1514ad2antrr 726 . . . . . . . 8 (((𝜑𝑥𝐵) ∧ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑋) ∧ ∈ (𝑥(Hom ‘𝐶)𝑋))) → (𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋))
1615oveq1d 7446 . . . . . . 7 (((𝜑𝑥𝐵) ∧ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑋) ∧ ∈ (𝑥(Hom ‘𝐶)𝑋))) → ((𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹)(⟨𝑥, 𝑋⟩(comp‘𝐶)𝑋)𝑔) = (((Id‘𝐶)‘𝑋)(⟨𝑥, 𝑋⟩(comp‘𝐶)𝑋)𝑔))
177ad2antrr 726 . . . . . . . 8 (((𝜑𝑥𝐵) ∧ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑋) ∧ ∈ (𝑥(Hom ‘𝐶)𝑋))) → 𝐶 ∈ Cat)
18 simplr 769 . . . . . . . 8 (((𝜑𝑥𝐵) ∧ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑋) ∧ ∈ (𝑥(Hom ‘𝐶)𝑋))) → 𝑥𝐵)
198ad2antrr 726 . . . . . . . 8 (((𝜑𝑥𝐵) ∧ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑋) ∧ ∈ (𝑥(Hom ‘𝐶)𝑋))) → 𝑋𝐵)
209ad2antrr 726 . . . . . . . 8 (((𝜑𝑥𝐵) ∧ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑋) ∧ ∈ (𝑥(Hom ‘𝐶)𝑋))) → 𝑌𝐵)
21 simprl 771 . . . . . . . 8 (((𝜑𝑥𝐵) ∧ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑋) ∧ ∈ (𝑥(Hom ‘𝐶)𝑋))) → 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑋))
2212ad2antrr 726 . . . . . . . 8 (((𝜑𝑥𝐵) ∧ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑋) ∧ ∈ (𝑥(Hom ‘𝐶)𝑋))) → 𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌))
2311simp2d 1144 . . . . . . . . 9 (𝜑𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋))
2423ad2antrr 726 . . . . . . . 8 (((𝜑𝑥𝐵) ∧ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑋) ∧ ∈ (𝑥(Hom ‘𝐶)𝑋))) → 𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋))
252, 3, 4, 17, 18, 19, 20, 21, 22, 19, 24catass 17729 . . . . . . 7 (((𝜑𝑥𝐵) ∧ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑋) ∧ ∈ (𝑥(Hom ‘𝐶)𝑋))) → ((𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹)(⟨𝑥, 𝑋⟩(comp‘𝐶)𝑋)𝑔) = (𝐺(⟨𝑥, 𝑌⟩(comp‘𝐶)𝑋)(𝐹(⟨𝑥, 𝑋⟩(comp‘𝐶)𝑌)𝑔)))
262, 3, 5, 17, 18, 4, 19, 21catlid 17726 . . . . . . 7 (((𝜑𝑥𝐵) ∧ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑋) ∧ ∈ (𝑥(Hom ‘𝐶)𝑋))) → (((Id‘𝐶)‘𝑋)(⟨𝑥, 𝑋⟩(comp‘𝐶)𝑋)𝑔) = 𝑔)
2716, 25, 263eqtr3d 2785 . . . . . 6 (((𝜑𝑥𝐵) ∧ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑋) ∧ ∈ (𝑥(Hom ‘𝐶)𝑋))) → (𝐺(⟨𝑥, 𝑌⟩(comp‘𝐶)𝑋)(𝐹(⟨𝑥, 𝑋⟩(comp‘𝐶)𝑌)𝑔)) = 𝑔)
2815oveq1d 7446 . . . . . . 7 (((𝜑𝑥𝐵) ∧ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑋) ∧ ∈ (𝑥(Hom ‘𝐶)𝑋))) → ((𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹)(⟨𝑥, 𝑋⟩(comp‘𝐶)𝑋)) = (((Id‘𝐶)‘𝑋)(⟨𝑥, 𝑋⟩(comp‘𝐶)𝑋)))
29 simprr 773 . . . . . . . 8 (((𝜑𝑥𝐵) ∧ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑋) ∧ ∈ (𝑥(Hom ‘𝐶)𝑋))) → ∈ (𝑥(Hom ‘𝐶)𝑋))
302, 3, 4, 17, 18, 19, 20, 29, 22, 19, 24catass 17729 . . . . . . 7 (((𝜑𝑥𝐵) ∧ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑋) ∧ ∈ (𝑥(Hom ‘𝐶)𝑋))) → ((𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹)(⟨𝑥, 𝑋⟩(comp‘𝐶)𝑋)) = (𝐺(⟨𝑥, 𝑌⟩(comp‘𝐶)𝑋)(𝐹(⟨𝑥, 𝑋⟩(comp‘𝐶)𝑌))))
312, 3, 5, 17, 18, 4, 19, 29catlid 17726 . . . . . . 7 (((𝜑𝑥𝐵) ∧ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑋) ∧ ∈ (𝑥(Hom ‘𝐶)𝑋))) → (((Id‘𝐶)‘𝑋)(⟨𝑥, 𝑋⟩(comp‘𝐶)𝑋)) = )
3228, 30, 313eqtr3d 2785 . . . . . 6 (((𝜑𝑥𝐵) ∧ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑋) ∧ ∈ (𝑥(Hom ‘𝐶)𝑋))) → (𝐺(⟨𝑥, 𝑌⟩(comp‘𝐶)𝑋)(𝐹(⟨𝑥, 𝑋⟩(comp‘𝐶)𝑌))) = )
3327, 32eqeq12d 2753 . . . . 5 (((𝜑𝑥𝐵) ∧ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑋) ∧ ∈ (𝑥(Hom ‘𝐶)𝑋))) → ((𝐺(⟨𝑥, 𝑌⟩(comp‘𝐶)𝑋)(𝐹(⟨𝑥, 𝑋⟩(comp‘𝐶)𝑌)𝑔)) = (𝐺(⟨𝑥, 𝑌⟩(comp‘𝐶)𝑋)(𝐹(⟨𝑥, 𝑋⟩(comp‘𝐶)𝑌))) ↔ 𝑔 = ))
3413, 33imbitrid 244 . . . 4 (((𝜑𝑥𝐵) ∧ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑋) ∧ ∈ (𝑥(Hom ‘𝐶)𝑋))) → ((𝐹(⟨𝑥, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = (𝐹(⟨𝑥, 𝑋⟩(comp‘𝐶)𝑌)) → 𝑔 = ))
3534ralrimivva 3202 . . 3 ((𝜑𝑥𝐵) → ∀𝑔 ∈ (𝑥(Hom ‘𝐶)𝑋)∀ ∈ (𝑥(Hom ‘𝐶)𝑋)((𝐹(⟨𝑥, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = (𝐹(⟨𝑥, 𝑋⟩(comp‘𝐶)𝑌)) → 𝑔 = ))
3635ralrimiva 3146 . 2 (𝜑 → ∀𝑥𝐵𝑔 ∈ (𝑥(Hom ‘𝐶)𝑋)∀ ∈ (𝑥(Hom ‘𝐶)𝑋)((𝐹(⟨𝑥, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = (𝐹(⟨𝑥, 𝑋⟩(comp‘𝐶)𝑌)) → 𝑔 = ))
37 sectmon.m . . 3 𝑀 = (Mono‘𝐶)
382, 3, 4, 37, 7, 8, 9ismon2 17778 . 2 (𝜑 → (𝐹 ∈ (𝑋𝑀𝑌) ↔ (𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ ∀𝑥𝐵𝑔 ∈ (𝑥(Hom ‘𝐶)𝑋)∀ ∈ (𝑥(Hom ‘𝐶)𝑋)((𝐹(⟨𝑥, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = (𝐹(⟨𝑥, 𝑋⟩(comp‘𝐶)𝑌)) → 𝑔 = ))))
3912, 36, 38mpbir2and 713 1 (𝜑𝐹 ∈ (𝑋𝑀𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1540  wcel 2108  wral 3061  cop 4632   class class class wbr 5143  cfv 6561  (class class class)co 7431  Basecbs 17247  Hom chom 17308  compcco 17309  Catccat 17707  Idccid 17708  Monocmon 17772  Sectcsect 17788
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8014  df-2nd 8015  df-cat 17711  df-cid 17712  df-mon 17774  df-sect 17791
This theorem is referenced by:  sectepi  17828
  Copyright terms: Public domain W3C validator