Step | Hyp | Ref
| Expression |
1 | | rcaninv.b |
. . . . . 6
β’ π΅ = (BaseβπΆ) |
2 | | eqid 2733 |
. . . . . 6
β’ (Hom
βπΆ) = (Hom
βπΆ) |
3 | | eqid 2733 |
. . . . . 6
β’
(compβπΆ) =
(compβπΆ) |
4 | | rcaninv.c |
. . . . . 6
β’ (π β πΆ β Cat) |
5 | | rcaninv.y |
. . . . . 6
β’ (π β π β π΅) |
6 | | rcaninv.x |
. . . . . 6
β’ (π β π β π΅) |
7 | | eqid 2733 |
. . . . . . . 8
β’
(IsoβπΆ) =
(IsoβπΆ) |
8 | 1, 2, 7, 4, 5, 6 | isohom 17723 |
. . . . . . 7
β’ (π β (π(IsoβπΆ)π) β (π(Hom βπΆ)π)) |
9 | | rcaninv.f |
. . . . . . 7
β’ (π β πΉ β (π(IsoβπΆ)π)) |
10 | 8, 9 | sseldd 3984 |
. . . . . 6
β’ (π β πΉ β (π(Hom βπΆ)π)) |
11 | 1, 2, 7, 4, 6, 5 | isohom 17723 |
. . . . . . 7
β’ (π β (π(IsoβπΆ)π) β (π(Hom βπΆ)π)) |
12 | | rcaninv.n |
. . . . . . . . 9
β’ π = (InvβπΆ) |
13 | 1, 12, 4, 5, 6, 7 | invf 17715 |
. . . . . . . 8
β’ (π β (πππ):(π(IsoβπΆ)π)βΆ(π(IsoβπΆ)π)) |
14 | 13, 9 | ffvelcdmd 7088 |
. . . . . . 7
β’ (π β ((πππ)βπΉ) β (π(IsoβπΆ)π)) |
15 | 11, 14 | sseldd 3984 |
. . . . . 6
β’ (π β ((πππ)βπΉ) β (π(Hom βπΆ)π)) |
16 | | rcaninv.z |
. . . . . 6
β’ (π β π β π΅) |
17 | | rcaninv.g |
. . . . . 6
β’ (π β πΊ β (π(Hom βπΆ)π)) |
18 | 1, 2, 3, 4, 5, 6, 5, 10, 15, 16, 17 | catass 17630 |
. . . . 5
β’ (π β ((πΊ(β¨π, πβ©(compβπΆ)π)((πππ)βπΉ))(β¨π, πβ©(compβπΆ)π)πΉ) = (πΊ(β¨π, πβ©(compβπΆ)π)(((πππ)βπΉ)(β¨π, πβ©(compβπΆ)π)πΉ))) |
19 | | eqid 2733 |
. . . . . . . 8
β’
(IdβπΆ) =
(IdβπΆ) |
20 | | eqid 2733 |
. . . . . . . 8
β’
(β¨π, πβ©(compβπΆ)π) = (β¨π, πβ©(compβπΆ)π) |
21 | 1, 7, 12, 4, 5, 6,
9, 19, 20 | invcoisoid 17739 |
. . . . . . 7
β’ (π β (((πππ)βπΉ)(β¨π, πβ©(compβπΆ)π)πΉ) = ((IdβπΆ)βπ)) |
22 | 21 | eqcomd 2739 |
. . . . . 6
β’ (π β ((IdβπΆ)βπ) = (((πππ)βπΉ)(β¨π, πβ©(compβπΆ)π)πΉ)) |
23 | 22 | oveq2d 7425 |
. . . . 5
β’ (π β (πΊ(β¨π, πβ©(compβπΆ)π)((IdβπΆ)βπ)) = (πΊ(β¨π, πβ©(compβπΆ)π)(((πππ)βπΉ)(β¨π, πβ©(compβπΆ)π)πΉ))) |
24 | 1, 2, 19, 4, 5, 3,
16, 17 | catrid 17628 |
. . . . 5
β’ (π β (πΊ(β¨π, πβ©(compβπΆ)π)((IdβπΆ)βπ)) = πΊ) |
25 | 18, 23, 24 | 3eqtr2rd 2780 |
. . . 4
β’ (π β πΊ = ((πΊ(β¨π, πβ©(compβπΆ)π)((πππ)βπΉ))(β¨π, πβ©(compβπΆ)π)πΉ)) |
26 | 25 | adantr 482 |
. . 3
β’ ((π β§ (πΊ β¬ π
) = (π» β¬ π
)) β πΊ = ((πΊ(β¨π, πβ©(compβπΆ)π)((πππ)βπΉ))(β¨π, πβ©(compβπΆ)π)πΉ)) |
27 | | rcaninv.o |
. . . . . . . . 9
β’ β¬ =
(β¨π, πβ©(compβπΆ)π) |
28 | 27 | eqcomi 2742 |
. . . . . . . 8
β’
(β¨π, πβ©(compβπΆ)π) = β¬ |
29 | 28 | a1i 11 |
. . . . . . 7
β’ (π β (β¨π, πβ©(compβπΆ)π) = β¬ ) |
30 | | eqidd 2734 |
. . . . . . 7
β’ (π β πΊ = πΊ) |
31 | | rcaninv.1 |
. . . . . . . . 9
β’ π
= ((πππ)βπΉ) |
32 | 31 | eqcomi 2742 |
. . . . . . . 8
β’ ((πππ)βπΉ) = π
|
33 | 32 | a1i 11 |
. . . . . . 7
β’ (π β ((πππ)βπΉ) = π
) |
34 | 29, 30, 33 | oveq123d 7430 |
. . . . . 6
β’ (π β (πΊ(β¨π, πβ©(compβπΆ)π)((πππ)βπΉ)) = (πΊ β¬ π
)) |
35 | 34 | adantr 482 |
. . . . 5
β’ ((π β§ (πΊ β¬ π
) = (π» β¬ π
)) β (πΊ(β¨π, πβ©(compβπΆ)π)((πππ)βπΉ)) = (πΊ β¬ π
)) |
36 | | simpr 486 |
. . . . 5
β’ ((π β§ (πΊ β¬ π
) = (π» β¬ π
)) β (πΊ β¬ π
) = (π» β¬ π
)) |
37 | 35, 36 | eqtrd 2773 |
. . . 4
β’ ((π β§ (πΊ β¬ π
) = (π» β¬ π
)) β (πΊ(β¨π, πβ©(compβπΆ)π)((πππ)βπΉ)) = (π» β¬ π
)) |
38 | 37 | oveq1d 7424 |
. . 3
β’ ((π β§ (πΊ β¬ π
) = (π» β¬ π
)) β ((πΊ(β¨π, πβ©(compβπΆ)π)((πππ)βπΉ))(β¨π, πβ©(compβπΆ)π)πΉ) = ((π» β¬ π
)(β¨π, πβ©(compβπΆ)π)πΉ)) |
39 | 27 | oveqi 7422 |
. . . . . . 7
β’ (π» β¬ π
) = (π»(β¨π, πβ©(compβπΆ)π)π
) |
40 | 39 | oveq1i 7419 |
. . . . . 6
β’ ((π» β¬ π
)(β¨π, πβ©(compβπΆ)π)πΉ) = ((π»(β¨π, πβ©(compβπΆ)π)π
)(β¨π, πβ©(compβπΆ)π)πΉ) |
41 | 40 | a1i 11 |
. . . . 5
β’ (π β ((π» β¬ π
)(β¨π, πβ©(compβπΆ)π)πΉ) = ((π»(β¨π, πβ©(compβπΆ)π)π
)(β¨π, πβ©(compβπΆ)π)πΉ)) |
42 | 31, 15 | eqeltrid 2838 |
. . . . . . 7
β’ (π β π
β (π(Hom βπΆ)π)) |
43 | | rcaninv.h |
. . . . . . 7
β’ (π β π» β (π(Hom βπΆ)π)) |
44 | 1, 2, 3, 4, 5, 6, 5, 10, 42, 16, 43 | catass 17630 |
. . . . . 6
β’ (π β ((π»(β¨π, πβ©(compβπΆ)π)π
)(β¨π, πβ©(compβπΆ)π)πΉ) = (π»(β¨π, πβ©(compβπΆ)π)(π
(β¨π, πβ©(compβπΆ)π)πΉ))) |
45 | 31 | oveq1i 7419 |
. . . . . . . 8
β’ (π
(β¨π, πβ©(compβπΆ)π)πΉ) = (((πππ)βπΉ)(β¨π, πβ©(compβπΆ)π)πΉ) |
46 | 45 | oveq2i 7420 |
. . . . . . 7
β’ (π»(β¨π, πβ©(compβπΆ)π)(π
(β¨π, πβ©(compβπΆ)π)πΉ)) = (π»(β¨π, πβ©(compβπΆ)π)(((πππ)βπΉ)(β¨π, πβ©(compβπΆ)π)πΉ)) |
47 | 46 | a1i 11 |
. . . . . 6
β’ (π β (π»(β¨π, πβ©(compβπΆ)π)(π
(β¨π, πβ©(compβπΆ)π)πΉ)) = (π»(β¨π, πβ©(compβπΆ)π)(((πππ)βπΉ)(β¨π, πβ©(compβπΆ)π)πΉ))) |
48 | 21 | oveq2d 7425 |
. . . . . 6
β’ (π β (π»(β¨π, πβ©(compβπΆ)π)(((πππ)βπΉ)(β¨π, πβ©(compβπΆ)π)πΉ)) = (π»(β¨π, πβ©(compβπΆ)π)((IdβπΆ)βπ))) |
49 | 44, 47, 48 | 3eqtrd 2777 |
. . . . 5
β’ (π β ((π»(β¨π, πβ©(compβπΆ)π)π
)(β¨π, πβ©(compβπΆ)π)πΉ) = (π»(β¨π, πβ©(compβπΆ)π)((IdβπΆ)βπ))) |
50 | 1, 2, 19, 4, 5, 3,
16, 43 | catrid 17628 |
. . . . 5
β’ (π β (π»(β¨π, πβ©(compβπΆ)π)((IdβπΆ)βπ)) = π») |
51 | 41, 49, 50 | 3eqtrd 2777 |
. . . 4
β’ (π β ((π» β¬ π
)(β¨π, πβ©(compβπΆ)π)πΉ) = π») |
52 | 51 | adantr 482 |
. . 3
β’ ((π β§ (πΊ β¬ π
) = (π» β¬ π
)) β ((π» β¬ π
)(β¨π, πβ©(compβπΆ)π)πΉ) = π») |
53 | 26, 38, 52 | 3eqtrd 2777 |
. 2
β’ ((π β§ (πΊ β¬ π
) = (π» β¬ π
)) β πΊ = π») |
54 | 53 | ex 414 |
1
β’ (π β ((πΊ β¬ π
) = (π» β¬ π
) β πΊ = π»)) |