Proof of Theorem rcaninv
Step | Hyp | Ref
| Expression |
1 | | rcaninv.b |
. . . . . 6
⊢ 𝐵 = (Base‘𝐶) |
2 | | eqid 2738 |
. . . . . 6
⊢ (Hom
‘𝐶) = (Hom
‘𝐶) |
3 | | eqid 2738 |
. . . . . 6
⊢
(comp‘𝐶) =
(comp‘𝐶) |
4 | | rcaninv.c |
. . . . . 6
⊢ (𝜑 → 𝐶 ∈ Cat) |
5 | | rcaninv.y |
. . . . . 6
⊢ (𝜑 → 𝑌 ∈ 𝐵) |
6 | | rcaninv.x |
. . . . . 6
⊢ (𝜑 → 𝑋 ∈ 𝐵) |
7 | | eqid 2738 |
. . . . . . . 8
⊢
(Iso‘𝐶) =
(Iso‘𝐶) |
8 | 1, 2, 7, 4, 5, 6 | isohom 17488 |
. . . . . . 7
⊢ (𝜑 → (𝑌(Iso‘𝐶)𝑋) ⊆ (𝑌(Hom ‘𝐶)𝑋)) |
9 | | rcaninv.f |
. . . . . . 7
⊢ (𝜑 → 𝐹 ∈ (𝑌(Iso‘𝐶)𝑋)) |
10 | 8, 9 | sseldd 3922 |
. . . . . 6
⊢ (𝜑 → 𝐹 ∈ (𝑌(Hom ‘𝐶)𝑋)) |
11 | 1, 2, 7, 4, 6, 5 | isohom 17488 |
. . . . . . 7
⊢ (𝜑 → (𝑋(Iso‘𝐶)𝑌) ⊆ (𝑋(Hom ‘𝐶)𝑌)) |
12 | | rcaninv.n |
. . . . . . . . 9
⊢ 𝑁 = (Inv‘𝐶) |
13 | 1, 12, 4, 5, 6, 7 | invf 17480 |
. . . . . . . 8
⊢ (𝜑 → (𝑌𝑁𝑋):(𝑌(Iso‘𝐶)𝑋)⟶(𝑋(Iso‘𝐶)𝑌)) |
14 | 13, 9 | ffvelrnd 6962 |
. . . . . . 7
⊢ (𝜑 → ((𝑌𝑁𝑋)‘𝐹) ∈ (𝑋(Iso‘𝐶)𝑌)) |
15 | 11, 14 | sseldd 3922 |
. . . . . 6
⊢ (𝜑 → ((𝑌𝑁𝑋)‘𝐹) ∈ (𝑋(Hom ‘𝐶)𝑌)) |
16 | | rcaninv.z |
. . . . . 6
⊢ (𝜑 → 𝑍 ∈ 𝐵) |
17 | | rcaninv.g |
. . . . . 6
⊢ (𝜑 → 𝐺 ∈ (𝑌(Hom ‘𝐶)𝑍)) |
18 | 1, 2, 3, 4, 5, 6, 5, 10, 15, 16, 17 | catass 17395 |
. . . . 5
⊢ (𝜑 → ((𝐺(〈𝑋, 𝑌〉(comp‘𝐶)𝑍)((𝑌𝑁𝑋)‘𝐹))(〈𝑌, 𝑋〉(comp‘𝐶)𝑍)𝐹) = (𝐺(〈𝑌, 𝑌〉(comp‘𝐶)𝑍)(((𝑌𝑁𝑋)‘𝐹)(〈𝑌, 𝑋〉(comp‘𝐶)𝑌)𝐹))) |
19 | | eqid 2738 |
. . . . . . . 8
⊢
(Id‘𝐶) =
(Id‘𝐶) |
20 | | eqid 2738 |
. . . . . . . 8
⊢
(〈𝑌, 𝑋〉(comp‘𝐶)𝑌) = (〈𝑌, 𝑋〉(comp‘𝐶)𝑌) |
21 | 1, 7, 12, 4, 5, 6,
9, 19, 20 | invcoisoid 17504 |
. . . . . . 7
⊢ (𝜑 → (((𝑌𝑁𝑋)‘𝐹)(〈𝑌, 𝑋〉(comp‘𝐶)𝑌)𝐹) = ((Id‘𝐶)‘𝑌)) |
22 | 21 | eqcomd 2744 |
. . . . . 6
⊢ (𝜑 → ((Id‘𝐶)‘𝑌) = (((𝑌𝑁𝑋)‘𝐹)(〈𝑌, 𝑋〉(comp‘𝐶)𝑌)𝐹)) |
23 | 22 | oveq2d 7291 |
. . . . 5
⊢ (𝜑 → (𝐺(〈𝑌, 𝑌〉(comp‘𝐶)𝑍)((Id‘𝐶)‘𝑌)) = (𝐺(〈𝑌, 𝑌〉(comp‘𝐶)𝑍)(((𝑌𝑁𝑋)‘𝐹)(〈𝑌, 𝑋〉(comp‘𝐶)𝑌)𝐹))) |
24 | 1, 2, 19, 4, 5, 3,
16, 17 | catrid 17393 |
. . . . 5
⊢ (𝜑 → (𝐺(〈𝑌, 𝑌〉(comp‘𝐶)𝑍)((Id‘𝐶)‘𝑌)) = 𝐺) |
25 | 18, 23, 24 | 3eqtr2rd 2785 |
. . . 4
⊢ (𝜑 → 𝐺 = ((𝐺(〈𝑋, 𝑌〉(comp‘𝐶)𝑍)((𝑌𝑁𝑋)‘𝐹))(〈𝑌, 𝑋〉(comp‘𝐶)𝑍)𝐹)) |
26 | 25 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ (𝐺 ⚬ 𝑅) = (𝐻 ⚬ 𝑅)) → 𝐺 = ((𝐺(〈𝑋, 𝑌〉(comp‘𝐶)𝑍)((𝑌𝑁𝑋)‘𝐹))(〈𝑌, 𝑋〉(comp‘𝐶)𝑍)𝐹)) |
27 | | rcaninv.o |
. . . . . . . . 9
⊢ ⚬ =
(〈𝑋, 𝑌〉(comp‘𝐶)𝑍) |
28 | 27 | eqcomi 2747 |
. . . . . . . 8
⊢
(〈𝑋, 𝑌〉(comp‘𝐶)𝑍) = ⚬ |
29 | 28 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → (〈𝑋, 𝑌〉(comp‘𝐶)𝑍) = ⚬ ) |
30 | | eqidd 2739 |
. . . . . . 7
⊢ (𝜑 → 𝐺 = 𝐺) |
31 | | rcaninv.1 |
. . . . . . . . 9
⊢ 𝑅 = ((𝑌𝑁𝑋)‘𝐹) |
32 | 31 | eqcomi 2747 |
. . . . . . . 8
⊢ ((𝑌𝑁𝑋)‘𝐹) = 𝑅 |
33 | 32 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → ((𝑌𝑁𝑋)‘𝐹) = 𝑅) |
34 | 29, 30, 33 | oveq123d 7296 |
. . . . . 6
⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉(comp‘𝐶)𝑍)((𝑌𝑁𝑋)‘𝐹)) = (𝐺 ⚬ 𝑅)) |
35 | 34 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ (𝐺 ⚬ 𝑅) = (𝐻 ⚬ 𝑅)) → (𝐺(〈𝑋, 𝑌〉(comp‘𝐶)𝑍)((𝑌𝑁𝑋)‘𝐹)) = (𝐺 ⚬ 𝑅)) |
36 | | simpr 485 |
. . . . 5
⊢ ((𝜑 ∧ (𝐺 ⚬ 𝑅) = (𝐻 ⚬ 𝑅)) → (𝐺 ⚬ 𝑅) = (𝐻 ⚬ 𝑅)) |
37 | 35, 36 | eqtrd 2778 |
. . . 4
⊢ ((𝜑 ∧ (𝐺 ⚬ 𝑅) = (𝐻 ⚬ 𝑅)) → (𝐺(〈𝑋, 𝑌〉(comp‘𝐶)𝑍)((𝑌𝑁𝑋)‘𝐹)) = (𝐻 ⚬ 𝑅)) |
38 | 37 | oveq1d 7290 |
. . 3
⊢ ((𝜑 ∧ (𝐺 ⚬ 𝑅) = (𝐻 ⚬ 𝑅)) → ((𝐺(〈𝑋, 𝑌〉(comp‘𝐶)𝑍)((𝑌𝑁𝑋)‘𝐹))(〈𝑌, 𝑋〉(comp‘𝐶)𝑍)𝐹) = ((𝐻 ⚬ 𝑅)(〈𝑌, 𝑋〉(comp‘𝐶)𝑍)𝐹)) |
39 | 27 | oveqi 7288 |
. . . . . . 7
⊢ (𝐻 ⚬ 𝑅) = (𝐻(〈𝑋, 𝑌〉(comp‘𝐶)𝑍)𝑅) |
40 | 39 | oveq1i 7285 |
. . . . . 6
⊢ ((𝐻 ⚬ 𝑅)(〈𝑌, 𝑋〉(comp‘𝐶)𝑍)𝐹) = ((𝐻(〈𝑋, 𝑌〉(comp‘𝐶)𝑍)𝑅)(〈𝑌, 𝑋〉(comp‘𝐶)𝑍)𝐹) |
41 | 40 | a1i 11 |
. . . . 5
⊢ (𝜑 → ((𝐻 ⚬ 𝑅)(〈𝑌, 𝑋〉(comp‘𝐶)𝑍)𝐹) = ((𝐻(〈𝑋, 𝑌〉(comp‘𝐶)𝑍)𝑅)(〈𝑌, 𝑋〉(comp‘𝐶)𝑍)𝐹)) |
42 | 31, 15 | eqeltrid 2843 |
. . . . . . 7
⊢ (𝜑 → 𝑅 ∈ (𝑋(Hom ‘𝐶)𝑌)) |
43 | | rcaninv.h |
. . . . . . 7
⊢ (𝜑 → 𝐻 ∈ (𝑌(Hom ‘𝐶)𝑍)) |
44 | 1, 2, 3, 4, 5, 6, 5, 10, 42, 16, 43 | catass 17395 |
. . . . . 6
⊢ (𝜑 → ((𝐻(〈𝑋, 𝑌〉(comp‘𝐶)𝑍)𝑅)(〈𝑌, 𝑋〉(comp‘𝐶)𝑍)𝐹) = (𝐻(〈𝑌, 𝑌〉(comp‘𝐶)𝑍)(𝑅(〈𝑌, 𝑋〉(comp‘𝐶)𝑌)𝐹))) |
45 | 31 | oveq1i 7285 |
. . . . . . . 8
⊢ (𝑅(〈𝑌, 𝑋〉(comp‘𝐶)𝑌)𝐹) = (((𝑌𝑁𝑋)‘𝐹)(〈𝑌, 𝑋〉(comp‘𝐶)𝑌)𝐹) |
46 | 45 | oveq2i 7286 |
. . . . . . 7
⊢ (𝐻(〈𝑌, 𝑌〉(comp‘𝐶)𝑍)(𝑅(〈𝑌, 𝑋〉(comp‘𝐶)𝑌)𝐹)) = (𝐻(〈𝑌, 𝑌〉(comp‘𝐶)𝑍)(((𝑌𝑁𝑋)‘𝐹)(〈𝑌, 𝑋〉(comp‘𝐶)𝑌)𝐹)) |
47 | 46 | a1i 11 |
. . . . . 6
⊢ (𝜑 → (𝐻(〈𝑌, 𝑌〉(comp‘𝐶)𝑍)(𝑅(〈𝑌, 𝑋〉(comp‘𝐶)𝑌)𝐹)) = (𝐻(〈𝑌, 𝑌〉(comp‘𝐶)𝑍)(((𝑌𝑁𝑋)‘𝐹)(〈𝑌, 𝑋〉(comp‘𝐶)𝑌)𝐹))) |
48 | 21 | oveq2d 7291 |
. . . . . 6
⊢ (𝜑 → (𝐻(〈𝑌, 𝑌〉(comp‘𝐶)𝑍)(((𝑌𝑁𝑋)‘𝐹)(〈𝑌, 𝑋〉(comp‘𝐶)𝑌)𝐹)) = (𝐻(〈𝑌, 𝑌〉(comp‘𝐶)𝑍)((Id‘𝐶)‘𝑌))) |
49 | 44, 47, 48 | 3eqtrd 2782 |
. . . . 5
⊢ (𝜑 → ((𝐻(〈𝑋, 𝑌〉(comp‘𝐶)𝑍)𝑅)(〈𝑌, 𝑋〉(comp‘𝐶)𝑍)𝐹) = (𝐻(〈𝑌, 𝑌〉(comp‘𝐶)𝑍)((Id‘𝐶)‘𝑌))) |
50 | 1, 2, 19, 4, 5, 3,
16, 43 | catrid 17393 |
. . . . 5
⊢ (𝜑 → (𝐻(〈𝑌, 𝑌〉(comp‘𝐶)𝑍)((Id‘𝐶)‘𝑌)) = 𝐻) |
51 | 41, 49, 50 | 3eqtrd 2782 |
. . . 4
⊢ (𝜑 → ((𝐻 ⚬ 𝑅)(〈𝑌, 𝑋〉(comp‘𝐶)𝑍)𝐹) = 𝐻) |
52 | 51 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ (𝐺 ⚬ 𝑅) = (𝐻 ⚬ 𝑅)) → ((𝐻 ⚬ 𝑅)(〈𝑌, 𝑋〉(comp‘𝐶)𝑍)𝐹) = 𝐻) |
53 | 26, 38, 52 | 3eqtrd 2782 |
. 2
⊢ ((𝜑 ∧ (𝐺 ⚬ 𝑅) = (𝐻 ⚬ 𝑅)) → 𝐺 = 𝐻) |
54 | 53 | ex 413 |
1
⊢ (𝜑 → ((𝐺 ⚬ 𝑅) = (𝐻 ⚬ 𝑅) → 𝐺 = 𝐻)) |