MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evlfcllem Structured version   Visualization version   GIF version

Theorem evlfcllem 18182
Description: Lemma for evlfcl 18183. (Contributed by Mario Carneiro, 12-Jan-2017.)
Hypotheses
Ref Expression
evlfcl.e 𝐸 = (𝐶 evalF 𝐷)
evlfcl.q 𝑄 = (𝐶 FuncCat 𝐷)
evlfcl.c (𝜑𝐶 ∈ Cat)
evlfcl.d (𝜑𝐷 ∈ Cat)
evlfcl.n 𝑁 = (𝐶 Nat 𝐷)
evlfcl.f (𝜑 → (𝐹 ∈ (𝐶 Func 𝐷) ∧ 𝑋 ∈ (Base‘𝐶)))
evlfcl.g (𝜑 → (𝐺 ∈ (𝐶 Func 𝐷) ∧ 𝑌 ∈ (Base‘𝐶)))
evlfcl.h (𝜑 → (𝐻 ∈ (𝐶 Func 𝐷) ∧ 𝑍 ∈ (Base‘𝐶)))
evlfcl.a (𝜑 → (𝐴 ∈ (𝐹𝑁𝐺) ∧ 𝐾 ∈ (𝑋(Hom ‘𝐶)𝑌)))
evlfcl.b (𝜑 → (𝐵 ∈ (𝐺𝑁𝐻) ∧ 𝐿 ∈ (𝑌(Hom ‘𝐶)𝑍)))
Assertion
Ref Expression
evlfcllem (𝜑 → ((⟨𝐹, 𝑋⟩(2nd𝐸)⟨𝐻, 𝑍⟩)‘(⟨𝐵, 𝐿⟩(⟨⟨𝐹, 𝑋⟩, ⟨𝐺, 𝑌⟩⟩(comp‘(𝑄 ×c 𝐶))⟨𝐻, 𝑍⟩)⟨𝐴, 𝐾⟩)) = (((⟨𝐺, 𝑌⟩(2nd𝐸)⟨𝐻, 𝑍⟩)‘⟨𝐵, 𝐿⟩)(⟨((1st𝐸)‘⟨𝐹, 𝑋⟩), ((1st𝐸)‘⟨𝐺, 𝑌⟩)⟩(comp‘𝐷)((1st𝐸)‘⟨𝐻, 𝑍⟩))((⟨𝐹, 𝑋⟩(2nd𝐸)⟨𝐺, 𝑌⟩)‘⟨𝐴, 𝐾⟩)))

Proof of Theorem evlfcllem
StepHypRef Expression
1 evlfcl.e . . . 4 𝐸 = (𝐶 evalF 𝐷)
2 evlfcl.c . . . 4 (𝜑𝐶 ∈ Cat)
3 evlfcl.d . . . 4 (𝜑𝐷 ∈ Cat)
4 eqid 2729 . . . 4 (Base‘𝐶) = (Base‘𝐶)
5 eqid 2729 . . . 4 (Hom ‘𝐶) = (Hom ‘𝐶)
6 eqid 2729 . . . 4 (comp‘𝐷) = (comp‘𝐷)
7 evlfcl.n . . . 4 𝑁 = (𝐶 Nat 𝐷)
8 evlfcl.f . . . . 5 (𝜑 → (𝐹 ∈ (𝐶 Func 𝐷) ∧ 𝑋 ∈ (Base‘𝐶)))
98simpld 494 . . . 4 (𝜑𝐹 ∈ (𝐶 Func 𝐷))
10 evlfcl.h . . . . 5 (𝜑 → (𝐻 ∈ (𝐶 Func 𝐷) ∧ 𝑍 ∈ (Base‘𝐶)))
1110simpld 494 . . . 4 (𝜑𝐻 ∈ (𝐶 Func 𝐷))
128simprd 495 . . . 4 (𝜑𝑋 ∈ (Base‘𝐶))
1310simprd 495 . . . 4 (𝜑𝑍 ∈ (Base‘𝐶))
14 eqid 2729 . . . 4 (⟨𝐹, 𝑋⟩(2nd𝐸)⟨𝐻, 𝑍⟩) = (⟨𝐹, 𝑋⟩(2nd𝐸)⟨𝐻, 𝑍⟩)
15 evlfcl.q . . . . 5 𝑄 = (𝐶 FuncCat 𝐷)
16 eqid 2729 . . . . 5 (comp‘𝑄) = (comp‘𝑄)
17 evlfcl.a . . . . . 6 (𝜑 → (𝐴 ∈ (𝐹𝑁𝐺) ∧ 𝐾 ∈ (𝑋(Hom ‘𝐶)𝑌)))
1817simpld 494 . . . . 5 (𝜑𝐴 ∈ (𝐹𝑁𝐺))
19 evlfcl.b . . . . . 6 (𝜑 → (𝐵 ∈ (𝐺𝑁𝐻) ∧ 𝐿 ∈ (𝑌(Hom ‘𝐶)𝑍)))
2019simpld 494 . . . . 5 (𝜑𝐵 ∈ (𝐺𝑁𝐻))
2115, 7, 16, 18, 20fuccocl 17929 . . . 4 (𝜑 → (𝐵(⟨𝐹, 𝐺⟩(comp‘𝑄)𝐻)𝐴) ∈ (𝐹𝑁𝐻))
22 eqid 2729 . . . . 5 (comp‘𝐶) = (comp‘𝐶)
23 evlfcl.g . . . . . 6 (𝜑 → (𝐺 ∈ (𝐶 Func 𝐷) ∧ 𝑌 ∈ (Base‘𝐶)))
2423simprd 495 . . . . 5 (𝜑𝑌 ∈ (Base‘𝐶))
2517simprd 495 . . . . 5 (𝜑𝐾 ∈ (𝑋(Hom ‘𝐶)𝑌))
2619simprd 495 . . . . 5 (𝜑𝐿 ∈ (𝑌(Hom ‘𝐶)𝑍))
274, 5, 22, 2, 12, 24, 13, 25, 26catcocl 17646 . . . 4 (𝜑 → (𝐿(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑍)𝐾) ∈ (𝑋(Hom ‘𝐶)𝑍))
281, 2, 3, 4, 5, 6, 7, 9, 11, 12, 13, 14, 21, 27evlf2val 18180 . . 3 (𝜑 → ((𝐵(⟨𝐹, 𝐺⟩(comp‘𝑄)𝐻)𝐴)(⟨𝐹, 𝑋⟩(2nd𝐸)⟨𝐻, 𝑍⟩)(𝐿(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑍)𝐾)) = (((𝐵(⟨𝐹, 𝐺⟩(comp‘𝑄)𝐻)𝐴)‘𝑍)(⟨((1st𝐹)‘𝑋), ((1st𝐹)‘𝑍)⟩(comp‘𝐷)((1st𝐻)‘𝑍))((𝑋(2nd𝐹)𝑍)‘(𝐿(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑍)𝐾))))
2915, 7, 4, 6, 16, 18, 20, 13fuccoval 17928 . . . 4 (𝜑 → ((𝐵(⟨𝐹, 𝐺⟩(comp‘𝑄)𝐻)𝐴)‘𝑍) = ((𝐵𝑍)(⟨((1st𝐹)‘𝑍), ((1st𝐺)‘𝑍)⟩(comp‘𝐷)((1st𝐻)‘𝑍))(𝐴𝑍)))
3029oveq1d 7402 . . 3 (𝜑 → (((𝐵(⟨𝐹, 𝐺⟩(comp‘𝑄)𝐻)𝐴)‘𝑍)(⟨((1st𝐹)‘𝑋), ((1st𝐹)‘𝑍)⟩(comp‘𝐷)((1st𝐻)‘𝑍))((𝑋(2nd𝐹)𝑍)‘(𝐿(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑍)𝐾))) = (((𝐵𝑍)(⟨((1st𝐹)‘𝑍), ((1st𝐺)‘𝑍)⟩(comp‘𝐷)((1st𝐻)‘𝑍))(𝐴𝑍))(⟨((1st𝐹)‘𝑋), ((1st𝐹)‘𝑍)⟩(comp‘𝐷)((1st𝐻)‘𝑍))((𝑋(2nd𝐹)𝑍)‘(𝐿(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑍)𝐾))))
31 relfunc 17824 . . . . . . 7 Rel (𝐶 Func 𝐷)
32 1st2ndbr 8021 . . . . . . 7 ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
3331, 9, 32sylancr 587 . . . . . 6 (𝜑 → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
344, 5, 22, 6, 33, 12, 24, 13, 25, 26funcco 17833 . . . . 5 (𝜑 → ((𝑋(2nd𝐹)𝑍)‘(𝐿(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑍)𝐾)) = (((𝑌(2nd𝐹)𝑍)‘𝐿)(⟨((1st𝐹)‘𝑋), ((1st𝐹)‘𝑌)⟩(comp‘𝐷)((1st𝐹)‘𝑍))((𝑋(2nd𝐹)𝑌)‘𝐾)))
3534oveq2d 7403 . . . 4 (𝜑 → (((𝐵𝑍)(⟨((1st𝐹)‘𝑍), ((1st𝐺)‘𝑍)⟩(comp‘𝐷)((1st𝐻)‘𝑍))(𝐴𝑍))(⟨((1st𝐹)‘𝑋), ((1st𝐹)‘𝑍)⟩(comp‘𝐷)((1st𝐻)‘𝑍))((𝑋(2nd𝐹)𝑍)‘(𝐿(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑍)𝐾))) = (((𝐵𝑍)(⟨((1st𝐹)‘𝑍), ((1st𝐺)‘𝑍)⟩(comp‘𝐷)((1st𝐻)‘𝑍))(𝐴𝑍))(⟨((1st𝐹)‘𝑋), ((1st𝐹)‘𝑍)⟩(comp‘𝐷)((1st𝐻)‘𝑍))(((𝑌(2nd𝐹)𝑍)‘𝐿)(⟨((1st𝐹)‘𝑋), ((1st𝐹)‘𝑌)⟩(comp‘𝐷)((1st𝐹)‘𝑍))((𝑋(2nd𝐹)𝑌)‘𝐾))))
367, 18nat1st2nd 17916 . . . . . . . . 9 (𝜑𝐴 ∈ (⟨(1st𝐹), (2nd𝐹)⟩𝑁⟨(1st𝐺), (2nd𝐺)⟩))
377, 36, 4, 5, 6, 24, 13, 26nati 17920 . . . . . . . 8 (𝜑 → ((𝐴𝑍)(⟨((1st𝐹)‘𝑌), ((1st𝐹)‘𝑍)⟩(comp‘𝐷)((1st𝐺)‘𝑍))((𝑌(2nd𝐹)𝑍)‘𝐿)) = (((𝑌(2nd𝐺)𝑍)‘𝐿)(⟨((1st𝐹)‘𝑌), ((1st𝐺)‘𝑌)⟩(comp‘𝐷)((1st𝐺)‘𝑍))(𝐴𝑌)))
3837oveq2d 7403 . . . . . . 7 (𝜑 → ((𝐵𝑍)(⟨((1st𝐹)‘𝑌), ((1st𝐺)‘𝑍)⟩(comp‘𝐷)((1st𝐻)‘𝑍))((𝐴𝑍)(⟨((1st𝐹)‘𝑌), ((1st𝐹)‘𝑍)⟩(comp‘𝐷)((1st𝐺)‘𝑍))((𝑌(2nd𝐹)𝑍)‘𝐿))) = ((𝐵𝑍)(⟨((1st𝐹)‘𝑌), ((1st𝐺)‘𝑍)⟩(comp‘𝐷)((1st𝐻)‘𝑍))(((𝑌(2nd𝐺)𝑍)‘𝐿)(⟨((1st𝐹)‘𝑌), ((1st𝐺)‘𝑌)⟩(comp‘𝐷)((1st𝐺)‘𝑍))(𝐴𝑌))))
39 eqid 2729 . . . . . . . 8 (Base‘𝐷) = (Base‘𝐷)
40 eqid 2729 . . . . . . . 8 (Hom ‘𝐷) = (Hom ‘𝐷)
414, 39, 33funcf1 17828 . . . . . . . . 9 (𝜑 → (1st𝐹):(Base‘𝐶)⟶(Base‘𝐷))
4241, 24ffvelcdmd 7057 . . . . . . . 8 (𝜑 → ((1st𝐹)‘𝑌) ∈ (Base‘𝐷))
4341, 13ffvelcdmd 7057 . . . . . . . 8 (𝜑 → ((1st𝐹)‘𝑍) ∈ (Base‘𝐷))
4423simpld 494 . . . . . . . . . . 11 (𝜑𝐺 ∈ (𝐶 Func 𝐷))
45 1st2ndbr 8021 . . . . . . . . . . 11 ((Rel (𝐶 Func 𝐷) ∧ 𝐺 ∈ (𝐶 Func 𝐷)) → (1st𝐺)(𝐶 Func 𝐷)(2nd𝐺))
4631, 44, 45sylancr 587 . . . . . . . . . 10 (𝜑 → (1st𝐺)(𝐶 Func 𝐷)(2nd𝐺))
474, 39, 46funcf1 17828 . . . . . . . . 9 (𝜑 → (1st𝐺):(Base‘𝐶)⟶(Base‘𝐷))
4847, 13ffvelcdmd 7057 . . . . . . . 8 (𝜑 → ((1st𝐺)‘𝑍) ∈ (Base‘𝐷))
494, 5, 40, 33, 24, 13funcf2 17830 . . . . . . . . 9 (𝜑 → (𝑌(2nd𝐹)𝑍):(𝑌(Hom ‘𝐶)𝑍)⟶(((1st𝐹)‘𝑌)(Hom ‘𝐷)((1st𝐹)‘𝑍)))
5049, 26ffvelcdmd 7057 . . . . . . . 8 (𝜑 → ((𝑌(2nd𝐹)𝑍)‘𝐿) ∈ (((1st𝐹)‘𝑌)(Hom ‘𝐷)((1st𝐹)‘𝑍)))
517, 36, 4, 40, 13natcl 17918 . . . . . . . 8 (𝜑 → (𝐴𝑍) ∈ (((1st𝐹)‘𝑍)(Hom ‘𝐷)((1st𝐺)‘𝑍)))
52 1st2ndbr 8021 . . . . . . . . . . 11 ((Rel (𝐶 Func 𝐷) ∧ 𝐻 ∈ (𝐶 Func 𝐷)) → (1st𝐻)(𝐶 Func 𝐷)(2nd𝐻))
5331, 11, 52sylancr 587 . . . . . . . . . 10 (𝜑 → (1st𝐻)(𝐶 Func 𝐷)(2nd𝐻))
544, 39, 53funcf1 17828 . . . . . . . . 9 (𝜑 → (1st𝐻):(Base‘𝐶)⟶(Base‘𝐷))
5554, 13ffvelcdmd 7057 . . . . . . . 8 (𝜑 → ((1st𝐻)‘𝑍) ∈ (Base‘𝐷))
567, 20nat1st2nd 17916 . . . . . . . . 9 (𝜑𝐵 ∈ (⟨(1st𝐺), (2nd𝐺)⟩𝑁⟨(1st𝐻), (2nd𝐻)⟩))
577, 56, 4, 40, 13natcl 17918 . . . . . . . 8 (𝜑 → (𝐵𝑍) ∈ (((1st𝐺)‘𝑍)(Hom ‘𝐷)((1st𝐻)‘𝑍)))
5839, 40, 6, 3, 42, 43, 48, 50, 51, 55, 57catass 17647 . . . . . . 7 (𝜑 → (((𝐵𝑍)(⟨((1st𝐹)‘𝑍), ((1st𝐺)‘𝑍)⟩(comp‘𝐷)((1st𝐻)‘𝑍))(𝐴𝑍))(⟨((1st𝐹)‘𝑌), ((1st𝐹)‘𝑍)⟩(comp‘𝐷)((1st𝐻)‘𝑍))((𝑌(2nd𝐹)𝑍)‘𝐿)) = ((𝐵𝑍)(⟨((1st𝐹)‘𝑌), ((1st𝐺)‘𝑍)⟩(comp‘𝐷)((1st𝐻)‘𝑍))((𝐴𝑍)(⟨((1st𝐹)‘𝑌), ((1st𝐹)‘𝑍)⟩(comp‘𝐷)((1st𝐺)‘𝑍))((𝑌(2nd𝐹)𝑍)‘𝐿))))
5947, 24ffvelcdmd 7057 . . . . . . . 8 (𝜑 → ((1st𝐺)‘𝑌) ∈ (Base‘𝐷))
607, 36, 4, 40, 24natcl 17918 . . . . . . . 8 (𝜑 → (𝐴𝑌) ∈ (((1st𝐹)‘𝑌)(Hom ‘𝐷)((1st𝐺)‘𝑌)))
614, 5, 40, 46, 24, 13funcf2 17830 . . . . . . . . 9 (𝜑 → (𝑌(2nd𝐺)𝑍):(𝑌(Hom ‘𝐶)𝑍)⟶(((1st𝐺)‘𝑌)(Hom ‘𝐷)((1st𝐺)‘𝑍)))
6261, 26ffvelcdmd 7057 . . . . . . . 8 (𝜑 → ((𝑌(2nd𝐺)𝑍)‘𝐿) ∈ (((1st𝐺)‘𝑌)(Hom ‘𝐷)((1st𝐺)‘𝑍)))
6339, 40, 6, 3, 42, 59, 48, 60, 62, 55, 57catass 17647 . . . . . . 7 (𝜑 → (((𝐵𝑍)(⟨((1st𝐺)‘𝑌), ((1st𝐺)‘𝑍)⟩(comp‘𝐷)((1st𝐻)‘𝑍))((𝑌(2nd𝐺)𝑍)‘𝐿))(⟨((1st𝐹)‘𝑌), ((1st𝐺)‘𝑌)⟩(comp‘𝐷)((1st𝐻)‘𝑍))(𝐴𝑌)) = ((𝐵𝑍)(⟨((1st𝐹)‘𝑌), ((1st𝐺)‘𝑍)⟩(comp‘𝐷)((1st𝐻)‘𝑍))(((𝑌(2nd𝐺)𝑍)‘𝐿)(⟨((1st𝐹)‘𝑌), ((1st𝐺)‘𝑌)⟩(comp‘𝐷)((1st𝐺)‘𝑍))(𝐴𝑌))))
6438, 58, 633eqtr4d 2774 . . . . . 6 (𝜑 → (((𝐵𝑍)(⟨((1st𝐹)‘𝑍), ((1st𝐺)‘𝑍)⟩(comp‘𝐷)((1st𝐻)‘𝑍))(𝐴𝑍))(⟨((1st𝐹)‘𝑌), ((1st𝐹)‘𝑍)⟩(comp‘𝐷)((1st𝐻)‘𝑍))((𝑌(2nd𝐹)𝑍)‘𝐿)) = (((𝐵𝑍)(⟨((1st𝐺)‘𝑌), ((1st𝐺)‘𝑍)⟩(comp‘𝐷)((1st𝐻)‘𝑍))((𝑌(2nd𝐺)𝑍)‘𝐿))(⟨((1st𝐹)‘𝑌), ((1st𝐺)‘𝑌)⟩(comp‘𝐷)((1st𝐻)‘𝑍))(𝐴𝑌)))
6564oveq1d 7402 . . . . 5 (𝜑 → ((((𝐵𝑍)(⟨((1st𝐹)‘𝑍), ((1st𝐺)‘𝑍)⟩(comp‘𝐷)((1st𝐻)‘𝑍))(𝐴𝑍))(⟨((1st𝐹)‘𝑌), ((1st𝐹)‘𝑍)⟩(comp‘𝐷)((1st𝐻)‘𝑍))((𝑌(2nd𝐹)𝑍)‘𝐿))(⟨((1st𝐹)‘𝑋), ((1st𝐹)‘𝑌)⟩(comp‘𝐷)((1st𝐻)‘𝑍))((𝑋(2nd𝐹)𝑌)‘𝐾)) = ((((𝐵𝑍)(⟨((1st𝐺)‘𝑌), ((1st𝐺)‘𝑍)⟩(comp‘𝐷)((1st𝐻)‘𝑍))((𝑌(2nd𝐺)𝑍)‘𝐿))(⟨((1st𝐹)‘𝑌), ((1st𝐺)‘𝑌)⟩(comp‘𝐷)((1st𝐻)‘𝑍))(𝐴𝑌))(⟨((1st𝐹)‘𝑋), ((1st𝐹)‘𝑌)⟩(comp‘𝐷)((1st𝐻)‘𝑍))((𝑋(2nd𝐹)𝑌)‘𝐾)))
6641, 12ffvelcdmd 7057 . . . . . 6 (𝜑 → ((1st𝐹)‘𝑋) ∈ (Base‘𝐷))
674, 5, 40, 33, 12, 24funcf2 17830 . . . . . . 7 (𝜑 → (𝑋(2nd𝐹)𝑌):(𝑋(Hom ‘𝐶)𝑌)⟶(((1st𝐹)‘𝑋)(Hom ‘𝐷)((1st𝐹)‘𝑌)))
6867, 25ffvelcdmd 7057 . . . . . 6 (𝜑 → ((𝑋(2nd𝐹)𝑌)‘𝐾) ∈ (((1st𝐹)‘𝑋)(Hom ‘𝐷)((1st𝐹)‘𝑌)))
6939, 40, 6, 3, 43, 48, 55, 51, 57catcocl 17646 . . . . . 6 (𝜑 → ((𝐵𝑍)(⟨((1st𝐹)‘𝑍), ((1st𝐺)‘𝑍)⟩(comp‘𝐷)((1st𝐻)‘𝑍))(𝐴𝑍)) ∈ (((1st𝐹)‘𝑍)(Hom ‘𝐷)((1st𝐻)‘𝑍)))
7039, 40, 6, 3, 66, 42, 43, 68, 50, 55, 69catass 17647 . . . . 5 (𝜑 → ((((𝐵𝑍)(⟨((1st𝐹)‘𝑍), ((1st𝐺)‘𝑍)⟩(comp‘𝐷)((1st𝐻)‘𝑍))(𝐴𝑍))(⟨((1st𝐹)‘𝑌), ((1st𝐹)‘𝑍)⟩(comp‘𝐷)((1st𝐻)‘𝑍))((𝑌(2nd𝐹)𝑍)‘𝐿))(⟨((1st𝐹)‘𝑋), ((1st𝐹)‘𝑌)⟩(comp‘𝐷)((1st𝐻)‘𝑍))((𝑋(2nd𝐹)𝑌)‘𝐾)) = (((𝐵𝑍)(⟨((1st𝐹)‘𝑍), ((1st𝐺)‘𝑍)⟩(comp‘𝐷)((1st𝐻)‘𝑍))(𝐴𝑍))(⟨((1st𝐹)‘𝑋), ((1st𝐹)‘𝑍)⟩(comp‘𝐷)((1st𝐻)‘𝑍))(((𝑌(2nd𝐹)𝑍)‘𝐿)(⟨((1st𝐹)‘𝑋), ((1st𝐹)‘𝑌)⟩(comp‘𝐷)((1st𝐹)‘𝑍))((𝑋(2nd𝐹)𝑌)‘𝐾))))
7139, 40, 6, 3, 59, 48, 55, 62, 57catcocl 17646 . . . . . 6 (𝜑 → ((𝐵𝑍)(⟨((1st𝐺)‘𝑌), ((1st𝐺)‘𝑍)⟩(comp‘𝐷)((1st𝐻)‘𝑍))((𝑌(2nd𝐺)𝑍)‘𝐿)) ∈ (((1st𝐺)‘𝑌)(Hom ‘𝐷)((1st𝐻)‘𝑍)))
7239, 40, 6, 3, 66, 42, 59, 68, 60, 55, 71catass 17647 . . . . 5 (𝜑 → ((((𝐵𝑍)(⟨((1st𝐺)‘𝑌), ((1st𝐺)‘𝑍)⟩(comp‘𝐷)((1st𝐻)‘𝑍))((𝑌(2nd𝐺)𝑍)‘𝐿))(⟨((1st𝐹)‘𝑌), ((1st𝐺)‘𝑌)⟩(comp‘𝐷)((1st𝐻)‘𝑍))(𝐴𝑌))(⟨((1st𝐹)‘𝑋), ((1st𝐹)‘𝑌)⟩(comp‘𝐷)((1st𝐻)‘𝑍))((𝑋(2nd𝐹)𝑌)‘𝐾)) = (((𝐵𝑍)(⟨((1st𝐺)‘𝑌), ((1st𝐺)‘𝑍)⟩(comp‘𝐷)((1st𝐻)‘𝑍))((𝑌(2nd𝐺)𝑍)‘𝐿))(⟨((1st𝐹)‘𝑋), ((1st𝐺)‘𝑌)⟩(comp‘𝐷)((1st𝐻)‘𝑍))((𝐴𝑌)(⟨((1st𝐹)‘𝑋), ((1st𝐹)‘𝑌)⟩(comp‘𝐷)((1st𝐺)‘𝑌))((𝑋(2nd𝐹)𝑌)‘𝐾))))
7365, 70, 723eqtr3d 2772 . . . 4 (𝜑 → (((𝐵𝑍)(⟨((1st𝐹)‘𝑍), ((1st𝐺)‘𝑍)⟩(comp‘𝐷)((1st𝐻)‘𝑍))(𝐴𝑍))(⟨((1st𝐹)‘𝑋), ((1st𝐹)‘𝑍)⟩(comp‘𝐷)((1st𝐻)‘𝑍))(((𝑌(2nd𝐹)𝑍)‘𝐿)(⟨((1st𝐹)‘𝑋), ((1st𝐹)‘𝑌)⟩(comp‘𝐷)((1st𝐹)‘𝑍))((𝑋(2nd𝐹)𝑌)‘𝐾))) = (((𝐵𝑍)(⟨((1st𝐺)‘𝑌), ((1st𝐺)‘𝑍)⟩(comp‘𝐷)((1st𝐻)‘𝑍))((𝑌(2nd𝐺)𝑍)‘𝐿))(⟨((1st𝐹)‘𝑋), ((1st𝐺)‘𝑌)⟩(comp‘𝐷)((1st𝐻)‘𝑍))((𝐴𝑌)(⟨((1st𝐹)‘𝑋), ((1st𝐹)‘𝑌)⟩(comp‘𝐷)((1st𝐺)‘𝑌))((𝑋(2nd𝐹)𝑌)‘𝐾))))
7435, 73eqtrd 2764 . . 3 (𝜑 → (((𝐵𝑍)(⟨((1st𝐹)‘𝑍), ((1st𝐺)‘𝑍)⟩(comp‘𝐷)((1st𝐻)‘𝑍))(𝐴𝑍))(⟨((1st𝐹)‘𝑋), ((1st𝐹)‘𝑍)⟩(comp‘𝐷)((1st𝐻)‘𝑍))((𝑋(2nd𝐹)𝑍)‘(𝐿(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑍)𝐾))) = (((𝐵𝑍)(⟨((1st𝐺)‘𝑌), ((1st𝐺)‘𝑍)⟩(comp‘𝐷)((1st𝐻)‘𝑍))((𝑌(2nd𝐺)𝑍)‘𝐿))(⟨((1st𝐹)‘𝑋), ((1st𝐺)‘𝑌)⟩(comp‘𝐷)((1st𝐻)‘𝑍))((𝐴𝑌)(⟨((1st𝐹)‘𝑋), ((1st𝐹)‘𝑌)⟩(comp‘𝐷)((1st𝐺)‘𝑌))((𝑋(2nd𝐹)𝑌)‘𝐾))))
7528, 30, 743eqtrd 2768 . 2 (𝜑 → ((𝐵(⟨𝐹, 𝐺⟩(comp‘𝑄)𝐻)𝐴)(⟨𝐹, 𝑋⟩(2nd𝐸)⟨𝐻, 𝑍⟩)(𝐿(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑍)𝐾)) = (((𝐵𝑍)(⟨((1st𝐺)‘𝑌), ((1st𝐺)‘𝑍)⟩(comp‘𝐷)((1st𝐻)‘𝑍))((𝑌(2nd𝐺)𝑍)‘𝐿))(⟨((1st𝐹)‘𝑋), ((1st𝐺)‘𝑌)⟩(comp‘𝐷)((1st𝐻)‘𝑍))((𝐴𝑌)(⟨((1st𝐹)‘𝑋), ((1st𝐹)‘𝑌)⟩(comp‘𝐷)((1st𝐺)‘𝑌))((𝑋(2nd𝐹)𝑌)‘𝐾))))
76 eqid 2729 . . . . 5 (𝑄 ×c 𝐶) = (𝑄 ×c 𝐶)
7715fucbas 17925 . . . . 5 (𝐶 Func 𝐷) = (Base‘𝑄)
7815, 7fuchom 17926 . . . . 5 𝑁 = (Hom ‘𝑄)
79 eqid 2729 . . . . 5 (comp‘(𝑄 ×c 𝐶)) = (comp‘(𝑄 ×c 𝐶))
8076, 77, 4, 78, 5, 9, 12, 44, 24, 16, 22, 79, 11, 13, 18, 25, 20, 26xpcco2 18148 . . . 4 (𝜑 → (⟨𝐵, 𝐿⟩(⟨⟨𝐹, 𝑋⟩, ⟨𝐺, 𝑌⟩⟩(comp‘(𝑄 ×c 𝐶))⟨𝐻, 𝑍⟩)⟨𝐴, 𝐾⟩) = ⟨(𝐵(⟨𝐹, 𝐺⟩(comp‘𝑄)𝐻)𝐴), (𝐿(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑍)𝐾)⟩)
8180fveq2d 6862 . . 3 (𝜑 → ((⟨𝐹, 𝑋⟩(2nd𝐸)⟨𝐻, 𝑍⟩)‘(⟨𝐵, 𝐿⟩(⟨⟨𝐹, 𝑋⟩, ⟨𝐺, 𝑌⟩⟩(comp‘(𝑄 ×c 𝐶))⟨𝐻, 𝑍⟩)⟨𝐴, 𝐾⟩)) = ((⟨𝐹, 𝑋⟩(2nd𝐸)⟨𝐻, 𝑍⟩)‘⟨(𝐵(⟨𝐹, 𝐺⟩(comp‘𝑄)𝐻)𝐴), (𝐿(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑍)𝐾)⟩))
82 df-ov 7390 . . 3 ((𝐵(⟨𝐹, 𝐺⟩(comp‘𝑄)𝐻)𝐴)(⟨𝐹, 𝑋⟩(2nd𝐸)⟨𝐻, 𝑍⟩)(𝐿(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑍)𝐾)) = ((⟨𝐹, 𝑋⟩(2nd𝐸)⟨𝐻, 𝑍⟩)‘⟨(𝐵(⟨𝐹, 𝐺⟩(comp‘𝑄)𝐻)𝐴), (𝐿(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑍)𝐾)⟩)
8381, 82eqtr4di 2782 . 2 (𝜑 → ((⟨𝐹, 𝑋⟩(2nd𝐸)⟨𝐻, 𝑍⟩)‘(⟨𝐵, 𝐿⟩(⟨⟨𝐹, 𝑋⟩, ⟨𝐺, 𝑌⟩⟩(comp‘(𝑄 ×c 𝐶))⟨𝐻, 𝑍⟩)⟨𝐴, 𝐾⟩)) = ((𝐵(⟨𝐹, 𝐺⟩(comp‘𝑄)𝐻)𝐴)(⟨𝐹, 𝑋⟩(2nd𝐸)⟨𝐻, 𝑍⟩)(𝐿(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑍)𝐾)))
84 df-ov 7390 . . . . . 6 (𝐹(1st𝐸)𝑋) = ((1st𝐸)‘⟨𝐹, 𝑋⟩)
851, 2, 3, 4, 9, 12evlf1 18181 . . . . . 6 (𝜑 → (𝐹(1st𝐸)𝑋) = ((1st𝐹)‘𝑋))
8684, 85eqtr3id 2778 . . . . 5 (𝜑 → ((1st𝐸)‘⟨𝐹, 𝑋⟩) = ((1st𝐹)‘𝑋))
87 df-ov 7390 . . . . . 6 (𝐺(1st𝐸)𝑌) = ((1st𝐸)‘⟨𝐺, 𝑌⟩)
881, 2, 3, 4, 44, 24evlf1 18181 . . . . . 6 (𝜑 → (𝐺(1st𝐸)𝑌) = ((1st𝐺)‘𝑌))
8987, 88eqtr3id 2778 . . . . 5 (𝜑 → ((1st𝐸)‘⟨𝐺, 𝑌⟩) = ((1st𝐺)‘𝑌))
9086, 89opeq12d 4845 . . . 4 (𝜑 → ⟨((1st𝐸)‘⟨𝐹, 𝑋⟩), ((1st𝐸)‘⟨𝐺, 𝑌⟩)⟩ = ⟨((1st𝐹)‘𝑋), ((1st𝐺)‘𝑌)⟩)
91 df-ov 7390 . . . . 5 (𝐻(1st𝐸)𝑍) = ((1st𝐸)‘⟨𝐻, 𝑍⟩)
921, 2, 3, 4, 11, 13evlf1 18181 . . . . 5 (𝜑 → (𝐻(1st𝐸)𝑍) = ((1st𝐻)‘𝑍))
9391, 92eqtr3id 2778 . . . 4 (𝜑 → ((1st𝐸)‘⟨𝐻, 𝑍⟩) = ((1st𝐻)‘𝑍))
9490, 93oveq12d 7405 . . 3 (𝜑 → (⟨((1st𝐸)‘⟨𝐹, 𝑋⟩), ((1st𝐸)‘⟨𝐺, 𝑌⟩)⟩(comp‘𝐷)((1st𝐸)‘⟨𝐻, 𝑍⟩)) = (⟨((1st𝐹)‘𝑋), ((1st𝐺)‘𝑌)⟩(comp‘𝐷)((1st𝐻)‘𝑍)))
95 df-ov 7390 . . . 4 (𝐵(⟨𝐺, 𝑌⟩(2nd𝐸)⟨𝐻, 𝑍⟩)𝐿) = ((⟨𝐺, 𝑌⟩(2nd𝐸)⟨𝐻, 𝑍⟩)‘⟨𝐵, 𝐿⟩)
96 eqid 2729 . . . . 5 (⟨𝐺, 𝑌⟩(2nd𝐸)⟨𝐻, 𝑍⟩) = (⟨𝐺, 𝑌⟩(2nd𝐸)⟨𝐻, 𝑍⟩)
971, 2, 3, 4, 5, 6, 7, 44, 11, 24, 13, 96, 20, 26evlf2val 18180 . . . 4 (𝜑 → (𝐵(⟨𝐺, 𝑌⟩(2nd𝐸)⟨𝐻, 𝑍⟩)𝐿) = ((𝐵𝑍)(⟨((1st𝐺)‘𝑌), ((1st𝐺)‘𝑍)⟩(comp‘𝐷)((1st𝐻)‘𝑍))((𝑌(2nd𝐺)𝑍)‘𝐿)))
9895, 97eqtr3id 2778 . . 3 (𝜑 → ((⟨𝐺, 𝑌⟩(2nd𝐸)⟨𝐻, 𝑍⟩)‘⟨𝐵, 𝐿⟩) = ((𝐵𝑍)(⟨((1st𝐺)‘𝑌), ((1st𝐺)‘𝑍)⟩(comp‘𝐷)((1st𝐻)‘𝑍))((𝑌(2nd𝐺)𝑍)‘𝐿)))
99 df-ov 7390 . . . 4 (𝐴(⟨𝐹, 𝑋⟩(2nd𝐸)⟨𝐺, 𝑌⟩)𝐾) = ((⟨𝐹, 𝑋⟩(2nd𝐸)⟨𝐺, 𝑌⟩)‘⟨𝐴, 𝐾⟩)
100 eqid 2729 . . . . 5 (⟨𝐹, 𝑋⟩(2nd𝐸)⟨𝐺, 𝑌⟩) = (⟨𝐹, 𝑋⟩(2nd𝐸)⟨𝐺, 𝑌⟩)
1011, 2, 3, 4, 5, 6, 7, 9, 44, 12, 24, 100, 18, 25evlf2val 18180 . . . 4 (𝜑 → (𝐴(⟨𝐹, 𝑋⟩(2nd𝐸)⟨𝐺, 𝑌⟩)𝐾) = ((𝐴𝑌)(⟨((1st𝐹)‘𝑋), ((1st𝐹)‘𝑌)⟩(comp‘𝐷)((1st𝐺)‘𝑌))((𝑋(2nd𝐹)𝑌)‘𝐾)))
10299, 101eqtr3id 2778 . . 3 (𝜑 → ((⟨𝐹, 𝑋⟩(2nd𝐸)⟨𝐺, 𝑌⟩)‘⟨𝐴, 𝐾⟩) = ((𝐴𝑌)(⟨((1st𝐹)‘𝑋), ((1st𝐹)‘𝑌)⟩(comp‘𝐷)((1st𝐺)‘𝑌))((𝑋(2nd𝐹)𝑌)‘𝐾)))
10394, 98, 102oveq123d 7408 . 2 (𝜑 → (((⟨𝐺, 𝑌⟩(2nd𝐸)⟨𝐻, 𝑍⟩)‘⟨𝐵, 𝐿⟩)(⟨((1st𝐸)‘⟨𝐹, 𝑋⟩), ((1st𝐸)‘⟨𝐺, 𝑌⟩)⟩(comp‘𝐷)((1st𝐸)‘⟨𝐻, 𝑍⟩))((⟨𝐹, 𝑋⟩(2nd𝐸)⟨𝐺, 𝑌⟩)‘⟨𝐴, 𝐾⟩)) = (((𝐵𝑍)(⟨((1st𝐺)‘𝑌), ((1st𝐺)‘𝑍)⟩(comp‘𝐷)((1st𝐻)‘𝑍))((𝑌(2nd𝐺)𝑍)‘𝐿))(⟨((1st𝐹)‘𝑋), ((1st𝐺)‘𝑌)⟩(comp‘𝐷)((1st𝐻)‘𝑍))((𝐴𝑌)(⟨((1st𝐹)‘𝑋), ((1st𝐹)‘𝑌)⟩(comp‘𝐷)((1st𝐺)‘𝑌))((𝑋(2nd𝐹)𝑌)‘𝐾))))
10475, 83, 1033eqtr4d 2774 1 (𝜑 → ((⟨𝐹, 𝑋⟩(2nd𝐸)⟨𝐻, 𝑍⟩)‘(⟨𝐵, 𝐿⟩(⟨⟨𝐹, 𝑋⟩, ⟨𝐺, 𝑌⟩⟩(comp‘(𝑄 ×c 𝐶))⟨𝐻, 𝑍⟩)⟨𝐴, 𝐾⟩)) = (((⟨𝐺, 𝑌⟩(2nd𝐸)⟨𝐻, 𝑍⟩)‘⟨𝐵, 𝐿⟩)(⟨((1st𝐸)‘⟨𝐹, 𝑋⟩), ((1st𝐸)‘⟨𝐺, 𝑌⟩)⟩(comp‘𝐷)((1st𝐸)‘⟨𝐻, 𝑍⟩))((⟨𝐹, 𝑋⟩(2nd𝐸)⟨𝐺, 𝑌⟩)‘⟨𝐴, 𝐾⟩)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cop 4595   class class class wbr 5107  Rel wrel 5643  cfv 6511  (class class class)co 7387  1st c1st 7966  2nd c2nd 7967  Basecbs 17179  Hom chom 17231  compcco 17232  Catccat 17625   Func cfunc 17816   Nat cnat 17906   FuncCat cfuc 17907   ×c cxpc 18129   evalF cevlf 18170
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-fz 13469  df-struct 17117  df-slot 17152  df-ndx 17164  df-base 17180  df-hom 17244  df-cco 17245  df-cat 17629  df-func 17820  df-nat 17908  df-fuc 17909  df-xpc 18133  df-evlf 18174
This theorem is referenced by:  evlfcl  18183
  Copyright terms: Public domain W3C validator