MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rcaninv Structured version   Visualization version   GIF version

Theorem rcaninv 17756
Description: Right cancellation of an inverse of an isomorphism. (Contributed by AV, 5-Apr-2020.)
Hypotheses
Ref Expression
rcaninv.b 𝐵 = (Base‘𝐶)
rcaninv.n 𝑁 = (Inv‘𝐶)
rcaninv.c (𝜑𝐶 ∈ Cat)
rcaninv.x (𝜑𝑋𝐵)
rcaninv.y (𝜑𝑌𝐵)
rcaninv.z (𝜑𝑍𝐵)
rcaninv.f (𝜑𝐹 ∈ (𝑌(Iso‘𝐶)𝑋))
rcaninv.g (𝜑𝐺 ∈ (𝑌(Hom ‘𝐶)𝑍))
rcaninv.h (𝜑𝐻 ∈ (𝑌(Hom ‘𝐶)𝑍))
rcaninv.1 𝑅 = ((𝑌𝑁𝑋)‘𝐹)
rcaninv.o = (⟨𝑋, 𝑌⟩(comp‘𝐶)𝑍)
Assertion
Ref Expression
rcaninv (𝜑 → ((𝐺 𝑅) = (𝐻 𝑅) → 𝐺 = 𝐻))

Proof of Theorem rcaninv
StepHypRef Expression
1 rcaninv.b . . . . . 6 𝐵 = (Base‘𝐶)
2 eqid 2729 . . . . . 6 (Hom ‘𝐶) = (Hom ‘𝐶)
3 eqid 2729 . . . . . 6 (comp‘𝐶) = (comp‘𝐶)
4 rcaninv.c . . . . . 6 (𝜑𝐶 ∈ Cat)
5 rcaninv.y . . . . . 6 (𝜑𝑌𝐵)
6 rcaninv.x . . . . . 6 (𝜑𝑋𝐵)
7 eqid 2729 . . . . . . . 8 (Iso‘𝐶) = (Iso‘𝐶)
81, 2, 7, 4, 5, 6isohom 17738 . . . . . . 7 (𝜑 → (𝑌(Iso‘𝐶)𝑋) ⊆ (𝑌(Hom ‘𝐶)𝑋))
9 rcaninv.f . . . . . . 7 (𝜑𝐹 ∈ (𝑌(Iso‘𝐶)𝑋))
108, 9sseldd 3947 . . . . . 6 (𝜑𝐹 ∈ (𝑌(Hom ‘𝐶)𝑋))
111, 2, 7, 4, 6, 5isohom 17738 . . . . . . 7 (𝜑 → (𝑋(Iso‘𝐶)𝑌) ⊆ (𝑋(Hom ‘𝐶)𝑌))
12 rcaninv.n . . . . . . . . 9 𝑁 = (Inv‘𝐶)
131, 12, 4, 5, 6, 7invf 17730 . . . . . . . 8 (𝜑 → (𝑌𝑁𝑋):(𝑌(Iso‘𝐶)𝑋)⟶(𝑋(Iso‘𝐶)𝑌))
1413, 9ffvelcdmd 7057 . . . . . . 7 (𝜑 → ((𝑌𝑁𝑋)‘𝐹) ∈ (𝑋(Iso‘𝐶)𝑌))
1511, 14sseldd 3947 . . . . . 6 (𝜑 → ((𝑌𝑁𝑋)‘𝐹) ∈ (𝑋(Hom ‘𝐶)𝑌))
16 rcaninv.z . . . . . 6 (𝜑𝑍𝐵)
17 rcaninv.g . . . . . 6 (𝜑𝐺 ∈ (𝑌(Hom ‘𝐶)𝑍))
181, 2, 3, 4, 5, 6, 5, 10, 15, 16, 17catass 17647 . . . . 5 (𝜑 → ((𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑍)((𝑌𝑁𝑋)‘𝐹))(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑍)𝐹) = (𝐺(⟨𝑌, 𝑌⟩(comp‘𝐶)𝑍)(((𝑌𝑁𝑋)‘𝐹)(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝐹)))
19 eqid 2729 . . . . . . . 8 (Id‘𝐶) = (Id‘𝐶)
20 eqid 2729 . . . . . . . 8 (⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌) = (⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)
211, 7, 12, 4, 5, 6, 9, 19, 20invcoisoid 17754 . . . . . . 7 (𝜑 → (((𝑌𝑁𝑋)‘𝐹)(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝐹) = ((Id‘𝐶)‘𝑌))
2221eqcomd 2735 . . . . . 6 (𝜑 → ((Id‘𝐶)‘𝑌) = (((𝑌𝑁𝑋)‘𝐹)(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝐹))
2322oveq2d 7403 . . . . 5 (𝜑 → (𝐺(⟨𝑌, 𝑌⟩(comp‘𝐶)𝑍)((Id‘𝐶)‘𝑌)) = (𝐺(⟨𝑌, 𝑌⟩(comp‘𝐶)𝑍)(((𝑌𝑁𝑋)‘𝐹)(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝐹)))
241, 2, 19, 4, 5, 3, 16, 17catrid 17645 . . . . 5 (𝜑 → (𝐺(⟨𝑌, 𝑌⟩(comp‘𝐶)𝑍)((Id‘𝐶)‘𝑌)) = 𝐺)
2518, 23, 243eqtr2rd 2771 . . . 4 (𝜑𝐺 = ((𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑍)((𝑌𝑁𝑋)‘𝐹))(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑍)𝐹))
2625adantr 480 . . 3 ((𝜑 ∧ (𝐺 𝑅) = (𝐻 𝑅)) → 𝐺 = ((𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑍)((𝑌𝑁𝑋)‘𝐹))(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑍)𝐹))
27 rcaninv.o . . . . . . . . 9 = (⟨𝑋, 𝑌⟩(comp‘𝐶)𝑍)
2827eqcomi 2738 . . . . . . . 8 (⟨𝑋, 𝑌⟩(comp‘𝐶)𝑍) =
2928a1i 11 . . . . . . 7 (𝜑 → (⟨𝑋, 𝑌⟩(comp‘𝐶)𝑍) = )
30 eqidd 2730 . . . . . . 7 (𝜑𝐺 = 𝐺)
31 rcaninv.1 . . . . . . . . 9 𝑅 = ((𝑌𝑁𝑋)‘𝐹)
3231eqcomi 2738 . . . . . . . 8 ((𝑌𝑁𝑋)‘𝐹) = 𝑅
3332a1i 11 . . . . . . 7 (𝜑 → ((𝑌𝑁𝑋)‘𝐹) = 𝑅)
3429, 30, 33oveq123d 7408 . . . . . 6 (𝜑 → (𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑍)((𝑌𝑁𝑋)‘𝐹)) = (𝐺 𝑅))
3534adantr 480 . . . . 5 ((𝜑 ∧ (𝐺 𝑅) = (𝐻 𝑅)) → (𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑍)((𝑌𝑁𝑋)‘𝐹)) = (𝐺 𝑅))
36 simpr 484 . . . . 5 ((𝜑 ∧ (𝐺 𝑅) = (𝐻 𝑅)) → (𝐺 𝑅) = (𝐻 𝑅))
3735, 36eqtrd 2764 . . . 4 ((𝜑 ∧ (𝐺 𝑅) = (𝐻 𝑅)) → (𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑍)((𝑌𝑁𝑋)‘𝐹)) = (𝐻 𝑅))
3837oveq1d 7402 . . 3 ((𝜑 ∧ (𝐺 𝑅) = (𝐻 𝑅)) → ((𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑍)((𝑌𝑁𝑋)‘𝐹))(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑍)𝐹) = ((𝐻 𝑅)(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑍)𝐹))
3927oveqi 7400 . . . . . . 7 (𝐻 𝑅) = (𝐻(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑍)𝑅)
4039oveq1i 7397 . . . . . 6 ((𝐻 𝑅)(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑍)𝐹) = ((𝐻(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑍)𝑅)(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑍)𝐹)
4140a1i 11 . . . . 5 (𝜑 → ((𝐻 𝑅)(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑍)𝐹) = ((𝐻(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑍)𝑅)(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑍)𝐹))
4231, 15eqeltrid 2832 . . . . . . 7 (𝜑𝑅 ∈ (𝑋(Hom ‘𝐶)𝑌))
43 rcaninv.h . . . . . . 7 (𝜑𝐻 ∈ (𝑌(Hom ‘𝐶)𝑍))
441, 2, 3, 4, 5, 6, 5, 10, 42, 16, 43catass 17647 . . . . . 6 (𝜑 → ((𝐻(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑍)𝑅)(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑍)𝐹) = (𝐻(⟨𝑌, 𝑌⟩(comp‘𝐶)𝑍)(𝑅(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝐹)))
4531oveq1i 7397 . . . . . . . 8 (𝑅(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝐹) = (((𝑌𝑁𝑋)‘𝐹)(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝐹)
4645oveq2i 7398 . . . . . . 7 (𝐻(⟨𝑌, 𝑌⟩(comp‘𝐶)𝑍)(𝑅(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝐹)) = (𝐻(⟨𝑌, 𝑌⟩(comp‘𝐶)𝑍)(((𝑌𝑁𝑋)‘𝐹)(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝐹))
4746a1i 11 . . . . . 6 (𝜑 → (𝐻(⟨𝑌, 𝑌⟩(comp‘𝐶)𝑍)(𝑅(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝐹)) = (𝐻(⟨𝑌, 𝑌⟩(comp‘𝐶)𝑍)(((𝑌𝑁𝑋)‘𝐹)(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝐹)))
4821oveq2d 7403 . . . . . 6 (𝜑 → (𝐻(⟨𝑌, 𝑌⟩(comp‘𝐶)𝑍)(((𝑌𝑁𝑋)‘𝐹)(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝐹)) = (𝐻(⟨𝑌, 𝑌⟩(comp‘𝐶)𝑍)((Id‘𝐶)‘𝑌)))
4944, 47, 483eqtrd 2768 . . . . 5 (𝜑 → ((𝐻(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑍)𝑅)(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑍)𝐹) = (𝐻(⟨𝑌, 𝑌⟩(comp‘𝐶)𝑍)((Id‘𝐶)‘𝑌)))
501, 2, 19, 4, 5, 3, 16, 43catrid 17645 . . . . 5 (𝜑 → (𝐻(⟨𝑌, 𝑌⟩(comp‘𝐶)𝑍)((Id‘𝐶)‘𝑌)) = 𝐻)
5141, 49, 503eqtrd 2768 . . . 4 (𝜑 → ((𝐻 𝑅)(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑍)𝐹) = 𝐻)
5251adantr 480 . . 3 ((𝜑 ∧ (𝐺 𝑅) = (𝐻 𝑅)) → ((𝐻 𝑅)(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑍)𝐹) = 𝐻)
5326, 38, 523eqtrd 2768 . 2 ((𝜑 ∧ (𝐺 𝑅) = (𝐻 𝑅)) → 𝐺 = 𝐻)
5453ex 412 1 (𝜑 → ((𝐺 𝑅) = (𝐻 𝑅) → 𝐺 = 𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cop 4595  cfv 6511  (class class class)co 7387  Basecbs 17179  Hom chom 17231  compcco 17232  Catccat 17625  Idccid 17626  Invcinv 17707  Isociso 17708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-cat 17629  df-cid 17630  df-sect 17709  df-inv 17710  df-iso 17711
This theorem is referenced by:  initoeu2lem0  17975
  Copyright terms: Public domain W3C validator