MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hofcllem Structured version   Visualization version   GIF version

Theorem hofcllem 17976
Description: Lemma for hofcl 17977. (Contributed by Mario Carneiro, 15-Jan-2017.)
Hypotheses
Ref Expression
hofcl.m 𝑀 = (HomF𝐶)
hofcl.o 𝑂 = (oppCat‘𝐶)
hofcl.d 𝐷 = (SetCat‘𝑈)
hofcl.c (𝜑𝐶 ∈ Cat)
hofcl.u (𝜑𝑈𝑉)
hofcl.h (𝜑 → ran (Homf𝐶) ⊆ 𝑈)
hofcllem.b 𝐵 = (Base‘𝐶)
hofcllem.h 𝐻 = (Hom ‘𝐶)
hofcllem.x (𝜑𝑋𝐵)
hofcllem.y (𝜑𝑌𝐵)
hofcllem.z (𝜑𝑍𝐵)
hofcllem.w (𝜑𝑊𝐵)
hofcllem.s (𝜑𝑆𝐵)
hofcllem.t (𝜑𝑇𝐵)
hofcllem.m (𝜑𝐾 ∈ (𝑍𝐻𝑋))
hofcllem.n (𝜑𝐿 ∈ (𝑌𝐻𝑊))
hofcllem.p (𝜑𝑃 ∈ (𝑆𝐻𝑍))
hofcllem.q (𝜑𝑄 ∈ (𝑊𝐻𝑇))
Assertion
Ref Expression
hofcllem (𝜑 → ((𝐾(⟨𝑆, 𝑍⟩(comp‘𝐶)𝑋)𝑃)(⟨𝑋, 𝑌⟩(2nd𝑀)⟨𝑆, 𝑇⟩)(𝑄(⟨𝑌, 𝑊⟩(comp‘𝐶)𝑇)𝐿)) = ((𝑃(⟨𝑍, 𝑊⟩(2nd𝑀)⟨𝑆, 𝑇⟩)𝑄)(⟨(𝑋𝐻𝑌), (𝑍𝐻𝑊)⟩(comp‘𝐷)(𝑆𝐻𝑇))(𝐾(⟨𝑋, 𝑌⟩(2nd𝑀)⟨𝑍, 𝑊⟩)𝐿)))

Proof of Theorem hofcllem
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hofcllem.b . . . . 5 𝐵 = (Base‘𝐶)
2 hofcllem.h . . . . 5 𝐻 = (Hom ‘𝐶)
3 eqid 2738 . . . . 5 (comp‘𝐶) = (comp‘𝐶)
4 hofcl.c . . . . . 6 (𝜑𝐶 ∈ Cat)
54adantr 481 . . . . 5 ((𝜑𝑓 ∈ (𝑋𝐻𝑌)) → 𝐶 ∈ Cat)
6 hofcllem.s . . . . . 6 (𝜑𝑆𝐵)
76adantr 481 . . . . 5 ((𝜑𝑓 ∈ (𝑋𝐻𝑌)) → 𝑆𝐵)
8 hofcllem.z . . . . . 6 (𝜑𝑍𝐵)
98adantr 481 . . . . 5 ((𝜑𝑓 ∈ (𝑋𝐻𝑌)) → 𝑍𝐵)
10 hofcllem.x . . . . . 6 (𝜑𝑋𝐵)
1110adantr 481 . . . . 5 ((𝜑𝑓 ∈ (𝑋𝐻𝑌)) → 𝑋𝐵)
12 hofcllem.p . . . . . 6 (𝜑𝑃 ∈ (𝑆𝐻𝑍))
1312adantr 481 . . . . 5 ((𝜑𝑓 ∈ (𝑋𝐻𝑌)) → 𝑃 ∈ (𝑆𝐻𝑍))
14 hofcllem.m . . . . . 6 (𝜑𝐾 ∈ (𝑍𝐻𝑋))
1514adantr 481 . . . . 5 ((𝜑𝑓 ∈ (𝑋𝐻𝑌)) → 𝐾 ∈ (𝑍𝐻𝑋))
16 hofcllem.t . . . . . 6 (𝜑𝑇𝐵)
1716adantr 481 . . . . 5 ((𝜑𝑓 ∈ (𝑋𝐻𝑌)) → 𝑇𝐵)
18 hofcllem.y . . . . . . 7 (𝜑𝑌𝐵)
1918adantr 481 . . . . . 6 ((𝜑𝑓 ∈ (𝑋𝐻𝑌)) → 𝑌𝐵)
20 simpr 485 . . . . . 6 ((𝜑𝑓 ∈ (𝑋𝐻𝑌)) → 𝑓 ∈ (𝑋𝐻𝑌))
21 hofcllem.w . . . . . . . 8 (𝜑𝑊𝐵)
22 hofcllem.n . . . . . . . 8 (𝜑𝐿 ∈ (𝑌𝐻𝑊))
23 hofcllem.q . . . . . . . 8 (𝜑𝑄 ∈ (𝑊𝐻𝑇))
241, 2, 3, 4, 18, 21, 16, 22, 23catcocl 17394 . . . . . . 7 (𝜑 → (𝑄(⟨𝑌, 𝑊⟩(comp‘𝐶)𝑇)𝐿) ∈ (𝑌𝐻𝑇))
2524adantr 481 . . . . . 6 ((𝜑𝑓 ∈ (𝑋𝐻𝑌)) → (𝑄(⟨𝑌, 𝑊⟩(comp‘𝐶)𝑇)𝐿) ∈ (𝑌𝐻𝑇))
261, 2, 3, 5, 11, 19, 17, 20, 25catcocl 17394 . . . . 5 ((𝜑𝑓 ∈ (𝑋𝐻𝑌)) → ((𝑄(⟨𝑌, 𝑊⟩(comp‘𝐶)𝑇)𝐿)(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑇)𝑓) ∈ (𝑋𝐻𝑇))
271, 2, 3, 5, 7, 9, 11, 13, 15, 17, 26catass 17395 . . . 4 ((𝜑𝑓 ∈ (𝑋𝐻𝑌)) → ((((𝑄(⟨𝑌, 𝑊⟩(comp‘𝐶)𝑇)𝐿)(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑇)𝑓)(⟨𝑍, 𝑋⟩(comp‘𝐶)𝑇)𝐾)(⟨𝑆, 𝑍⟩(comp‘𝐶)𝑇)𝑃) = (((𝑄(⟨𝑌, 𝑊⟩(comp‘𝐶)𝑇)𝐿)(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑇)𝑓)(⟨𝑆, 𝑋⟩(comp‘𝐶)𝑇)(𝐾(⟨𝑆, 𝑍⟩(comp‘𝐶)𝑋)𝑃)))
2821adantr 481 . . . . . . . 8 ((𝜑𝑓 ∈ (𝑋𝐻𝑌)) → 𝑊𝐵)
2922adantr 481 . . . . . . . 8 ((𝜑𝑓 ∈ (𝑋𝐻𝑌)) → 𝐿 ∈ (𝑌𝐻𝑊))
3023adantr 481 . . . . . . . 8 ((𝜑𝑓 ∈ (𝑋𝐻𝑌)) → 𝑄 ∈ (𝑊𝐻𝑇))
311, 2, 3, 5, 11, 19, 28, 20, 29, 17, 30catass 17395 . . . . . . 7 ((𝜑𝑓 ∈ (𝑋𝐻𝑌)) → ((𝑄(⟨𝑌, 𝑊⟩(comp‘𝐶)𝑇)𝐿)(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑇)𝑓) = (𝑄(⟨𝑋, 𝑊⟩(comp‘𝐶)𝑇)(𝐿(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑊)𝑓)))
3231oveq1d 7290 . . . . . 6 ((𝜑𝑓 ∈ (𝑋𝐻𝑌)) → (((𝑄(⟨𝑌, 𝑊⟩(comp‘𝐶)𝑇)𝐿)(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑇)𝑓)(⟨𝑍, 𝑋⟩(comp‘𝐶)𝑇)𝐾) = ((𝑄(⟨𝑋, 𝑊⟩(comp‘𝐶)𝑇)(𝐿(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑊)𝑓))(⟨𝑍, 𝑋⟩(comp‘𝐶)𝑇)𝐾))
331, 2, 3, 5, 11, 19, 28, 20, 29catcocl 17394 . . . . . . 7 ((𝜑𝑓 ∈ (𝑋𝐻𝑌)) → (𝐿(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑊)𝑓) ∈ (𝑋𝐻𝑊))
341, 2, 3, 5, 9, 11, 28, 15, 33, 17, 30catass 17395 . . . . . 6 ((𝜑𝑓 ∈ (𝑋𝐻𝑌)) → ((𝑄(⟨𝑋, 𝑊⟩(comp‘𝐶)𝑇)(𝐿(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑊)𝑓))(⟨𝑍, 𝑋⟩(comp‘𝐶)𝑇)𝐾) = (𝑄(⟨𝑍, 𝑊⟩(comp‘𝐶)𝑇)((𝐿(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑊)𝑓)(⟨𝑍, 𝑋⟩(comp‘𝐶)𝑊)𝐾)))
3532, 34eqtrd 2778 . . . . 5 ((𝜑𝑓 ∈ (𝑋𝐻𝑌)) → (((𝑄(⟨𝑌, 𝑊⟩(comp‘𝐶)𝑇)𝐿)(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑇)𝑓)(⟨𝑍, 𝑋⟩(comp‘𝐶)𝑇)𝐾) = (𝑄(⟨𝑍, 𝑊⟩(comp‘𝐶)𝑇)((𝐿(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑊)𝑓)(⟨𝑍, 𝑋⟩(comp‘𝐶)𝑊)𝐾)))
3635oveq1d 7290 . . . 4 ((𝜑𝑓 ∈ (𝑋𝐻𝑌)) → ((((𝑄(⟨𝑌, 𝑊⟩(comp‘𝐶)𝑇)𝐿)(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑇)𝑓)(⟨𝑍, 𝑋⟩(comp‘𝐶)𝑇)𝐾)(⟨𝑆, 𝑍⟩(comp‘𝐶)𝑇)𝑃) = ((𝑄(⟨𝑍, 𝑊⟩(comp‘𝐶)𝑇)((𝐿(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑊)𝑓)(⟨𝑍, 𝑋⟩(comp‘𝐶)𝑊)𝐾))(⟨𝑆, 𝑍⟩(comp‘𝐶)𝑇)𝑃))
3727, 36eqtr3d 2780 . . 3 ((𝜑𝑓 ∈ (𝑋𝐻𝑌)) → (((𝑄(⟨𝑌, 𝑊⟩(comp‘𝐶)𝑇)𝐿)(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑇)𝑓)(⟨𝑆, 𝑋⟩(comp‘𝐶)𝑇)(𝐾(⟨𝑆, 𝑍⟩(comp‘𝐶)𝑋)𝑃)) = ((𝑄(⟨𝑍, 𝑊⟩(comp‘𝐶)𝑇)((𝐿(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑊)𝑓)(⟨𝑍, 𝑋⟩(comp‘𝐶)𝑊)𝐾))(⟨𝑆, 𝑍⟩(comp‘𝐶)𝑇)𝑃))
3837mpteq2dva 5174 . 2 (𝜑 → (𝑓 ∈ (𝑋𝐻𝑌) ↦ (((𝑄(⟨𝑌, 𝑊⟩(comp‘𝐶)𝑇)𝐿)(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑇)𝑓)(⟨𝑆, 𝑋⟩(comp‘𝐶)𝑇)(𝐾(⟨𝑆, 𝑍⟩(comp‘𝐶)𝑋)𝑃))) = (𝑓 ∈ (𝑋𝐻𝑌) ↦ ((𝑄(⟨𝑍, 𝑊⟩(comp‘𝐶)𝑇)((𝐿(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑊)𝑓)(⟨𝑍, 𝑋⟩(comp‘𝐶)𝑊)𝐾))(⟨𝑆, 𝑍⟩(comp‘𝐶)𝑇)𝑃)))
39 hofcl.m . . 3 𝑀 = (HomF𝐶)
401, 2, 3, 4, 6, 8, 10, 12, 14catcocl 17394 . . 3 (𝜑 → (𝐾(⟨𝑆, 𝑍⟩(comp‘𝐶)𝑋)𝑃) ∈ (𝑆𝐻𝑋))
4139, 4, 1, 2, 10, 18, 6, 16, 3, 40, 24hof2val 17974 . 2 (𝜑 → ((𝐾(⟨𝑆, 𝑍⟩(comp‘𝐶)𝑋)𝑃)(⟨𝑋, 𝑌⟩(2nd𝑀)⟨𝑆, 𝑇⟩)(𝑄(⟨𝑌, 𝑊⟩(comp‘𝐶)𝑇)𝐿)) = (𝑓 ∈ (𝑋𝐻𝑌) ↦ (((𝑄(⟨𝑌, 𝑊⟩(comp‘𝐶)𝑇)𝐿)(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑇)𝑓)(⟨𝑆, 𝑋⟩(comp‘𝐶)𝑇)(𝐾(⟨𝑆, 𝑍⟩(comp‘𝐶)𝑋)𝑃))))
4239, 4, 1, 2, 8, 21, 6, 16, 3, 12, 23hof2val 17974 . . . 4 (𝜑 → (𝑃(⟨𝑍, 𝑊⟩(2nd𝑀)⟨𝑆, 𝑇⟩)𝑄) = (𝑔 ∈ (𝑍𝐻𝑊) ↦ ((𝑄(⟨𝑍, 𝑊⟩(comp‘𝐶)𝑇)𝑔)(⟨𝑆, 𝑍⟩(comp‘𝐶)𝑇)𝑃)))
4339, 4, 1, 2, 10, 18, 8, 21, 3, 14, 22hof2val 17974 . . . 4 (𝜑 → (𝐾(⟨𝑋, 𝑌⟩(2nd𝑀)⟨𝑍, 𝑊⟩)𝐿) = (𝑓 ∈ (𝑋𝐻𝑌) ↦ ((𝐿(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑊)𝑓)(⟨𝑍, 𝑋⟩(comp‘𝐶)𝑊)𝐾)))
4442, 43oveq12d 7293 . . 3 (𝜑 → ((𝑃(⟨𝑍, 𝑊⟩(2nd𝑀)⟨𝑆, 𝑇⟩)𝑄)(⟨(𝑋𝐻𝑌), (𝑍𝐻𝑊)⟩(comp‘𝐷)(𝑆𝐻𝑇))(𝐾(⟨𝑋, 𝑌⟩(2nd𝑀)⟨𝑍, 𝑊⟩)𝐿)) = ((𝑔 ∈ (𝑍𝐻𝑊) ↦ ((𝑄(⟨𝑍, 𝑊⟩(comp‘𝐶)𝑇)𝑔)(⟨𝑆, 𝑍⟩(comp‘𝐶)𝑇)𝑃))(⟨(𝑋𝐻𝑌), (𝑍𝐻𝑊)⟩(comp‘𝐷)(𝑆𝐻𝑇))(𝑓 ∈ (𝑋𝐻𝑌) ↦ ((𝐿(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑊)𝑓)(⟨𝑍, 𝑋⟩(comp‘𝐶)𝑊)𝐾))))
45 hofcl.d . . . 4 𝐷 = (SetCat‘𝑈)
46 hofcl.u . . . 4 (𝜑𝑈𝑉)
47 eqid 2738 . . . 4 (comp‘𝐷) = (comp‘𝐷)
48 eqid 2738 . . . . . 6 (Homf𝐶) = (Homf𝐶)
4948, 1, 2, 10, 18homfval 17401 . . . . 5 (𝜑 → (𝑋(Homf𝐶)𝑌) = (𝑋𝐻𝑌))
5048, 1homffn 17402 . . . . . . . 8 (Homf𝐶) Fn (𝐵 × 𝐵)
5150a1i 11 . . . . . . 7 (𝜑 → (Homf𝐶) Fn (𝐵 × 𝐵))
52 hofcl.h . . . . . . 7 (𝜑 → ran (Homf𝐶) ⊆ 𝑈)
53 df-f 6437 . . . . . . 7 ((Homf𝐶):(𝐵 × 𝐵)⟶𝑈 ↔ ((Homf𝐶) Fn (𝐵 × 𝐵) ∧ ran (Homf𝐶) ⊆ 𝑈))
5451, 52, 53sylanbrc 583 . . . . . 6 (𝜑 → (Homf𝐶):(𝐵 × 𝐵)⟶𝑈)
5554, 10, 18fovrnd 7444 . . . . 5 (𝜑 → (𝑋(Homf𝐶)𝑌) ∈ 𝑈)
5649, 55eqeltrrd 2840 . . . 4 (𝜑 → (𝑋𝐻𝑌) ∈ 𝑈)
5748, 1, 2, 8, 21homfval 17401 . . . . 5 (𝜑 → (𝑍(Homf𝐶)𝑊) = (𝑍𝐻𝑊))
5854, 8, 21fovrnd 7444 . . . . 5 (𝜑 → (𝑍(Homf𝐶)𝑊) ∈ 𝑈)
5957, 58eqeltrrd 2840 . . . 4 (𝜑 → (𝑍𝐻𝑊) ∈ 𝑈)
6048, 1, 2, 6, 16homfval 17401 . . . . 5 (𝜑 → (𝑆(Homf𝐶)𝑇) = (𝑆𝐻𝑇))
6154, 6, 16fovrnd 7444 . . . . 5 (𝜑 → (𝑆(Homf𝐶)𝑇) ∈ 𝑈)
6260, 61eqeltrrd 2840 . . . 4 (𝜑 → (𝑆𝐻𝑇) ∈ 𝑈)
631, 2, 3, 5, 9, 11, 28, 15, 33catcocl 17394 . . . . 5 ((𝜑𝑓 ∈ (𝑋𝐻𝑌)) → ((𝐿(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑊)𝑓)(⟨𝑍, 𝑋⟩(comp‘𝐶)𝑊)𝐾) ∈ (𝑍𝐻𝑊))
6463fmpttd 6989 . . . 4 (𝜑 → (𝑓 ∈ (𝑋𝐻𝑌) ↦ ((𝐿(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑊)𝑓)(⟨𝑍, 𝑋⟩(comp‘𝐶)𝑊)𝐾)):(𝑋𝐻𝑌)⟶(𝑍𝐻𝑊))
654adantr 481 . . . . . 6 ((𝜑𝑔 ∈ (𝑍𝐻𝑊)) → 𝐶 ∈ Cat)
666adantr 481 . . . . . 6 ((𝜑𝑔 ∈ (𝑍𝐻𝑊)) → 𝑆𝐵)
678adantr 481 . . . . . 6 ((𝜑𝑔 ∈ (𝑍𝐻𝑊)) → 𝑍𝐵)
6816adantr 481 . . . . . 6 ((𝜑𝑔 ∈ (𝑍𝐻𝑊)) → 𝑇𝐵)
6912adantr 481 . . . . . 6 ((𝜑𝑔 ∈ (𝑍𝐻𝑊)) → 𝑃 ∈ (𝑆𝐻𝑍))
7021adantr 481 . . . . . . 7 ((𝜑𝑔 ∈ (𝑍𝐻𝑊)) → 𝑊𝐵)
71 simpr 485 . . . . . . 7 ((𝜑𝑔 ∈ (𝑍𝐻𝑊)) → 𝑔 ∈ (𝑍𝐻𝑊))
7223adantr 481 . . . . . . 7 ((𝜑𝑔 ∈ (𝑍𝐻𝑊)) → 𝑄 ∈ (𝑊𝐻𝑇))
731, 2, 3, 65, 67, 70, 68, 71, 72catcocl 17394 . . . . . 6 ((𝜑𝑔 ∈ (𝑍𝐻𝑊)) → (𝑄(⟨𝑍, 𝑊⟩(comp‘𝐶)𝑇)𝑔) ∈ (𝑍𝐻𝑇))
741, 2, 3, 65, 66, 67, 68, 69, 73catcocl 17394 . . . . 5 ((𝜑𝑔 ∈ (𝑍𝐻𝑊)) → ((𝑄(⟨𝑍, 𝑊⟩(comp‘𝐶)𝑇)𝑔)(⟨𝑆, 𝑍⟩(comp‘𝐶)𝑇)𝑃) ∈ (𝑆𝐻𝑇))
7574fmpttd 6989 . . . 4 (𝜑 → (𝑔 ∈ (𝑍𝐻𝑊) ↦ ((𝑄(⟨𝑍, 𝑊⟩(comp‘𝐶)𝑇)𝑔)(⟨𝑆, 𝑍⟩(comp‘𝐶)𝑇)𝑃)):(𝑍𝐻𝑊)⟶(𝑆𝐻𝑇))
7645, 46, 47, 56, 59, 62, 64, 75setcco 17798 . . 3 (𝜑 → ((𝑔 ∈ (𝑍𝐻𝑊) ↦ ((𝑄(⟨𝑍, 𝑊⟩(comp‘𝐶)𝑇)𝑔)(⟨𝑆, 𝑍⟩(comp‘𝐶)𝑇)𝑃))(⟨(𝑋𝐻𝑌), (𝑍𝐻𝑊)⟩(comp‘𝐷)(𝑆𝐻𝑇))(𝑓 ∈ (𝑋𝐻𝑌) ↦ ((𝐿(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑊)𝑓)(⟨𝑍, 𝑋⟩(comp‘𝐶)𝑊)𝐾))) = ((𝑔 ∈ (𝑍𝐻𝑊) ↦ ((𝑄(⟨𝑍, 𝑊⟩(comp‘𝐶)𝑇)𝑔)(⟨𝑆, 𝑍⟩(comp‘𝐶)𝑇)𝑃)) ∘ (𝑓 ∈ (𝑋𝐻𝑌) ↦ ((𝐿(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑊)𝑓)(⟨𝑍, 𝑋⟩(comp‘𝐶)𝑊)𝐾))))
77 eqidd 2739 . . . 4 (𝜑 → (𝑓 ∈ (𝑋𝐻𝑌) ↦ ((𝐿(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑊)𝑓)(⟨𝑍, 𝑋⟩(comp‘𝐶)𝑊)𝐾)) = (𝑓 ∈ (𝑋𝐻𝑌) ↦ ((𝐿(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑊)𝑓)(⟨𝑍, 𝑋⟩(comp‘𝐶)𝑊)𝐾)))
78 eqidd 2739 . . . 4 (𝜑 → (𝑔 ∈ (𝑍𝐻𝑊) ↦ ((𝑄(⟨𝑍, 𝑊⟩(comp‘𝐶)𝑇)𝑔)(⟨𝑆, 𝑍⟩(comp‘𝐶)𝑇)𝑃)) = (𝑔 ∈ (𝑍𝐻𝑊) ↦ ((𝑄(⟨𝑍, 𝑊⟩(comp‘𝐶)𝑇)𝑔)(⟨𝑆, 𝑍⟩(comp‘𝐶)𝑇)𝑃)))
79 oveq2 7283 . . . . 5 (𝑔 = ((𝐿(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑊)𝑓)(⟨𝑍, 𝑋⟩(comp‘𝐶)𝑊)𝐾) → (𝑄(⟨𝑍, 𝑊⟩(comp‘𝐶)𝑇)𝑔) = (𝑄(⟨𝑍, 𝑊⟩(comp‘𝐶)𝑇)((𝐿(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑊)𝑓)(⟨𝑍, 𝑋⟩(comp‘𝐶)𝑊)𝐾)))
8079oveq1d 7290 . . . 4 (𝑔 = ((𝐿(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑊)𝑓)(⟨𝑍, 𝑋⟩(comp‘𝐶)𝑊)𝐾) → ((𝑄(⟨𝑍, 𝑊⟩(comp‘𝐶)𝑇)𝑔)(⟨𝑆, 𝑍⟩(comp‘𝐶)𝑇)𝑃) = ((𝑄(⟨𝑍, 𝑊⟩(comp‘𝐶)𝑇)((𝐿(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑊)𝑓)(⟨𝑍, 𝑋⟩(comp‘𝐶)𝑊)𝐾))(⟨𝑆, 𝑍⟩(comp‘𝐶)𝑇)𝑃))
8163, 77, 78, 80fmptco 7001 . . 3 (𝜑 → ((𝑔 ∈ (𝑍𝐻𝑊) ↦ ((𝑄(⟨𝑍, 𝑊⟩(comp‘𝐶)𝑇)𝑔)(⟨𝑆, 𝑍⟩(comp‘𝐶)𝑇)𝑃)) ∘ (𝑓 ∈ (𝑋𝐻𝑌) ↦ ((𝐿(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑊)𝑓)(⟨𝑍, 𝑋⟩(comp‘𝐶)𝑊)𝐾))) = (𝑓 ∈ (𝑋𝐻𝑌) ↦ ((𝑄(⟨𝑍, 𝑊⟩(comp‘𝐶)𝑇)((𝐿(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑊)𝑓)(⟨𝑍, 𝑋⟩(comp‘𝐶)𝑊)𝐾))(⟨𝑆, 𝑍⟩(comp‘𝐶)𝑇)𝑃)))
8244, 76, 813eqtrd 2782 . 2 (𝜑 → ((𝑃(⟨𝑍, 𝑊⟩(2nd𝑀)⟨𝑆, 𝑇⟩)𝑄)(⟨(𝑋𝐻𝑌), (𝑍𝐻𝑊)⟩(comp‘𝐷)(𝑆𝐻𝑇))(𝐾(⟨𝑋, 𝑌⟩(2nd𝑀)⟨𝑍, 𝑊⟩)𝐿)) = (𝑓 ∈ (𝑋𝐻𝑌) ↦ ((𝑄(⟨𝑍, 𝑊⟩(comp‘𝐶)𝑇)((𝐿(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑊)𝑓)(⟨𝑍, 𝑋⟩(comp‘𝐶)𝑊)𝐾))(⟨𝑆, 𝑍⟩(comp‘𝐶)𝑇)𝑃)))
8338, 41, 823eqtr4d 2788 1 (𝜑 → ((𝐾(⟨𝑆, 𝑍⟩(comp‘𝐶)𝑋)𝑃)(⟨𝑋, 𝑌⟩(2nd𝑀)⟨𝑆, 𝑇⟩)(𝑄(⟨𝑌, 𝑊⟩(comp‘𝐶)𝑇)𝐿)) = ((𝑃(⟨𝑍, 𝑊⟩(2nd𝑀)⟨𝑆, 𝑇⟩)𝑄)(⟨(𝑋𝐻𝑌), (𝑍𝐻𝑊)⟩(comp‘𝐷)(𝑆𝐻𝑇))(𝐾(⟨𝑋, 𝑌⟩(2nd𝑀)⟨𝑍, 𝑊⟩)𝐿)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wss 3887  cop 4567  cmpt 5157   × cxp 5587  ran crn 5590  ccom 5593   Fn wfn 6428  wf 6429  cfv 6433  (class class class)co 7275  2nd c2nd 7830  Basecbs 16912  Hom chom 16973  compcco 16974  Catccat 17373  Homf chomf 17375  oppCatcoppc 17420  SetCatcsetc 17790  HomFchof 17966
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-fz 13240  df-struct 16848  df-slot 16883  df-ndx 16895  df-base 16913  df-hom 16986  df-cco 16987  df-cat 17377  df-homf 17379  df-setc 17791  df-hof 17968
This theorem is referenced by:  hofcl  17977
  Copyright terms: Public domain W3C validator