MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rcaninv Structured version   Visualization version   GIF version

Theorem rcaninv 17720
Description: Right cancellation of an inverse of an isomorphism. (Contributed by AV, 5-Apr-2020.)
Hypotheses
Ref Expression
rcaninv.b 𝐵 = (Base‘𝐶)
rcaninv.n 𝑁 = (Inv‘𝐶)
rcaninv.c (𝜑𝐶 ∈ Cat)
rcaninv.x (𝜑𝑋𝐵)
rcaninv.y (𝜑𝑌𝐵)
rcaninv.z (𝜑𝑍𝐵)
rcaninv.f (𝜑𝐹 ∈ (𝑌(Iso‘𝐶)𝑋))
rcaninv.g (𝜑𝐺 ∈ (𝑌(Hom ‘𝐶)𝑍))
rcaninv.h (𝜑𝐻 ∈ (𝑌(Hom ‘𝐶)𝑍))
rcaninv.1 𝑅 = ((𝑌𝑁𝑋)‘𝐹)
rcaninv.o = (⟨𝑋, 𝑌⟩(comp‘𝐶)𝑍)
Assertion
Ref Expression
rcaninv (𝜑 → ((𝐺 𝑅) = (𝐻 𝑅) → 𝐺 = 𝐻))

Proof of Theorem rcaninv
StepHypRef Expression
1 rcaninv.b . . . . . 6 𝐵 = (Base‘𝐶)
2 eqid 2729 . . . . . 6 (Hom ‘𝐶) = (Hom ‘𝐶)
3 eqid 2729 . . . . . 6 (comp‘𝐶) = (comp‘𝐶)
4 rcaninv.c . . . . . 6 (𝜑𝐶 ∈ Cat)
5 rcaninv.y . . . . . 6 (𝜑𝑌𝐵)
6 rcaninv.x . . . . . 6 (𝜑𝑋𝐵)
7 eqid 2729 . . . . . . . 8 (Iso‘𝐶) = (Iso‘𝐶)
81, 2, 7, 4, 5, 6isohom 17702 . . . . . . 7 (𝜑 → (𝑌(Iso‘𝐶)𝑋) ⊆ (𝑌(Hom ‘𝐶)𝑋))
9 rcaninv.f . . . . . . 7 (𝜑𝐹 ∈ (𝑌(Iso‘𝐶)𝑋))
108, 9sseldd 3938 . . . . . 6 (𝜑𝐹 ∈ (𝑌(Hom ‘𝐶)𝑋))
111, 2, 7, 4, 6, 5isohom 17702 . . . . . . 7 (𝜑 → (𝑋(Iso‘𝐶)𝑌) ⊆ (𝑋(Hom ‘𝐶)𝑌))
12 rcaninv.n . . . . . . . . 9 𝑁 = (Inv‘𝐶)
131, 12, 4, 5, 6, 7invf 17694 . . . . . . . 8 (𝜑 → (𝑌𝑁𝑋):(𝑌(Iso‘𝐶)𝑋)⟶(𝑋(Iso‘𝐶)𝑌))
1413, 9ffvelcdmd 7023 . . . . . . 7 (𝜑 → ((𝑌𝑁𝑋)‘𝐹) ∈ (𝑋(Iso‘𝐶)𝑌))
1511, 14sseldd 3938 . . . . . 6 (𝜑 → ((𝑌𝑁𝑋)‘𝐹) ∈ (𝑋(Hom ‘𝐶)𝑌))
16 rcaninv.z . . . . . 6 (𝜑𝑍𝐵)
17 rcaninv.g . . . . . 6 (𝜑𝐺 ∈ (𝑌(Hom ‘𝐶)𝑍))
181, 2, 3, 4, 5, 6, 5, 10, 15, 16, 17catass 17611 . . . . 5 (𝜑 → ((𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑍)((𝑌𝑁𝑋)‘𝐹))(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑍)𝐹) = (𝐺(⟨𝑌, 𝑌⟩(comp‘𝐶)𝑍)(((𝑌𝑁𝑋)‘𝐹)(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝐹)))
19 eqid 2729 . . . . . . . 8 (Id‘𝐶) = (Id‘𝐶)
20 eqid 2729 . . . . . . . 8 (⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌) = (⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)
211, 7, 12, 4, 5, 6, 9, 19, 20invcoisoid 17718 . . . . . . 7 (𝜑 → (((𝑌𝑁𝑋)‘𝐹)(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝐹) = ((Id‘𝐶)‘𝑌))
2221eqcomd 2735 . . . . . 6 (𝜑 → ((Id‘𝐶)‘𝑌) = (((𝑌𝑁𝑋)‘𝐹)(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝐹))
2322oveq2d 7369 . . . . 5 (𝜑 → (𝐺(⟨𝑌, 𝑌⟩(comp‘𝐶)𝑍)((Id‘𝐶)‘𝑌)) = (𝐺(⟨𝑌, 𝑌⟩(comp‘𝐶)𝑍)(((𝑌𝑁𝑋)‘𝐹)(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝐹)))
241, 2, 19, 4, 5, 3, 16, 17catrid 17609 . . . . 5 (𝜑 → (𝐺(⟨𝑌, 𝑌⟩(comp‘𝐶)𝑍)((Id‘𝐶)‘𝑌)) = 𝐺)
2518, 23, 243eqtr2rd 2771 . . . 4 (𝜑𝐺 = ((𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑍)((𝑌𝑁𝑋)‘𝐹))(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑍)𝐹))
2625adantr 480 . . 3 ((𝜑 ∧ (𝐺 𝑅) = (𝐻 𝑅)) → 𝐺 = ((𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑍)((𝑌𝑁𝑋)‘𝐹))(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑍)𝐹))
27 rcaninv.o . . . . . . . . 9 = (⟨𝑋, 𝑌⟩(comp‘𝐶)𝑍)
2827eqcomi 2738 . . . . . . . 8 (⟨𝑋, 𝑌⟩(comp‘𝐶)𝑍) =
2928a1i 11 . . . . . . 7 (𝜑 → (⟨𝑋, 𝑌⟩(comp‘𝐶)𝑍) = )
30 eqidd 2730 . . . . . . 7 (𝜑𝐺 = 𝐺)
31 rcaninv.1 . . . . . . . . 9 𝑅 = ((𝑌𝑁𝑋)‘𝐹)
3231eqcomi 2738 . . . . . . . 8 ((𝑌𝑁𝑋)‘𝐹) = 𝑅
3332a1i 11 . . . . . . 7 (𝜑 → ((𝑌𝑁𝑋)‘𝐹) = 𝑅)
3429, 30, 33oveq123d 7374 . . . . . 6 (𝜑 → (𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑍)((𝑌𝑁𝑋)‘𝐹)) = (𝐺 𝑅))
3534adantr 480 . . . . 5 ((𝜑 ∧ (𝐺 𝑅) = (𝐻 𝑅)) → (𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑍)((𝑌𝑁𝑋)‘𝐹)) = (𝐺 𝑅))
36 simpr 484 . . . . 5 ((𝜑 ∧ (𝐺 𝑅) = (𝐻 𝑅)) → (𝐺 𝑅) = (𝐻 𝑅))
3735, 36eqtrd 2764 . . . 4 ((𝜑 ∧ (𝐺 𝑅) = (𝐻 𝑅)) → (𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑍)((𝑌𝑁𝑋)‘𝐹)) = (𝐻 𝑅))
3837oveq1d 7368 . . 3 ((𝜑 ∧ (𝐺 𝑅) = (𝐻 𝑅)) → ((𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑍)((𝑌𝑁𝑋)‘𝐹))(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑍)𝐹) = ((𝐻 𝑅)(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑍)𝐹))
3927oveqi 7366 . . . . . . 7 (𝐻 𝑅) = (𝐻(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑍)𝑅)
4039oveq1i 7363 . . . . . 6 ((𝐻 𝑅)(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑍)𝐹) = ((𝐻(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑍)𝑅)(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑍)𝐹)
4140a1i 11 . . . . 5 (𝜑 → ((𝐻 𝑅)(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑍)𝐹) = ((𝐻(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑍)𝑅)(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑍)𝐹))
4231, 15eqeltrid 2832 . . . . . . 7 (𝜑𝑅 ∈ (𝑋(Hom ‘𝐶)𝑌))
43 rcaninv.h . . . . . . 7 (𝜑𝐻 ∈ (𝑌(Hom ‘𝐶)𝑍))
441, 2, 3, 4, 5, 6, 5, 10, 42, 16, 43catass 17611 . . . . . 6 (𝜑 → ((𝐻(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑍)𝑅)(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑍)𝐹) = (𝐻(⟨𝑌, 𝑌⟩(comp‘𝐶)𝑍)(𝑅(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝐹)))
4531oveq1i 7363 . . . . . . . 8 (𝑅(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝐹) = (((𝑌𝑁𝑋)‘𝐹)(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝐹)
4645oveq2i 7364 . . . . . . 7 (𝐻(⟨𝑌, 𝑌⟩(comp‘𝐶)𝑍)(𝑅(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝐹)) = (𝐻(⟨𝑌, 𝑌⟩(comp‘𝐶)𝑍)(((𝑌𝑁𝑋)‘𝐹)(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝐹))
4746a1i 11 . . . . . 6 (𝜑 → (𝐻(⟨𝑌, 𝑌⟩(comp‘𝐶)𝑍)(𝑅(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝐹)) = (𝐻(⟨𝑌, 𝑌⟩(comp‘𝐶)𝑍)(((𝑌𝑁𝑋)‘𝐹)(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝐹)))
4821oveq2d 7369 . . . . . 6 (𝜑 → (𝐻(⟨𝑌, 𝑌⟩(comp‘𝐶)𝑍)(((𝑌𝑁𝑋)‘𝐹)(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝐹)) = (𝐻(⟨𝑌, 𝑌⟩(comp‘𝐶)𝑍)((Id‘𝐶)‘𝑌)))
4944, 47, 483eqtrd 2768 . . . . 5 (𝜑 → ((𝐻(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑍)𝑅)(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑍)𝐹) = (𝐻(⟨𝑌, 𝑌⟩(comp‘𝐶)𝑍)((Id‘𝐶)‘𝑌)))
501, 2, 19, 4, 5, 3, 16, 43catrid 17609 . . . . 5 (𝜑 → (𝐻(⟨𝑌, 𝑌⟩(comp‘𝐶)𝑍)((Id‘𝐶)‘𝑌)) = 𝐻)
5141, 49, 503eqtrd 2768 . . . 4 (𝜑 → ((𝐻 𝑅)(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑍)𝐹) = 𝐻)
5251adantr 480 . . 3 ((𝜑 ∧ (𝐺 𝑅) = (𝐻 𝑅)) → ((𝐻 𝑅)(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑍)𝐹) = 𝐻)
5326, 38, 523eqtrd 2768 . 2 ((𝜑 ∧ (𝐺 𝑅) = (𝐻 𝑅)) → 𝐺 = 𝐻)
5453ex 412 1 (𝜑 → ((𝐺 𝑅) = (𝐻 𝑅) → 𝐺 = 𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cop 4585  cfv 6486  (class class class)co 7353  Basecbs 17139  Hom chom 17191  compcco 17192  Catccat 17589  Idccid 17590  Invcinv 17671  Isociso 17672
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1st 7931  df-2nd 7932  df-cat 17593  df-cid 17594  df-sect 17673  df-inv 17674  df-iso 17675
This theorem is referenced by:  initoeu2lem0  17939
  Copyright terms: Public domain W3C validator