MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rcaninv Structured version   Visualization version   GIF version

Theorem rcaninv 17741
Description: Right cancellation of an inverse of an isomorphism. (Contributed by AV, 5-Apr-2020.)
Hypotheses
Ref Expression
rcaninv.b 𝐡 = (Baseβ€˜πΆ)
rcaninv.n 𝑁 = (Invβ€˜πΆ)
rcaninv.c (πœ‘ β†’ 𝐢 ∈ Cat)
rcaninv.x (πœ‘ β†’ 𝑋 ∈ 𝐡)
rcaninv.y (πœ‘ β†’ π‘Œ ∈ 𝐡)
rcaninv.z (πœ‘ β†’ 𝑍 ∈ 𝐡)
rcaninv.f (πœ‘ β†’ 𝐹 ∈ (π‘Œ(Isoβ€˜πΆ)𝑋))
rcaninv.g (πœ‘ β†’ 𝐺 ∈ (π‘Œ(Hom β€˜πΆ)𝑍))
rcaninv.h (πœ‘ β†’ 𝐻 ∈ (π‘Œ(Hom β€˜πΆ)𝑍))
rcaninv.1 𝑅 = ((π‘Œπ‘π‘‹)β€˜πΉ)
rcaninv.o ⚬ = (βŸ¨π‘‹, π‘ŒβŸ©(compβ€˜πΆ)𝑍)
Assertion
Ref Expression
rcaninv (πœ‘ β†’ ((𝐺 ⚬ 𝑅) = (𝐻 ⚬ 𝑅) β†’ 𝐺 = 𝐻))

Proof of Theorem rcaninv
StepHypRef Expression
1 rcaninv.b . . . . . 6 𝐡 = (Baseβ€˜πΆ)
2 eqid 2733 . . . . . 6 (Hom β€˜πΆ) = (Hom β€˜πΆ)
3 eqid 2733 . . . . . 6 (compβ€˜πΆ) = (compβ€˜πΆ)
4 rcaninv.c . . . . . 6 (πœ‘ β†’ 𝐢 ∈ Cat)
5 rcaninv.y . . . . . 6 (πœ‘ β†’ π‘Œ ∈ 𝐡)
6 rcaninv.x . . . . . 6 (πœ‘ β†’ 𝑋 ∈ 𝐡)
7 eqid 2733 . . . . . . . 8 (Isoβ€˜πΆ) = (Isoβ€˜πΆ)
81, 2, 7, 4, 5, 6isohom 17723 . . . . . . 7 (πœ‘ β†’ (π‘Œ(Isoβ€˜πΆ)𝑋) βŠ† (π‘Œ(Hom β€˜πΆ)𝑋))
9 rcaninv.f . . . . . . 7 (πœ‘ β†’ 𝐹 ∈ (π‘Œ(Isoβ€˜πΆ)𝑋))
108, 9sseldd 3984 . . . . . 6 (πœ‘ β†’ 𝐹 ∈ (π‘Œ(Hom β€˜πΆ)𝑋))
111, 2, 7, 4, 6, 5isohom 17723 . . . . . . 7 (πœ‘ β†’ (𝑋(Isoβ€˜πΆ)π‘Œ) βŠ† (𝑋(Hom β€˜πΆ)π‘Œ))
12 rcaninv.n . . . . . . . . 9 𝑁 = (Invβ€˜πΆ)
131, 12, 4, 5, 6, 7invf 17715 . . . . . . . 8 (πœ‘ β†’ (π‘Œπ‘π‘‹):(π‘Œ(Isoβ€˜πΆ)𝑋)⟢(𝑋(Isoβ€˜πΆ)π‘Œ))
1413, 9ffvelcdmd 7088 . . . . . . 7 (πœ‘ β†’ ((π‘Œπ‘π‘‹)β€˜πΉ) ∈ (𝑋(Isoβ€˜πΆ)π‘Œ))
1511, 14sseldd 3984 . . . . . 6 (πœ‘ β†’ ((π‘Œπ‘π‘‹)β€˜πΉ) ∈ (𝑋(Hom β€˜πΆ)π‘Œ))
16 rcaninv.z . . . . . 6 (πœ‘ β†’ 𝑍 ∈ 𝐡)
17 rcaninv.g . . . . . 6 (πœ‘ β†’ 𝐺 ∈ (π‘Œ(Hom β€˜πΆ)𝑍))
181, 2, 3, 4, 5, 6, 5, 10, 15, 16, 17catass 17630 . . . . 5 (πœ‘ β†’ ((𝐺(βŸ¨π‘‹, π‘ŒβŸ©(compβ€˜πΆ)𝑍)((π‘Œπ‘π‘‹)β€˜πΉ))(βŸ¨π‘Œ, π‘‹βŸ©(compβ€˜πΆ)𝑍)𝐹) = (𝐺(βŸ¨π‘Œ, π‘ŒβŸ©(compβ€˜πΆ)𝑍)(((π‘Œπ‘π‘‹)β€˜πΉ)(βŸ¨π‘Œ, π‘‹βŸ©(compβ€˜πΆ)π‘Œ)𝐹)))
19 eqid 2733 . . . . . . . 8 (Idβ€˜πΆ) = (Idβ€˜πΆ)
20 eqid 2733 . . . . . . . 8 (βŸ¨π‘Œ, π‘‹βŸ©(compβ€˜πΆ)π‘Œ) = (βŸ¨π‘Œ, π‘‹βŸ©(compβ€˜πΆ)π‘Œ)
211, 7, 12, 4, 5, 6, 9, 19, 20invcoisoid 17739 . . . . . . 7 (πœ‘ β†’ (((π‘Œπ‘π‘‹)β€˜πΉ)(βŸ¨π‘Œ, π‘‹βŸ©(compβ€˜πΆ)π‘Œ)𝐹) = ((Idβ€˜πΆ)β€˜π‘Œ))
2221eqcomd 2739 . . . . . 6 (πœ‘ β†’ ((Idβ€˜πΆ)β€˜π‘Œ) = (((π‘Œπ‘π‘‹)β€˜πΉ)(βŸ¨π‘Œ, π‘‹βŸ©(compβ€˜πΆ)π‘Œ)𝐹))
2322oveq2d 7425 . . . . 5 (πœ‘ β†’ (𝐺(βŸ¨π‘Œ, π‘ŒβŸ©(compβ€˜πΆ)𝑍)((Idβ€˜πΆ)β€˜π‘Œ)) = (𝐺(βŸ¨π‘Œ, π‘ŒβŸ©(compβ€˜πΆ)𝑍)(((π‘Œπ‘π‘‹)β€˜πΉ)(βŸ¨π‘Œ, π‘‹βŸ©(compβ€˜πΆ)π‘Œ)𝐹)))
241, 2, 19, 4, 5, 3, 16, 17catrid 17628 . . . . 5 (πœ‘ β†’ (𝐺(βŸ¨π‘Œ, π‘ŒβŸ©(compβ€˜πΆ)𝑍)((Idβ€˜πΆ)β€˜π‘Œ)) = 𝐺)
2518, 23, 243eqtr2rd 2780 . . . 4 (πœ‘ β†’ 𝐺 = ((𝐺(βŸ¨π‘‹, π‘ŒβŸ©(compβ€˜πΆ)𝑍)((π‘Œπ‘π‘‹)β€˜πΉ))(βŸ¨π‘Œ, π‘‹βŸ©(compβ€˜πΆ)𝑍)𝐹))
2625adantr 482 . . 3 ((πœ‘ ∧ (𝐺 ⚬ 𝑅) = (𝐻 ⚬ 𝑅)) β†’ 𝐺 = ((𝐺(βŸ¨π‘‹, π‘ŒβŸ©(compβ€˜πΆ)𝑍)((π‘Œπ‘π‘‹)β€˜πΉ))(βŸ¨π‘Œ, π‘‹βŸ©(compβ€˜πΆ)𝑍)𝐹))
27 rcaninv.o . . . . . . . . 9 ⚬ = (βŸ¨π‘‹, π‘ŒβŸ©(compβ€˜πΆ)𝑍)
2827eqcomi 2742 . . . . . . . 8 (βŸ¨π‘‹, π‘ŒβŸ©(compβ€˜πΆ)𝑍) = ⚬
2928a1i 11 . . . . . . 7 (πœ‘ β†’ (βŸ¨π‘‹, π‘ŒβŸ©(compβ€˜πΆ)𝑍) = ⚬ )
30 eqidd 2734 . . . . . . 7 (πœ‘ β†’ 𝐺 = 𝐺)
31 rcaninv.1 . . . . . . . . 9 𝑅 = ((π‘Œπ‘π‘‹)β€˜πΉ)
3231eqcomi 2742 . . . . . . . 8 ((π‘Œπ‘π‘‹)β€˜πΉ) = 𝑅
3332a1i 11 . . . . . . 7 (πœ‘ β†’ ((π‘Œπ‘π‘‹)β€˜πΉ) = 𝑅)
3429, 30, 33oveq123d 7430 . . . . . 6 (πœ‘ β†’ (𝐺(βŸ¨π‘‹, π‘ŒβŸ©(compβ€˜πΆ)𝑍)((π‘Œπ‘π‘‹)β€˜πΉ)) = (𝐺 ⚬ 𝑅))
3534adantr 482 . . . . 5 ((πœ‘ ∧ (𝐺 ⚬ 𝑅) = (𝐻 ⚬ 𝑅)) β†’ (𝐺(βŸ¨π‘‹, π‘ŒβŸ©(compβ€˜πΆ)𝑍)((π‘Œπ‘π‘‹)β€˜πΉ)) = (𝐺 ⚬ 𝑅))
36 simpr 486 . . . . 5 ((πœ‘ ∧ (𝐺 ⚬ 𝑅) = (𝐻 ⚬ 𝑅)) β†’ (𝐺 ⚬ 𝑅) = (𝐻 ⚬ 𝑅))
3735, 36eqtrd 2773 . . . 4 ((πœ‘ ∧ (𝐺 ⚬ 𝑅) = (𝐻 ⚬ 𝑅)) β†’ (𝐺(βŸ¨π‘‹, π‘ŒβŸ©(compβ€˜πΆ)𝑍)((π‘Œπ‘π‘‹)β€˜πΉ)) = (𝐻 ⚬ 𝑅))
3837oveq1d 7424 . . 3 ((πœ‘ ∧ (𝐺 ⚬ 𝑅) = (𝐻 ⚬ 𝑅)) β†’ ((𝐺(βŸ¨π‘‹, π‘ŒβŸ©(compβ€˜πΆ)𝑍)((π‘Œπ‘π‘‹)β€˜πΉ))(βŸ¨π‘Œ, π‘‹βŸ©(compβ€˜πΆ)𝑍)𝐹) = ((𝐻 ⚬ 𝑅)(βŸ¨π‘Œ, π‘‹βŸ©(compβ€˜πΆ)𝑍)𝐹))
3927oveqi 7422 . . . . . . 7 (𝐻 ⚬ 𝑅) = (𝐻(βŸ¨π‘‹, π‘ŒβŸ©(compβ€˜πΆ)𝑍)𝑅)
4039oveq1i 7419 . . . . . 6 ((𝐻 ⚬ 𝑅)(βŸ¨π‘Œ, π‘‹βŸ©(compβ€˜πΆ)𝑍)𝐹) = ((𝐻(βŸ¨π‘‹, π‘ŒβŸ©(compβ€˜πΆ)𝑍)𝑅)(βŸ¨π‘Œ, π‘‹βŸ©(compβ€˜πΆ)𝑍)𝐹)
4140a1i 11 . . . . 5 (πœ‘ β†’ ((𝐻 ⚬ 𝑅)(βŸ¨π‘Œ, π‘‹βŸ©(compβ€˜πΆ)𝑍)𝐹) = ((𝐻(βŸ¨π‘‹, π‘ŒβŸ©(compβ€˜πΆ)𝑍)𝑅)(βŸ¨π‘Œ, π‘‹βŸ©(compβ€˜πΆ)𝑍)𝐹))
4231, 15eqeltrid 2838 . . . . . . 7 (πœ‘ β†’ 𝑅 ∈ (𝑋(Hom β€˜πΆ)π‘Œ))
43 rcaninv.h . . . . . . 7 (πœ‘ β†’ 𝐻 ∈ (π‘Œ(Hom β€˜πΆ)𝑍))
441, 2, 3, 4, 5, 6, 5, 10, 42, 16, 43catass 17630 . . . . . 6 (πœ‘ β†’ ((𝐻(βŸ¨π‘‹, π‘ŒβŸ©(compβ€˜πΆ)𝑍)𝑅)(βŸ¨π‘Œ, π‘‹βŸ©(compβ€˜πΆ)𝑍)𝐹) = (𝐻(βŸ¨π‘Œ, π‘ŒβŸ©(compβ€˜πΆ)𝑍)(𝑅(βŸ¨π‘Œ, π‘‹βŸ©(compβ€˜πΆ)π‘Œ)𝐹)))
4531oveq1i 7419 . . . . . . . 8 (𝑅(βŸ¨π‘Œ, π‘‹βŸ©(compβ€˜πΆ)π‘Œ)𝐹) = (((π‘Œπ‘π‘‹)β€˜πΉ)(βŸ¨π‘Œ, π‘‹βŸ©(compβ€˜πΆ)π‘Œ)𝐹)
4645oveq2i 7420 . . . . . . 7 (𝐻(βŸ¨π‘Œ, π‘ŒβŸ©(compβ€˜πΆ)𝑍)(𝑅(βŸ¨π‘Œ, π‘‹βŸ©(compβ€˜πΆ)π‘Œ)𝐹)) = (𝐻(βŸ¨π‘Œ, π‘ŒβŸ©(compβ€˜πΆ)𝑍)(((π‘Œπ‘π‘‹)β€˜πΉ)(βŸ¨π‘Œ, π‘‹βŸ©(compβ€˜πΆ)π‘Œ)𝐹))
4746a1i 11 . . . . . 6 (πœ‘ β†’ (𝐻(βŸ¨π‘Œ, π‘ŒβŸ©(compβ€˜πΆ)𝑍)(𝑅(βŸ¨π‘Œ, π‘‹βŸ©(compβ€˜πΆ)π‘Œ)𝐹)) = (𝐻(βŸ¨π‘Œ, π‘ŒβŸ©(compβ€˜πΆ)𝑍)(((π‘Œπ‘π‘‹)β€˜πΉ)(βŸ¨π‘Œ, π‘‹βŸ©(compβ€˜πΆ)π‘Œ)𝐹)))
4821oveq2d 7425 . . . . . 6 (πœ‘ β†’ (𝐻(βŸ¨π‘Œ, π‘ŒβŸ©(compβ€˜πΆ)𝑍)(((π‘Œπ‘π‘‹)β€˜πΉ)(βŸ¨π‘Œ, π‘‹βŸ©(compβ€˜πΆ)π‘Œ)𝐹)) = (𝐻(βŸ¨π‘Œ, π‘ŒβŸ©(compβ€˜πΆ)𝑍)((Idβ€˜πΆ)β€˜π‘Œ)))
4944, 47, 483eqtrd 2777 . . . . 5 (πœ‘ β†’ ((𝐻(βŸ¨π‘‹, π‘ŒβŸ©(compβ€˜πΆ)𝑍)𝑅)(βŸ¨π‘Œ, π‘‹βŸ©(compβ€˜πΆ)𝑍)𝐹) = (𝐻(βŸ¨π‘Œ, π‘ŒβŸ©(compβ€˜πΆ)𝑍)((Idβ€˜πΆ)β€˜π‘Œ)))
501, 2, 19, 4, 5, 3, 16, 43catrid 17628 . . . . 5 (πœ‘ β†’ (𝐻(βŸ¨π‘Œ, π‘ŒβŸ©(compβ€˜πΆ)𝑍)((Idβ€˜πΆ)β€˜π‘Œ)) = 𝐻)
5141, 49, 503eqtrd 2777 . . . 4 (πœ‘ β†’ ((𝐻 ⚬ 𝑅)(βŸ¨π‘Œ, π‘‹βŸ©(compβ€˜πΆ)𝑍)𝐹) = 𝐻)
5251adantr 482 . . 3 ((πœ‘ ∧ (𝐺 ⚬ 𝑅) = (𝐻 ⚬ 𝑅)) β†’ ((𝐻 ⚬ 𝑅)(βŸ¨π‘Œ, π‘‹βŸ©(compβ€˜πΆ)𝑍)𝐹) = 𝐻)
5326, 38, 523eqtrd 2777 . 2 ((πœ‘ ∧ (𝐺 ⚬ 𝑅) = (𝐻 ⚬ 𝑅)) β†’ 𝐺 = 𝐻)
5453ex 414 1 (πœ‘ β†’ ((𝐺 ⚬ 𝑅) = (𝐻 ⚬ 𝑅) β†’ 𝐺 = 𝐻))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 397   = wceq 1542   ∈ wcel 2107  βŸ¨cop 4635  β€˜cfv 6544  (class class class)co 7409  Basecbs 17144  Hom chom 17208  compcco 17209  Catccat 17608  Idccid 17609  Invcinv 17692  Isociso 17693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-1st 7975  df-2nd 7976  df-cat 17612  df-cid 17613  df-sect 17694  df-inv 17695  df-iso 17696
This theorem is referenced by:  initoeu2lem0  17963
  Copyright terms: Public domain W3C validator