MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evlfcllem Structured version   Visualization version   GIF version

Theorem evlfcllem 18189
Description: Lemma for evlfcl 18190. (Contributed by Mario Carneiro, 12-Jan-2017.)
Hypotheses
Ref Expression
evlfcl.e 𝐸 = (𝐶 evalF 𝐷)
evlfcl.q 𝑄 = (𝐶 FuncCat 𝐷)
evlfcl.c (𝜑𝐶 ∈ Cat)
evlfcl.d (𝜑𝐷 ∈ Cat)
evlfcl.n 𝑁 = (𝐶 Nat 𝐷)
evlfcl.f (𝜑 → (𝐹 ∈ (𝐶 Func 𝐷) ∧ 𝑋 ∈ (Base‘𝐶)))
evlfcl.g (𝜑 → (𝐺 ∈ (𝐶 Func 𝐷) ∧ 𝑌 ∈ (Base‘𝐶)))
evlfcl.h (𝜑 → (𝐻 ∈ (𝐶 Func 𝐷) ∧ 𝑍 ∈ (Base‘𝐶)))
evlfcl.a (𝜑 → (𝐴 ∈ (𝐹𝑁𝐺) ∧ 𝐾 ∈ (𝑋(Hom ‘𝐶)𝑌)))
evlfcl.b (𝜑 → (𝐵 ∈ (𝐺𝑁𝐻) ∧ 𝐿 ∈ (𝑌(Hom ‘𝐶)𝑍)))
Assertion
Ref Expression
evlfcllem (𝜑 → ((⟨𝐹, 𝑋⟩(2nd𝐸)⟨𝐻, 𝑍⟩)‘(⟨𝐵, 𝐿⟩(⟨⟨𝐹, 𝑋⟩, ⟨𝐺, 𝑌⟩⟩(comp‘(𝑄 ×c 𝐶))⟨𝐻, 𝑍⟩)⟨𝐴, 𝐾⟩)) = (((⟨𝐺, 𝑌⟩(2nd𝐸)⟨𝐻, 𝑍⟩)‘⟨𝐵, 𝐿⟩)(⟨((1st𝐸)‘⟨𝐹, 𝑋⟩), ((1st𝐸)‘⟨𝐺, 𝑌⟩)⟩(comp‘𝐷)((1st𝐸)‘⟨𝐻, 𝑍⟩))((⟨𝐹, 𝑋⟩(2nd𝐸)⟨𝐺, 𝑌⟩)‘⟨𝐴, 𝐾⟩)))

Proof of Theorem evlfcllem
StepHypRef Expression
1 evlfcl.e . . . 4 𝐸 = (𝐶 evalF 𝐷)
2 evlfcl.c . . . 4 (𝜑𝐶 ∈ Cat)
3 evlfcl.d . . . 4 (𝜑𝐷 ∈ Cat)
4 eqid 2730 . . . 4 (Base‘𝐶) = (Base‘𝐶)
5 eqid 2730 . . . 4 (Hom ‘𝐶) = (Hom ‘𝐶)
6 eqid 2730 . . . 4 (comp‘𝐷) = (comp‘𝐷)
7 evlfcl.n . . . 4 𝑁 = (𝐶 Nat 𝐷)
8 evlfcl.f . . . . 5 (𝜑 → (𝐹 ∈ (𝐶 Func 𝐷) ∧ 𝑋 ∈ (Base‘𝐶)))
98simpld 494 . . . 4 (𝜑𝐹 ∈ (𝐶 Func 𝐷))
10 evlfcl.h . . . . 5 (𝜑 → (𝐻 ∈ (𝐶 Func 𝐷) ∧ 𝑍 ∈ (Base‘𝐶)))
1110simpld 494 . . . 4 (𝜑𝐻 ∈ (𝐶 Func 𝐷))
128simprd 495 . . . 4 (𝜑𝑋 ∈ (Base‘𝐶))
1310simprd 495 . . . 4 (𝜑𝑍 ∈ (Base‘𝐶))
14 eqid 2730 . . . 4 (⟨𝐹, 𝑋⟩(2nd𝐸)⟨𝐻, 𝑍⟩) = (⟨𝐹, 𝑋⟩(2nd𝐸)⟨𝐻, 𝑍⟩)
15 evlfcl.q . . . . 5 𝑄 = (𝐶 FuncCat 𝐷)
16 eqid 2730 . . . . 5 (comp‘𝑄) = (comp‘𝑄)
17 evlfcl.a . . . . . 6 (𝜑 → (𝐴 ∈ (𝐹𝑁𝐺) ∧ 𝐾 ∈ (𝑋(Hom ‘𝐶)𝑌)))
1817simpld 494 . . . . 5 (𝜑𝐴 ∈ (𝐹𝑁𝐺))
19 evlfcl.b . . . . . 6 (𝜑 → (𝐵 ∈ (𝐺𝑁𝐻) ∧ 𝐿 ∈ (𝑌(Hom ‘𝐶)𝑍)))
2019simpld 494 . . . . 5 (𝜑𝐵 ∈ (𝐺𝑁𝐻))
2115, 7, 16, 18, 20fuccocl 17936 . . . 4 (𝜑 → (𝐵(⟨𝐹, 𝐺⟩(comp‘𝑄)𝐻)𝐴) ∈ (𝐹𝑁𝐻))
22 eqid 2730 . . . . 5 (comp‘𝐶) = (comp‘𝐶)
23 evlfcl.g . . . . . 6 (𝜑 → (𝐺 ∈ (𝐶 Func 𝐷) ∧ 𝑌 ∈ (Base‘𝐶)))
2423simprd 495 . . . . 5 (𝜑𝑌 ∈ (Base‘𝐶))
2517simprd 495 . . . . 5 (𝜑𝐾 ∈ (𝑋(Hom ‘𝐶)𝑌))
2619simprd 495 . . . . 5 (𝜑𝐿 ∈ (𝑌(Hom ‘𝐶)𝑍))
274, 5, 22, 2, 12, 24, 13, 25, 26catcocl 17653 . . . 4 (𝜑 → (𝐿(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑍)𝐾) ∈ (𝑋(Hom ‘𝐶)𝑍))
281, 2, 3, 4, 5, 6, 7, 9, 11, 12, 13, 14, 21, 27evlf2val 18187 . . 3 (𝜑 → ((𝐵(⟨𝐹, 𝐺⟩(comp‘𝑄)𝐻)𝐴)(⟨𝐹, 𝑋⟩(2nd𝐸)⟨𝐻, 𝑍⟩)(𝐿(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑍)𝐾)) = (((𝐵(⟨𝐹, 𝐺⟩(comp‘𝑄)𝐻)𝐴)‘𝑍)(⟨((1st𝐹)‘𝑋), ((1st𝐹)‘𝑍)⟩(comp‘𝐷)((1st𝐻)‘𝑍))((𝑋(2nd𝐹)𝑍)‘(𝐿(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑍)𝐾))))
2915, 7, 4, 6, 16, 18, 20, 13fuccoval 17935 . . . 4 (𝜑 → ((𝐵(⟨𝐹, 𝐺⟩(comp‘𝑄)𝐻)𝐴)‘𝑍) = ((𝐵𝑍)(⟨((1st𝐹)‘𝑍), ((1st𝐺)‘𝑍)⟩(comp‘𝐷)((1st𝐻)‘𝑍))(𝐴𝑍)))
3029oveq1d 7405 . . 3 (𝜑 → (((𝐵(⟨𝐹, 𝐺⟩(comp‘𝑄)𝐻)𝐴)‘𝑍)(⟨((1st𝐹)‘𝑋), ((1st𝐹)‘𝑍)⟩(comp‘𝐷)((1st𝐻)‘𝑍))((𝑋(2nd𝐹)𝑍)‘(𝐿(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑍)𝐾))) = (((𝐵𝑍)(⟨((1st𝐹)‘𝑍), ((1st𝐺)‘𝑍)⟩(comp‘𝐷)((1st𝐻)‘𝑍))(𝐴𝑍))(⟨((1st𝐹)‘𝑋), ((1st𝐹)‘𝑍)⟩(comp‘𝐷)((1st𝐻)‘𝑍))((𝑋(2nd𝐹)𝑍)‘(𝐿(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑍)𝐾))))
31 relfunc 17831 . . . . . . 7 Rel (𝐶 Func 𝐷)
32 1st2ndbr 8024 . . . . . . 7 ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
3331, 9, 32sylancr 587 . . . . . 6 (𝜑 → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
344, 5, 22, 6, 33, 12, 24, 13, 25, 26funcco 17840 . . . . 5 (𝜑 → ((𝑋(2nd𝐹)𝑍)‘(𝐿(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑍)𝐾)) = (((𝑌(2nd𝐹)𝑍)‘𝐿)(⟨((1st𝐹)‘𝑋), ((1st𝐹)‘𝑌)⟩(comp‘𝐷)((1st𝐹)‘𝑍))((𝑋(2nd𝐹)𝑌)‘𝐾)))
3534oveq2d 7406 . . . 4 (𝜑 → (((𝐵𝑍)(⟨((1st𝐹)‘𝑍), ((1st𝐺)‘𝑍)⟩(comp‘𝐷)((1st𝐻)‘𝑍))(𝐴𝑍))(⟨((1st𝐹)‘𝑋), ((1st𝐹)‘𝑍)⟩(comp‘𝐷)((1st𝐻)‘𝑍))((𝑋(2nd𝐹)𝑍)‘(𝐿(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑍)𝐾))) = (((𝐵𝑍)(⟨((1st𝐹)‘𝑍), ((1st𝐺)‘𝑍)⟩(comp‘𝐷)((1st𝐻)‘𝑍))(𝐴𝑍))(⟨((1st𝐹)‘𝑋), ((1st𝐹)‘𝑍)⟩(comp‘𝐷)((1st𝐻)‘𝑍))(((𝑌(2nd𝐹)𝑍)‘𝐿)(⟨((1st𝐹)‘𝑋), ((1st𝐹)‘𝑌)⟩(comp‘𝐷)((1st𝐹)‘𝑍))((𝑋(2nd𝐹)𝑌)‘𝐾))))
367, 18nat1st2nd 17923 . . . . . . . . 9 (𝜑𝐴 ∈ (⟨(1st𝐹), (2nd𝐹)⟩𝑁⟨(1st𝐺), (2nd𝐺)⟩))
377, 36, 4, 5, 6, 24, 13, 26nati 17927 . . . . . . . 8 (𝜑 → ((𝐴𝑍)(⟨((1st𝐹)‘𝑌), ((1st𝐹)‘𝑍)⟩(comp‘𝐷)((1st𝐺)‘𝑍))((𝑌(2nd𝐹)𝑍)‘𝐿)) = (((𝑌(2nd𝐺)𝑍)‘𝐿)(⟨((1st𝐹)‘𝑌), ((1st𝐺)‘𝑌)⟩(comp‘𝐷)((1st𝐺)‘𝑍))(𝐴𝑌)))
3837oveq2d 7406 . . . . . . 7 (𝜑 → ((𝐵𝑍)(⟨((1st𝐹)‘𝑌), ((1st𝐺)‘𝑍)⟩(comp‘𝐷)((1st𝐻)‘𝑍))((𝐴𝑍)(⟨((1st𝐹)‘𝑌), ((1st𝐹)‘𝑍)⟩(comp‘𝐷)((1st𝐺)‘𝑍))((𝑌(2nd𝐹)𝑍)‘𝐿))) = ((𝐵𝑍)(⟨((1st𝐹)‘𝑌), ((1st𝐺)‘𝑍)⟩(comp‘𝐷)((1st𝐻)‘𝑍))(((𝑌(2nd𝐺)𝑍)‘𝐿)(⟨((1st𝐹)‘𝑌), ((1st𝐺)‘𝑌)⟩(comp‘𝐷)((1st𝐺)‘𝑍))(𝐴𝑌))))
39 eqid 2730 . . . . . . . 8 (Base‘𝐷) = (Base‘𝐷)
40 eqid 2730 . . . . . . . 8 (Hom ‘𝐷) = (Hom ‘𝐷)
414, 39, 33funcf1 17835 . . . . . . . . 9 (𝜑 → (1st𝐹):(Base‘𝐶)⟶(Base‘𝐷))
4241, 24ffvelcdmd 7060 . . . . . . . 8 (𝜑 → ((1st𝐹)‘𝑌) ∈ (Base‘𝐷))
4341, 13ffvelcdmd 7060 . . . . . . . 8 (𝜑 → ((1st𝐹)‘𝑍) ∈ (Base‘𝐷))
4423simpld 494 . . . . . . . . . . 11 (𝜑𝐺 ∈ (𝐶 Func 𝐷))
45 1st2ndbr 8024 . . . . . . . . . . 11 ((Rel (𝐶 Func 𝐷) ∧ 𝐺 ∈ (𝐶 Func 𝐷)) → (1st𝐺)(𝐶 Func 𝐷)(2nd𝐺))
4631, 44, 45sylancr 587 . . . . . . . . . 10 (𝜑 → (1st𝐺)(𝐶 Func 𝐷)(2nd𝐺))
474, 39, 46funcf1 17835 . . . . . . . . 9 (𝜑 → (1st𝐺):(Base‘𝐶)⟶(Base‘𝐷))
4847, 13ffvelcdmd 7060 . . . . . . . 8 (𝜑 → ((1st𝐺)‘𝑍) ∈ (Base‘𝐷))
494, 5, 40, 33, 24, 13funcf2 17837 . . . . . . . . 9 (𝜑 → (𝑌(2nd𝐹)𝑍):(𝑌(Hom ‘𝐶)𝑍)⟶(((1st𝐹)‘𝑌)(Hom ‘𝐷)((1st𝐹)‘𝑍)))
5049, 26ffvelcdmd 7060 . . . . . . . 8 (𝜑 → ((𝑌(2nd𝐹)𝑍)‘𝐿) ∈ (((1st𝐹)‘𝑌)(Hom ‘𝐷)((1st𝐹)‘𝑍)))
517, 36, 4, 40, 13natcl 17925 . . . . . . . 8 (𝜑 → (𝐴𝑍) ∈ (((1st𝐹)‘𝑍)(Hom ‘𝐷)((1st𝐺)‘𝑍)))
52 1st2ndbr 8024 . . . . . . . . . . 11 ((Rel (𝐶 Func 𝐷) ∧ 𝐻 ∈ (𝐶 Func 𝐷)) → (1st𝐻)(𝐶 Func 𝐷)(2nd𝐻))
5331, 11, 52sylancr 587 . . . . . . . . . 10 (𝜑 → (1st𝐻)(𝐶 Func 𝐷)(2nd𝐻))
544, 39, 53funcf1 17835 . . . . . . . . 9 (𝜑 → (1st𝐻):(Base‘𝐶)⟶(Base‘𝐷))
5554, 13ffvelcdmd 7060 . . . . . . . 8 (𝜑 → ((1st𝐻)‘𝑍) ∈ (Base‘𝐷))
567, 20nat1st2nd 17923 . . . . . . . . 9 (𝜑𝐵 ∈ (⟨(1st𝐺), (2nd𝐺)⟩𝑁⟨(1st𝐻), (2nd𝐻)⟩))
577, 56, 4, 40, 13natcl 17925 . . . . . . . 8 (𝜑 → (𝐵𝑍) ∈ (((1st𝐺)‘𝑍)(Hom ‘𝐷)((1st𝐻)‘𝑍)))
5839, 40, 6, 3, 42, 43, 48, 50, 51, 55, 57catass 17654 . . . . . . 7 (𝜑 → (((𝐵𝑍)(⟨((1st𝐹)‘𝑍), ((1st𝐺)‘𝑍)⟩(comp‘𝐷)((1st𝐻)‘𝑍))(𝐴𝑍))(⟨((1st𝐹)‘𝑌), ((1st𝐹)‘𝑍)⟩(comp‘𝐷)((1st𝐻)‘𝑍))((𝑌(2nd𝐹)𝑍)‘𝐿)) = ((𝐵𝑍)(⟨((1st𝐹)‘𝑌), ((1st𝐺)‘𝑍)⟩(comp‘𝐷)((1st𝐻)‘𝑍))((𝐴𝑍)(⟨((1st𝐹)‘𝑌), ((1st𝐹)‘𝑍)⟩(comp‘𝐷)((1st𝐺)‘𝑍))((𝑌(2nd𝐹)𝑍)‘𝐿))))
5947, 24ffvelcdmd 7060 . . . . . . . 8 (𝜑 → ((1st𝐺)‘𝑌) ∈ (Base‘𝐷))
607, 36, 4, 40, 24natcl 17925 . . . . . . . 8 (𝜑 → (𝐴𝑌) ∈ (((1st𝐹)‘𝑌)(Hom ‘𝐷)((1st𝐺)‘𝑌)))
614, 5, 40, 46, 24, 13funcf2 17837 . . . . . . . . 9 (𝜑 → (𝑌(2nd𝐺)𝑍):(𝑌(Hom ‘𝐶)𝑍)⟶(((1st𝐺)‘𝑌)(Hom ‘𝐷)((1st𝐺)‘𝑍)))
6261, 26ffvelcdmd 7060 . . . . . . . 8 (𝜑 → ((𝑌(2nd𝐺)𝑍)‘𝐿) ∈ (((1st𝐺)‘𝑌)(Hom ‘𝐷)((1st𝐺)‘𝑍)))
6339, 40, 6, 3, 42, 59, 48, 60, 62, 55, 57catass 17654 . . . . . . 7 (𝜑 → (((𝐵𝑍)(⟨((1st𝐺)‘𝑌), ((1st𝐺)‘𝑍)⟩(comp‘𝐷)((1st𝐻)‘𝑍))((𝑌(2nd𝐺)𝑍)‘𝐿))(⟨((1st𝐹)‘𝑌), ((1st𝐺)‘𝑌)⟩(comp‘𝐷)((1st𝐻)‘𝑍))(𝐴𝑌)) = ((𝐵𝑍)(⟨((1st𝐹)‘𝑌), ((1st𝐺)‘𝑍)⟩(comp‘𝐷)((1st𝐻)‘𝑍))(((𝑌(2nd𝐺)𝑍)‘𝐿)(⟨((1st𝐹)‘𝑌), ((1st𝐺)‘𝑌)⟩(comp‘𝐷)((1st𝐺)‘𝑍))(𝐴𝑌))))
6438, 58, 633eqtr4d 2775 . . . . . 6 (𝜑 → (((𝐵𝑍)(⟨((1st𝐹)‘𝑍), ((1st𝐺)‘𝑍)⟩(comp‘𝐷)((1st𝐻)‘𝑍))(𝐴𝑍))(⟨((1st𝐹)‘𝑌), ((1st𝐹)‘𝑍)⟩(comp‘𝐷)((1st𝐻)‘𝑍))((𝑌(2nd𝐹)𝑍)‘𝐿)) = (((𝐵𝑍)(⟨((1st𝐺)‘𝑌), ((1st𝐺)‘𝑍)⟩(comp‘𝐷)((1st𝐻)‘𝑍))((𝑌(2nd𝐺)𝑍)‘𝐿))(⟨((1st𝐹)‘𝑌), ((1st𝐺)‘𝑌)⟩(comp‘𝐷)((1st𝐻)‘𝑍))(𝐴𝑌)))
6564oveq1d 7405 . . . . 5 (𝜑 → ((((𝐵𝑍)(⟨((1st𝐹)‘𝑍), ((1st𝐺)‘𝑍)⟩(comp‘𝐷)((1st𝐻)‘𝑍))(𝐴𝑍))(⟨((1st𝐹)‘𝑌), ((1st𝐹)‘𝑍)⟩(comp‘𝐷)((1st𝐻)‘𝑍))((𝑌(2nd𝐹)𝑍)‘𝐿))(⟨((1st𝐹)‘𝑋), ((1st𝐹)‘𝑌)⟩(comp‘𝐷)((1st𝐻)‘𝑍))((𝑋(2nd𝐹)𝑌)‘𝐾)) = ((((𝐵𝑍)(⟨((1st𝐺)‘𝑌), ((1st𝐺)‘𝑍)⟩(comp‘𝐷)((1st𝐻)‘𝑍))((𝑌(2nd𝐺)𝑍)‘𝐿))(⟨((1st𝐹)‘𝑌), ((1st𝐺)‘𝑌)⟩(comp‘𝐷)((1st𝐻)‘𝑍))(𝐴𝑌))(⟨((1st𝐹)‘𝑋), ((1st𝐹)‘𝑌)⟩(comp‘𝐷)((1st𝐻)‘𝑍))((𝑋(2nd𝐹)𝑌)‘𝐾)))
6641, 12ffvelcdmd 7060 . . . . . 6 (𝜑 → ((1st𝐹)‘𝑋) ∈ (Base‘𝐷))
674, 5, 40, 33, 12, 24funcf2 17837 . . . . . . 7 (𝜑 → (𝑋(2nd𝐹)𝑌):(𝑋(Hom ‘𝐶)𝑌)⟶(((1st𝐹)‘𝑋)(Hom ‘𝐷)((1st𝐹)‘𝑌)))
6867, 25ffvelcdmd 7060 . . . . . 6 (𝜑 → ((𝑋(2nd𝐹)𝑌)‘𝐾) ∈ (((1st𝐹)‘𝑋)(Hom ‘𝐷)((1st𝐹)‘𝑌)))
6939, 40, 6, 3, 43, 48, 55, 51, 57catcocl 17653 . . . . . 6 (𝜑 → ((𝐵𝑍)(⟨((1st𝐹)‘𝑍), ((1st𝐺)‘𝑍)⟩(comp‘𝐷)((1st𝐻)‘𝑍))(𝐴𝑍)) ∈ (((1st𝐹)‘𝑍)(Hom ‘𝐷)((1st𝐻)‘𝑍)))
7039, 40, 6, 3, 66, 42, 43, 68, 50, 55, 69catass 17654 . . . . 5 (𝜑 → ((((𝐵𝑍)(⟨((1st𝐹)‘𝑍), ((1st𝐺)‘𝑍)⟩(comp‘𝐷)((1st𝐻)‘𝑍))(𝐴𝑍))(⟨((1st𝐹)‘𝑌), ((1st𝐹)‘𝑍)⟩(comp‘𝐷)((1st𝐻)‘𝑍))((𝑌(2nd𝐹)𝑍)‘𝐿))(⟨((1st𝐹)‘𝑋), ((1st𝐹)‘𝑌)⟩(comp‘𝐷)((1st𝐻)‘𝑍))((𝑋(2nd𝐹)𝑌)‘𝐾)) = (((𝐵𝑍)(⟨((1st𝐹)‘𝑍), ((1st𝐺)‘𝑍)⟩(comp‘𝐷)((1st𝐻)‘𝑍))(𝐴𝑍))(⟨((1st𝐹)‘𝑋), ((1st𝐹)‘𝑍)⟩(comp‘𝐷)((1st𝐻)‘𝑍))(((𝑌(2nd𝐹)𝑍)‘𝐿)(⟨((1st𝐹)‘𝑋), ((1st𝐹)‘𝑌)⟩(comp‘𝐷)((1st𝐹)‘𝑍))((𝑋(2nd𝐹)𝑌)‘𝐾))))
7139, 40, 6, 3, 59, 48, 55, 62, 57catcocl 17653 . . . . . 6 (𝜑 → ((𝐵𝑍)(⟨((1st𝐺)‘𝑌), ((1st𝐺)‘𝑍)⟩(comp‘𝐷)((1st𝐻)‘𝑍))((𝑌(2nd𝐺)𝑍)‘𝐿)) ∈ (((1st𝐺)‘𝑌)(Hom ‘𝐷)((1st𝐻)‘𝑍)))
7239, 40, 6, 3, 66, 42, 59, 68, 60, 55, 71catass 17654 . . . . 5 (𝜑 → ((((𝐵𝑍)(⟨((1st𝐺)‘𝑌), ((1st𝐺)‘𝑍)⟩(comp‘𝐷)((1st𝐻)‘𝑍))((𝑌(2nd𝐺)𝑍)‘𝐿))(⟨((1st𝐹)‘𝑌), ((1st𝐺)‘𝑌)⟩(comp‘𝐷)((1st𝐻)‘𝑍))(𝐴𝑌))(⟨((1st𝐹)‘𝑋), ((1st𝐹)‘𝑌)⟩(comp‘𝐷)((1st𝐻)‘𝑍))((𝑋(2nd𝐹)𝑌)‘𝐾)) = (((𝐵𝑍)(⟨((1st𝐺)‘𝑌), ((1st𝐺)‘𝑍)⟩(comp‘𝐷)((1st𝐻)‘𝑍))((𝑌(2nd𝐺)𝑍)‘𝐿))(⟨((1st𝐹)‘𝑋), ((1st𝐺)‘𝑌)⟩(comp‘𝐷)((1st𝐻)‘𝑍))((𝐴𝑌)(⟨((1st𝐹)‘𝑋), ((1st𝐹)‘𝑌)⟩(comp‘𝐷)((1st𝐺)‘𝑌))((𝑋(2nd𝐹)𝑌)‘𝐾))))
7365, 70, 723eqtr3d 2773 . . . 4 (𝜑 → (((𝐵𝑍)(⟨((1st𝐹)‘𝑍), ((1st𝐺)‘𝑍)⟩(comp‘𝐷)((1st𝐻)‘𝑍))(𝐴𝑍))(⟨((1st𝐹)‘𝑋), ((1st𝐹)‘𝑍)⟩(comp‘𝐷)((1st𝐻)‘𝑍))(((𝑌(2nd𝐹)𝑍)‘𝐿)(⟨((1st𝐹)‘𝑋), ((1st𝐹)‘𝑌)⟩(comp‘𝐷)((1st𝐹)‘𝑍))((𝑋(2nd𝐹)𝑌)‘𝐾))) = (((𝐵𝑍)(⟨((1st𝐺)‘𝑌), ((1st𝐺)‘𝑍)⟩(comp‘𝐷)((1st𝐻)‘𝑍))((𝑌(2nd𝐺)𝑍)‘𝐿))(⟨((1st𝐹)‘𝑋), ((1st𝐺)‘𝑌)⟩(comp‘𝐷)((1st𝐻)‘𝑍))((𝐴𝑌)(⟨((1st𝐹)‘𝑋), ((1st𝐹)‘𝑌)⟩(comp‘𝐷)((1st𝐺)‘𝑌))((𝑋(2nd𝐹)𝑌)‘𝐾))))
7435, 73eqtrd 2765 . . 3 (𝜑 → (((𝐵𝑍)(⟨((1st𝐹)‘𝑍), ((1st𝐺)‘𝑍)⟩(comp‘𝐷)((1st𝐻)‘𝑍))(𝐴𝑍))(⟨((1st𝐹)‘𝑋), ((1st𝐹)‘𝑍)⟩(comp‘𝐷)((1st𝐻)‘𝑍))((𝑋(2nd𝐹)𝑍)‘(𝐿(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑍)𝐾))) = (((𝐵𝑍)(⟨((1st𝐺)‘𝑌), ((1st𝐺)‘𝑍)⟩(comp‘𝐷)((1st𝐻)‘𝑍))((𝑌(2nd𝐺)𝑍)‘𝐿))(⟨((1st𝐹)‘𝑋), ((1st𝐺)‘𝑌)⟩(comp‘𝐷)((1st𝐻)‘𝑍))((𝐴𝑌)(⟨((1st𝐹)‘𝑋), ((1st𝐹)‘𝑌)⟩(comp‘𝐷)((1st𝐺)‘𝑌))((𝑋(2nd𝐹)𝑌)‘𝐾))))
7528, 30, 743eqtrd 2769 . 2 (𝜑 → ((𝐵(⟨𝐹, 𝐺⟩(comp‘𝑄)𝐻)𝐴)(⟨𝐹, 𝑋⟩(2nd𝐸)⟨𝐻, 𝑍⟩)(𝐿(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑍)𝐾)) = (((𝐵𝑍)(⟨((1st𝐺)‘𝑌), ((1st𝐺)‘𝑍)⟩(comp‘𝐷)((1st𝐻)‘𝑍))((𝑌(2nd𝐺)𝑍)‘𝐿))(⟨((1st𝐹)‘𝑋), ((1st𝐺)‘𝑌)⟩(comp‘𝐷)((1st𝐻)‘𝑍))((𝐴𝑌)(⟨((1st𝐹)‘𝑋), ((1st𝐹)‘𝑌)⟩(comp‘𝐷)((1st𝐺)‘𝑌))((𝑋(2nd𝐹)𝑌)‘𝐾))))
76 eqid 2730 . . . . 5 (𝑄 ×c 𝐶) = (𝑄 ×c 𝐶)
7715fucbas 17932 . . . . 5 (𝐶 Func 𝐷) = (Base‘𝑄)
7815, 7fuchom 17933 . . . . 5 𝑁 = (Hom ‘𝑄)
79 eqid 2730 . . . . 5 (comp‘(𝑄 ×c 𝐶)) = (comp‘(𝑄 ×c 𝐶))
8076, 77, 4, 78, 5, 9, 12, 44, 24, 16, 22, 79, 11, 13, 18, 25, 20, 26xpcco2 18155 . . . 4 (𝜑 → (⟨𝐵, 𝐿⟩(⟨⟨𝐹, 𝑋⟩, ⟨𝐺, 𝑌⟩⟩(comp‘(𝑄 ×c 𝐶))⟨𝐻, 𝑍⟩)⟨𝐴, 𝐾⟩) = ⟨(𝐵(⟨𝐹, 𝐺⟩(comp‘𝑄)𝐻)𝐴), (𝐿(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑍)𝐾)⟩)
8180fveq2d 6865 . . 3 (𝜑 → ((⟨𝐹, 𝑋⟩(2nd𝐸)⟨𝐻, 𝑍⟩)‘(⟨𝐵, 𝐿⟩(⟨⟨𝐹, 𝑋⟩, ⟨𝐺, 𝑌⟩⟩(comp‘(𝑄 ×c 𝐶))⟨𝐻, 𝑍⟩)⟨𝐴, 𝐾⟩)) = ((⟨𝐹, 𝑋⟩(2nd𝐸)⟨𝐻, 𝑍⟩)‘⟨(𝐵(⟨𝐹, 𝐺⟩(comp‘𝑄)𝐻)𝐴), (𝐿(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑍)𝐾)⟩))
82 df-ov 7393 . . 3 ((𝐵(⟨𝐹, 𝐺⟩(comp‘𝑄)𝐻)𝐴)(⟨𝐹, 𝑋⟩(2nd𝐸)⟨𝐻, 𝑍⟩)(𝐿(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑍)𝐾)) = ((⟨𝐹, 𝑋⟩(2nd𝐸)⟨𝐻, 𝑍⟩)‘⟨(𝐵(⟨𝐹, 𝐺⟩(comp‘𝑄)𝐻)𝐴), (𝐿(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑍)𝐾)⟩)
8381, 82eqtr4di 2783 . 2 (𝜑 → ((⟨𝐹, 𝑋⟩(2nd𝐸)⟨𝐻, 𝑍⟩)‘(⟨𝐵, 𝐿⟩(⟨⟨𝐹, 𝑋⟩, ⟨𝐺, 𝑌⟩⟩(comp‘(𝑄 ×c 𝐶))⟨𝐻, 𝑍⟩)⟨𝐴, 𝐾⟩)) = ((𝐵(⟨𝐹, 𝐺⟩(comp‘𝑄)𝐻)𝐴)(⟨𝐹, 𝑋⟩(2nd𝐸)⟨𝐻, 𝑍⟩)(𝐿(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑍)𝐾)))
84 df-ov 7393 . . . . . 6 (𝐹(1st𝐸)𝑋) = ((1st𝐸)‘⟨𝐹, 𝑋⟩)
851, 2, 3, 4, 9, 12evlf1 18188 . . . . . 6 (𝜑 → (𝐹(1st𝐸)𝑋) = ((1st𝐹)‘𝑋))
8684, 85eqtr3id 2779 . . . . 5 (𝜑 → ((1st𝐸)‘⟨𝐹, 𝑋⟩) = ((1st𝐹)‘𝑋))
87 df-ov 7393 . . . . . 6 (𝐺(1st𝐸)𝑌) = ((1st𝐸)‘⟨𝐺, 𝑌⟩)
881, 2, 3, 4, 44, 24evlf1 18188 . . . . . 6 (𝜑 → (𝐺(1st𝐸)𝑌) = ((1st𝐺)‘𝑌))
8987, 88eqtr3id 2779 . . . . 5 (𝜑 → ((1st𝐸)‘⟨𝐺, 𝑌⟩) = ((1st𝐺)‘𝑌))
9086, 89opeq12d 4848 . . . 4 (𝜑 → ⟨((1st𝐸)‘⟨𝐹, 𝑋⟩), ((1st𝐸)‘⟨𝐺, 𝑌⟩)⟩ = ⟨((1st𝐹)‘𝑋), ((1st𝐺)‘𝑌)⟩)
91 df-ov 7393 . . . . 5 (𝐻(1st𝐸)𝑍) = ((1st𝐸)‘⟨𝐻, 𝑍⟩)
921, 2, 3, 4, 11, 13evlf1 18188 . . . . 5 (𝜑 → (𝐻(1st𝐸)𝑍) = ((1st𝐻)‘𝑍))
9391, 92eqtr3id 2779 . . . 4 (𝜑 → ((1st𝐸)‘⟨𝐻, 𝑍⟩) = ((1st𝐻)‘𝑍))
9490, 93oveq12d 7408 . . 3 (𝜑 → (⟨((1st𝐸)‘⟨𝐹, 𝑋⟩), ((1st𝐸)‘⟨𝐺, 𝑌⟩)⟩(comp‘𝐷)((1st𝐸)‘⟨𝐻, 𝑍⟩)) = (⟨((1st𝐹)‘𝑋), ((1st𝐺)‘𝑌)⟩(comp‘𝐷)((1st𝐻)‘𝑍)))
95 df-ov 7393 . . . 4 (𝐵(⟨𝐺, 𝑌⟩(2nd𝐸)⟨𝐻, 𝑍⟩)𝐿) = ((⟨𝐺, 𝑌⟩(2nd𝐸)⟨𝐻, 𝑍⟩)‘⟨𝐵, 𝐿⟩)
96 eqid 2730 . . . . 5 (⟨𝐺, 𝑌⟩(2nd𝐸)⟨𝐻, 𝑍⟩) = (⟨𝐺, 𝑌⟩(2nd𝐸)⟨𝐻, 𝑍⟩)
971, 2, 3, 4, 5, 6, 7, 44, 11, 24, 13, 96, 20, 26evlf2val 18187 . . . 4 (𝜑 → (𝐵(⟨𝐺, 𝑌⟩(2nd𝐸)⟨𝐻, 𝑍⟩)𝐿) = ((𝐵𝑍)(⟨((1st𝐺)‘𝑌), ((1st𝐺)‘𝑍)⟩(comp‘𝐷)((1st𝐻)‘𝑍))((𝑌(2nd𝐺)𝑍)‘𝐿)))
9895, 97eqtr3id 2779 . . 3 (𝜑 → ((⟨𝐺, 𝑌⟩(2nd𝐸)⟨𝐻, 𝑍⟩)‘⟨𝐵, 𝐿⟩) = ((𝐵𝑍)(⟨((1st𝐺)‘𝑌), ((1st𝐺)‘𝑍)⟩(comp‘𝐷)((1st𝐻)‘𝑍))((𝑌(2nd𝐺)𝑍)‘𝐿)))
99 df-ov 7393 . . . 4 (𝐴(⟨𝐹, 𝑋⟩(2nd𝐸)⟨𝐺, 𝑌⟩)𝐾) = ((⟨𝐹, 𝑋⟩(2nd𝐸)⟨𝐺, 𝑌⟩)‘⟨𝐴, 𝐾⟩)
100 eqid 2730 . . . . 5 (⟨𝐹, 𝑋⟩(2nd𝐸)⟨𝐺, 𝑌⟩) = (⟨𝐹, 𝑋⟩(2nd𝐸)⟨𝐺, 𝑌⟩)
1011, 2, 3, 4, 5, 6, 7, 9, 44, 12, 24, 100, 18, 25evlf2val 18187 . . . 4 (𝜑 → (𝐴(⟨𝐹, 𝑋⟩(2nd𝐸)⟨𝐺, 𝑌⟩)𝐾) = ((𝐴𝑌)(⟨((1st𝐹)‘𝑋), ((1st𝐹)‘𝑌)⟩(comp‘𝐷)((1st𝐺)‘𝑌))((𝑋(2nd𝐹)𝑌)‘𝐾)))
10299, 101eqtr3id 2779 . . 3 (𝜑 → ((⟨𝐹, 𝑋⟩(2nd𝐸)⟨𝐺, 𝑌⟩)‘⟨𝐴, 𝐾⟩) = ((𝐴𝑌)(⟨((1st𝐹)‘𝑋), ((1st𝐹)‘𝑌)⟩(comp‘𝐷)((1st𝐺)‘𝑌))((𝑋(2nd𝐹)𝑌)‘𝐾)))
10394, 98, 102oveq123d 7411 . 2 (𝜑 → (((⟨𝐺, 𝑌⟩(2nd𝐸)⟨𝐻, 𝑍⟩)‘⟨𝐵, 𝐿⟩)(⟨((1st𝐸)‘⟨𝐹, 𝑋⟩), ((1st𝐸)‘⟨𝐺, 𝑌⟩)⟩(comp‘𝐷)((1st𝐸)‘⟨𝐻, 𝑍⟩))((⟨𝐹, 𝑋⟩(2nd𝐸)⟨𝐺, 𝑌⟩)‘⟨𝐴, 𝐾⟩)) = (((𝐵𝑍)(⟨((1st𝐺)‘𝑌), ((1st𝐺)‘𝑍)⟩(comp‘𝐷)((1st𝐻)‘𝑍))((𝑌(2nd𝐺)𝑍)‘𝐿))(⟨((1st𝐹)‘𝑋), ((1st𝐺)‘𝑌)⟩(comp‘𝐷)((1st𝐻)‘𝑍))((𝐴𝑌)(⟨((1st𝐹)‘𝑋), ((1st𝐹)‘𝑌)⟩(comp‘𝐷)((1st𝐺)‘𝑌))((𝑋(2nd𝐹)𝑌)‘𝐾))))
10475, 83, 1033eqtr4d 2775 1 (𝜑 → ((⟨𝐹, 𝑋⟩(2nd𝐸)⟨𝐻, 𝑍⟩)‘(⟨𝐵, 𝐿⟩(⟨⟨𝐹, 𝑋⟩, ⟨𝐺, 𝑌⟩⟩(comp‘(𝑄 ×c 𝐶))⟨𝐻, 𝑍⟩)⟨𝐴, 𝐾⟩)) = (((⟨𝐺, 𝑌⟩(2nd𝐸)⟨𝐻, 𝑍⟩)‘⟨𝐵, 𝐿⟩)(⟨((1st𝐸)‘⟨𝐹, 𝑋⟩), ((1st𝐸)‘⟨𝐺, 𝑌⟩)⟩(comp‘𝐷)((1st𝐸)‘⟨𝐻, 𝑍⟩))((⟨𝐹, 𝑋⟩(2nd𝐸)⟨𝐺, 𝑌⟩)‘⟨𝐴, 𝐾⟩)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cop 4598   class class class wbr 5110  Rel wrel 5646  cfv 6514  (class class class)co 7390  1st c1st 7969  2nd c2nd 7970  Basecbs 17186  Hom chom 17238  compcco 17239  Catccat 17632   Func cfunc 17823   Nat cnat 17913   FuncCat cfuc 17914   ×c cxpc 18136   evalF cevlf 18177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-fz 13476  df-struct 17124  df-slot 17159  df-ndx 17171  df-base 17187  df-hom 17251  df-cco 17252  df-cat 17636  df-func 17827  df-nat 17915  df-fuc 17916  df-xpc 18140  df-evlf 18181
This theorem is referenced by:  evlfcl  18190
  Copyright terms: Public domain W3C validator