MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rcaninv Structured version   Visualization version   GIF version

Theorem rcaninv 17855
Description: Right cancellation of an inverse of an isomorphism. (Contributed by AV, 5-Apr-2020.)
Hypotheses
Ref Expression
rcaninv.b 𝐵 = (Base‘𝐶)
rcaninv.n 𝑁 = (Inv‘𝐶)
rcaninv.c (𝜑𝐶 ∈ Cat)
rcaninv.x (𝜑𝑋𝐵)
rcaninv.y (𝜑𝑌𝐵)
rcaninv.z (𝜑𝑍𝐵)
rcaninv.f (𝜑𝐹 ∈ (𝑌(Iso‘𝐶)𝑋))
rcaninv.g (𝜑𝐺 ∈ (𝑌(Hom ‘𝐶)𝑍))
rcaninv.h (𝜑𝐻 ∈ (𝑌(Hom ‘𝐶)𝑍))
rcaninv.1 𝑅 = ((𝑌𝑁𝑋)‘𝐹)
rcaninv.o = (⟨𝑋, 𝑌⟩(comp‘𝐶)𝑍)
Assertion
Ref Expression
rcaninv (𝜑 → ((𝐺 𝑅) = (𝐻 𝑅) → 𝐺 = 𝐻))

Proof of Theorem rcaninv
StepHypRef Expression
1 rcaninv.b . . . . . 6 𝐵 = (Base‘𝐶)
2 eqid 2740 . . . . . 6 (Hom ‘𝐶) = (Hom ‘𝐶)
3 eqid 2740 . . . . . 6 (comp‘𝐶) = (comp‘𝐶)
4 rcaninv.c . . . . . 6 (𝜑𝐶 ∈ Cat)
5 rcaninv.y . . . . . 6 (𝜑𝑌𝐵)
6 rcaninv.x . . . . . 6 (𝜑𝑋𝐵)
7 eqid 2740 . . . . . . . 8 (Iso‘𝐶) = (Iso‘𝐶)
81, 2, 7, 4, 5, 6isohom 17837 . . . . . . 7 (𝜑 → (𝑌(Iso‘𝐶)𝑋) ⊆ (𝑌(Hom ‘𝐶)𝑋))
9 rcaninv.f . . . . . . 7 (𝜑𝐹 ∈ (𝑌(Iso‘𝐶)𝑋))
108, 9sseldd 4009 . . . . . 6 (𝜑𝐹 ∈ (𝑌(Hom ‘𝐶)𝑋))
111, 2, 7, 4, 6, 5isohom 17837 . . . . . . 7 (𝜑 → (𝑋(Iso‘𝐶)𝑌) ⊆ (𝑋(Hom ‘𝐶)𝑌))
12 rcaninv.n . . . . . . . . 9 𝑁 = (Inv‘𝐶)
131, 12, 4, 5, 6, 7invf 17829 . . . . . . . 8 (𝜑 → (𝑌𝑁𝑋):(𝑌(Iso‘𝐶)𝑋)⟶(𝑋(Iso‘𝐶)𝑌))
1413, 9ffvelcdmd 7119 . . . . . . 7 (𝜑 → ((𝑌𝑁𝑋)‘𝐹) ∈ (𝑋(Iso‘𝐶)𝑌))
1511, 14sseldd 4009 . . . . . 6 (𝜑 → ((𝑌𝑁𝑋)‘𝐹) ∈ (𝑋(Hom ‘𝐶)𝑌))
16 rcaninv.z . . . . . 6 (𝜑𝑍𝐵)
17 rcaninv.g . . . . . 6 (𝜑𝐺 ∈ (𝑌(Hom ‘𝐶)𝑍))
181, 2, 3, 4, 5, 6, 5, 10, 15, 16, 17catass 17744 . . . . 5 (𝜑 → ((𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑍)((𝑌𝑁𝑋)‘𝐹))(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑍)𝐹) = (𝐺(⟨𝑌, 𝑌⟩(comp‘𝐶)𝑍)(((𝑌𝑁𝑋)‘𝐹)(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝐹)))
19 eqid 2740 . . . . . . . 8 (Id‘𝐶) = (Id‘𝐶)
20 eqid 2740 . . . . . . . 8 (⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌) = (⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)
211, 7, 12, 4, 5, 6, 9, 19, 20invcoisoid 17853 . . . . . . 7 (𝜑 → (((𝑌𝑁𝑋)‘𝐹)(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝐹) = ((Id‘𝐶)‘𝑌))
2221eqcomd 2746 . . . . . 6 (𝜑 → ((Id‘𝐶)‘𝑌) = (((𝑌𝑁𝑋)‘𝐹)(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝐹))
2322oveq2d 7464 . . . . 5 (𝜑 → (𝐺(⟨𝑌, 𝑌⟩(comp‘𝐶)𝑍)((Id‘𝐶)‘𝑌)) = (𝐺(⟨𝑌, 𝑌⟩(comp‘𝐶)𝑍)(((𝑌𝑁𝑋)‘𝐹)(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝐹)))
241, 2, 19, 4, 5, 3, 16, 17catrid 17742 . . . . 5 (𝜑 → (𝐺(⟨𝑌, 𝑌⟩(comp‘𝐶)𝑍)((Id‘𝐶)‘𝑌)) = 𝐺)
2518, 23, 243eqtr2rd 2787 . . . 4 (𝜑𝐺 = ((𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑍)((𝑌𝑁𝑋)‘𝐹))(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑍)𝐹))
2625adantr 480 . . 3 ((𝜑 ∧ (𝐺 𝑅) = (𝐻 𝑅)) → 𝐺 = ((𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑍)((𝑌𝑁𝑋)‘𝐹))(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑍)𝐹))
27 rcaninv.o . . . . . . . . 9 = (⟨𝑋, 𝑌⟩(comp‘𝐶)𝑍)
2827eqcomi 2749 . . . . . . . 8 (⟨𝑋, 𝑌⟩(comp‘𝐶)𝑍) =
2928a1i 11 . . . . . . 7 (𝜑 → (⟨𝑋, 𝑌⟩(comp‘𝐶)𝑍) = )
30 eqidd 2741 . . . . . . 7 (𝜑𝐺 = 𝐺)
31 rcaninv.1 . . . . . . . . 9 𝑅 = ((𝑌𝑁𝑋)‘𝐹)
3231eqcomi 2749 . . . . . . . 8 ((𝑌𝑁𝑋)‘𝐹) = 𝑅
3332a1i 11 . . . . . . 7 (𝜑 → ((𝑌𝑁𝑋)‘𝐹) = 𝑅)
3429, 30, 33oveq123d 7469 . . . . . 6 (𝜑 → (𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑍)((𝑌𝑁𝑋)‘𝐹)) = (𝐺 𝑅))
3534adantr 480 . . . . 5 ((𝜑 ∧ (𝐺 𝑅) = (𝐻 𝑅)) → (𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑍)((𝑌𝑁𝑋)‘𝐹)) = (𝐺 𝑅))
36 simpr 484 . . . . 5 ((𝜑 ∧ (𝐺 𝑅) = (𝐻 𝑅)) → (𝐺 𝑅) = (𝐻 𝑅))
3735, 36eqtrd 2780 . . . 4 ((𝜑 ∧ (𝐺 𝑅) = (𝐻 𝑅)) → (𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑍)((𝑌𝑁𝑋)‘𝐹)) = (𝐻 𝑅))
3837oveq1d 7463 . . 3 ((𝜑 ∧ (𝐺 𝑅) = (𝐻 𝑅)) → ((𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑍)((𝑌𝑁𝑋)‘𝐹))(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑍)𝐹) = ((𝐻 𝑅)(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑍)𝐹))
3927oveqi 7461 . . . . . . 7 (𝐻 𝑅) = (𝐻(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑍)𝑅)
4039oveq1i 7458 . . . . . 6 ((𝐻 𝑅)(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑍)𝐹) = ((𝐻(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑍)𝑅)(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑍)𝐹)
4140a1i 11 . . . . 5 (𝜑 → ((𝐻 𝑅)(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑍)𝐹) = ((𝐻(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑍)𝑅)(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑍)𝐹))
4231, 15eqeltrid 2848 . . . . . . 7 (𝜑𝑅 ∈ (𝑋(Hom ‘𝐶)𝑌))
43 rcaninv.h . . . . . . 7 (𝜑𝐻 ∈ (𝑌(Hom ‘𝐶)𝑍))
441, 2, 3, 4, 5, 6, 5, 10, 42, 16, 43catass 17744 . . . . . 6 (𝜑 → ((𝐻(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑍)𝑅)(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑍)𝐹) = (𝐻(⟨𝑌, 𝑌⟩(comp‘𝐶)𝑍)(𝑅(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝐹)))
4531oveq1i 7458 . . . . . . . 8 (𝑅(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝐹) = (((𝑌𝑁𝑋)‘𝐹)(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝐹)
4645oveq2i 7459 . . . . . . 7 (𝐻(⟨𝑌, 𝑌⟩(comp‘𝐶)𝑍)(𝑅(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝐹)) = (𝐻(⟨𝑌, 𝑌⟩(comp‘𝐶)𝑍)(((𝑌𝑁𝑋)‘𝐹)(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝐹))
4746a1i 11 . . . . . 6 (𝜑 → (𝐻(⟨𝑌, 𝑌⟩(comp‘𝐶)𝑍)(𝑅(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝐹)) = (𝐻(⟨𝑌, 𝑌⟩(comp‘𝐶)𝑍)(((𝑌𝑁𝑋)‘𝐹)(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝐹)))
4821oveq2d 7464 . . . . . 6 (𝜑 → (𝐻(⟨𝑌, 𝑌⟩(comp‘𝐶)𝑍)(((𝑌𝑁𝑋)‘𝐹)(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝐹)) = (𝐻(⟨𝑌, 𝑌⟩(comp‘𝐶)𝑍)((Id‘𝐶)‘𝑌)))
4944, 47, 483eqtrd 2784 . . . . 5 (𝜑 → ((𝐻(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑍)𝑅)(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑍)𝐹) = (𝐻(⟨𝑌, 𝑌⟩(comp‘𝐶)𝑍)((Id‘𝐶)‘𝑌)))
501, 2, 19, 4, 5, 3, 16, 43catrid 17742 . . . . 5 (𝜑 → (𝐻(⟨𝑌, 𝑌⟩(comp‘𝐶)𝑍)((Id‘𝐶)‘𝑌)) = 𝐻)
5141, 49, 503eqtrd 2784 . . . 4 (𝜑 → ((𝐻 𝑅)(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑍)𝐹) = 𝐻)
5251adantr 480 . . 3 ((𝜑 ∧ (𝐺 𝑅) = (𝐻 𝑅)) → ((𝐻 𝑅)(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑍)𝐹) = 𝐻)
5326, 38, 523eqtrd 2784 . 2 ((𝜑 ∧ (𝐺 𝑅) = (𝐻 𝑅)) → 𝐺 = 𝐻)
5453ex 412 1 (𝜑 → ((𝐺 𝑅) = (𝐻 𝑅) → 𝐺 = 𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  cop 4654  cfv 6573  (class class class)co 7448  Basecbs 17258  Hom chom 17322  compcco 17323  Catccat 17722  Idccid 17723  Invcinv 17806  Isociso 17807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-cat 17726  df-cid 17727  df-sect 17808  df-inv 17809  df-iso 17810
This theorem is referenced by:  initoeu2lem0  18080
  Copyright terms: Public domain W3C validator