MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hofcllem Structured version   Visualization version   GIF version

Theorem hofcllem 18226
Description: Lemma for hofcl 18227. (Contributed by Mario Carneiro, 15-Jan-2017.)
Hypotheses
Ref Expression
hofcl.m 𝑀 = (HomF𝐶)
hofcl.o 𝑂 = (oppCat‘𝐶)
hofcl.d 𝐷 = (SetCat‘𝑈)
hofcl.c (𝜑𝐶 ∈ Cat)
hofcl.u (𝜑𝑈𝑉)
hofcl.h (𝜑 → ran (Homf𝐶) ⊆ 𝑈)
hofcllem.b 𝐵 = (Base‘𝐶)
hofcllem.h 𝐻 = (Hom ‘𝐶)
hofcllem.x (𝜑𝑋𝐵)
hofcllem.y (𝜑𝑌𝐵)
hofcllem.z (𝜑𝑍𝐵)
hofcllem.w (𝜑𝑊𝐵)
hofcllem.s (𝜑𝑆𝐵)
hofcllem.t (𝜑𝑇𝐵)
hofcllem.m (𝜑𝐾 ∈ (𝑍𝐻𝑋))
hofcllem.n (𝜑𝐿 ∈ (𝑌𝐻𝑊))
hofcllem.p (𝜑𝑃 ∈ (𝑆𝐻𝑍))
hofcllem.q (𝜑𝑄 ∈ (𝑊𝐻𝑇))
Assertion
Ref Expression
hofcllem (𝜑 → ((𝐾(⟨𝑆, 𝑍⟩(comp‘𝐶)𝑋)𝑃)(⟨𝑋, 𝑌⟩(2nd𝑀)⟨𝑆, 𝑇⟩)(𝑄(⟨𝑌, 𝑊⟩(comp‘𝐶)𝑇)𝐿)) = ((𝑃(⟨𝑍, 𝑊⟩(2nd𝑀)⟨𝑆, 𝑇⟩)𝑄)(⟨(𝑋𝐻𝑌), (𝑍𝐻𝑊)⟩(comp‘𝐷)(𝑆𝐻𝑇))(𝐾(⟨𝑋, 𝑌⟩(2nd𝑀)⟨𝑍, 𝑊⟩)𝐿)))

Proof of Theorem hofcllem
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hofcllem.b . . . . 5 𝐵 = (Base‘𝐶)
2 hofcllem.h . . . . 5 𝐻 = (Hom ‘𝐶)
3 eqid 2730 . . . . 5 (comp‘𝐶) = (comp‘𝐶)
4 hofcl.c . . . . . 6 (𝜑𝐶 ∈ Cat)
54adantr 480 . . . . 5 ((𝜑𝑓 ∈ (𝑋𝐻𝑌)) → 𝐶 ∈ Cat)
6 hofcllem.s . . . . . 6 (𝜑𝑆𝐵)
76adantr 480 . . . . 5 ((𝜑𝑓 ∈ (𝑋𝐻𝑌)) → 𝑆𝐵)
8 hofcllem.z . . . . . 6 (𝜑𝑍𝐵)
98adantr 480 . . . . 5 ((𝜑𝑓 ∈ (𝑋𝐻𝑌)) → 𝑍𝐵)
10 hofcllem.x . . . . . 6 (𝜑𝑋𝐵)
1110adantr 480 . . . . 5 ((𝜑𝑓 ∈ (𝑋𝐻𝑌)) → 𝑋𝐵)
12 hofcllem.p . . . . . 6 (𝜑𝑃 ∈ (𝑆𝐻𝑍))
1312adantr 480 . . . . 5 ((𝜑𝑓 ∈ (𝑋𝐻𝑌)) → 𝑃 ∈ (𝑆𝐻𝑍))
14 hofcllem.m . . . . . 6 (𝜑𝐾 ∈ (𝑍𝐻𝑋))
1514adantr 480 . . . . 5 ((𝜑𝑓 ∈ (𝑋𝐻𝑌)) → 𝐾 ∈ (𝑍𝐻𝑋))
16 hofcllem.t . . . . . 6 (𝜑𝑇𝐵)
1716adantr 480 . . . . 5 ((𝜑𝑓 ∈ (𝑋𝐻𝑌)) → 𝑇𝐵)
18 hofcllem.y . . . . . . 7 (𝜑𝑌𝐵)
1918adantr 480 . . . . . 6 ((𝜑𝑓 ∈ (𝑋𝐻𝑌)) → 𝑌𝐵)
20 simpr 484 . . . . . 6 ((𝜑𝑓 ∈ (𝑋𝐻𝑌)) → 𝑓 ∈ (𝑋𝐻𝑌))
21 hofcllem.w . . . . . . . 8 (𝜑𝑊𝐵)
22 hofcllem.n . . . . . . . 8 (𝜑𝐿 ∈ (𝑌𝐻𝑊))
23 hofcllem.q . . . . . . . 8 (𝜑𝑄 ∈ (𝑊𝐻𝑇))
241, 2, 3, 4, 18, 21, 16, 22, 23catcocl 17653 . . . . . . 7 (𝜑 → (𝑄(⟨𝑌, 𝑊⟩(comp‘𝐶)𝑇)𝐿) ∈ (𝑌𝐻𝑇))
2524adantr 480 . . . . . 6 ((𝜑𝑓 ∈ (𝑋𝐻𝑌)) → (𝑄(⟨𝑌, 𝑊⟩(comp‘𝐶)𝑇)𝐿) ∈ (𝑌𝐻𝑇))
261, 2, 3, 5, 11, 19, 17, 20, 25catcocl 17653 . . . . 5 ((𝜑𝑓 ∈ (𝑋𝐻𝑌)) → ((𝑄(⟨𝑌, 𝑊⟩(comp‘𝐶)𝑇)𝐿)(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑇)𝑓) ∈ (𝑋𝐻𝑇))
271, 2, 3, 5, 7, 9, 11, 13, 15, 17, 26catass 17654 . . . 4 ((𝜑𝑓 ∈ (𝑋𝐻𝑌)) → ((((𝑄(⟨𝑌, 𝑊⟩(comp‘𝐶)𝑇)𝐿)(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑇)𝑓)(⟨𝑍, 𝑋⟩(comp‘𝐶)𝑇)𝐾)(⟨𝑆, 𝑍⟩(comp‘𝐶)𝑇)𝑃) = (((𝑄(⟨𝑌, 𝑊⟩(comp‘𝐶)𝑇)𝐿)(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑇)𝑓)(⟨𝑆, 𝑋⟩(comp‘𝐶)𝑇)(𝐾(⟨𝑆, 𝑍⟩(comp‘𝐶)𝑋)𝑃)))
2821adantr 480 . . . . . . . 8 ((𝜑𝑓 ∈ (𝑋𝐻𝑌)) → 𝑊𝐵)
2922adantr 480 . . . . . . . 8 ((𝜑𝑓 ∈ (𝑋𝐻𝑌)) → 𝐿 ∈ (𝑌𝐻𝑊))
3023adantr 480 . . . . . . . 8 ((𝜑𝑓 ∈ (𝑋𝐻𝑌)) → 𝑄 ∈ (𝑊𝐻𝑇))
311, 2, 3, 5, 11, 19, 28, 20, 29, 17, 30catass 17654 . . . . . . 7 ((𝜑𝑓 ∈ (𝑋𝐻𝑌)) → ((𝑄(⟨𝑌, 𝑊⟩(comp‘𝐶)𝑇)𝐿)(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑇)𝑓) = (𝑄(⟨𝑋, 𝑊⟩(comp‘𝐶)𝑇)(𝐿(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑊)𝑓)))
3231oveq1d 7405 . . . . . 6 ((𝜑𝑓 ∈ (𝑋𝐻𝑌)) → (((𝑄(⟨𝑌, 𝑊⟩(comp‘𝐶)𝑇)𝐿)(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑇)𝑓)(⟨𝑍, 𝑋⟩(comp‘𝐶)𝑇)𝐾) = ((𝑄(⟨𝑋, 𝑊⟩(comp‘𝐶)𝑇)(𝐿(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑊)𝑓))(⟨𝑍, 𝑋⟩(comp‘𝐶)𝑇)𝐾))
331, 2, 3, 5, 11, 19, 28, 20, 29catcocl 17653 . . . . . . 7 ((𝜑𝑓 ∈ (𝑋𝐻𝑌)) → (𝐿(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑊)𝑓) ∈ (𝑋𝐻𝑊))
341, 2, 3, 5, 9, 11, 28, 15, 33, 17, 30catass 17654 . . . . . 6 ((𝜑𝑓 ∈ (𝑋𝐻𝑌)) → ((𝑄(⟨𝑋, 𝑊⟩(comp‘𝐶)𝑇)(𝐿(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑊)𝑓))(⟨𝑍, 𝑋⟩(comp‘𝐶)𝑇)𝐾) = (𝑄(⟨𝑍, 𝑊⟩(comp‘𝐶)𝑇)((𝐿(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑊)𝑓)(⟨𝑍, 𝑋⟩(comp‘𝐶)𝑊)𝐾)))
3532, 34eqtrd 2765 . . . . 5 ((𝜑𝑓 ∈ (𝑋𝐻𝑌)) → (((𝑄(⟨𝑌, 𝑊⟩(comp‘𝐶)𝑇)𝐿)(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑇)𝑓)(⟨𝑍, 𝑋⟩(comp‘𝐶)𝑇)𝐾) = (𝑄(⟨𝑍, 𝑊⟩(comp‘𝐶)𝑇)((𝐿(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑊)𝑓)(⟨𝑍, 𝑋⟩(comp‘𝐶)𝑊)𝐾)))
3635oveq1d 7405 . . . 4 ((𝜑𝑓 ∈ (𝑋𝐻𝑌)) → ((((𝑄(⟨𝑌, 𝑊⟩(comp‘𝐶)𝑇)𝐿)(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑇)𝑓)(⟨𝑍, 𝑋⟩(comp‘𝐶)𝑇)𝐾)(⟨𝑆, 𝑍⟩(comp‘𝐶)𝑇)𝑃) = ((𝑄(⟨𝑍, 𝑊⟩(comp‘𝐶)𝑇)((𝐿(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑊)𝑓)(⟨𝑍, 𝑋⟩(comp‘𝐶)𝑊)𝐾))(⟨𝑆, 𝑍⟩(comp‘𝐶)𝑇)𝑃))
3727, 36eqtr3d 2767 . . 3 ((𝜑𝑓 ∈ (𝑋𝐻𝑌)) → (((𝑄(⟨𝑌, 𝑊⟩(comp‘𝐶)𝑇)𝐿)(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑇)𝑓)(⟨𝑆, 𝑋⟩(comp‘𝐶)𝑇)(𝐾(⟨𝑆, 𝑍⟩(comp‘𝐶)𝑋)𝑃)) = ((𝑄(⟨𝑍, 𝑊⟩(comp‘𝐶)𝑇)((𝐿(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑊)𝑓)(⟨𝑍, 𝑋⟩(comp‘𝐶)𝑊)𝐾))(⟨𝑆, 𝑍⟩(comp‘𝐶)𝑇)𝑃))
3837mpteq2dva 5203 . 2 (𝜑 → (𝑓 ∈ (𝑋𝐻𝑌) ↦ (((𝑄(⟨𝑌, 𝑊⟩(comp‘𝐶)𝑇)𝐿)(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑇)𝑓)(⟨𝑆, 𝑋⟩(comp‘𝐶)𝑇)(𝐾(⟨𝑆, 𝑍⟩(comp‘𝐶)𝑋)𝑃))) = (𝑓 ∈ (𝑋𝐻𝑌) ↦ ((𝑄(⟨𝑍, 𝑊⟩(comp‘𝐶)𝑇)((𝐿(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑊)𝑓)(⟨𝑍, 𝑋⟩(comp‘𝐶)𝑊)𝐾))(⟨𝑆, 𝑍⟩(comp‘𝐶)𝑇)𝑃)))
39 hofcl.m . . 3 𝑀 = (HomF𝐶)
401, 2, 3, 4, 6, 8, 10, 12, 14catcocl 17653 . . 3 (𝜑 → (𝐾(⟨𝑆, 𝑍⟩(comp‘𝐶)𝑋)𝑃) ∈ (𝑆𝐻𝑋))
4139, 4, 1, 2, 10, 18, 6, 16, 3, 40, 24hof2val 18224 . 2 (𝜑 → ((𝐾(⟨𝑆, 𝑍⟩(comp‘𝐶)𝑋)𝑃)(⟨𝑋, 𝑌⟩(2nd𝑀)⟨𝑆, 𝑇⟩)(𝑄(⟨𝑌, 𝑊⟩(comp‘𝐶)𝑇)𝐿)) = (𝑓 ∈ (𝑋𝐻𝑌) ↦ (((𝑄(⟨𝑌, 𝑊⟩(comp‘𝐶)𝑇)𝐿)(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑇)𝑓)(⟨𝑆, 𝑋⟩(comp‘𝐶)𝑇)(𝐾(⟨𝑆, 𝑍⟩(comp‘𝐶)𝑋)𝑃))))
4239, 4, 1, 2, 8, 21, 6, 16, 3, 12, 23hof2val 18224 . . . 4 (𝜑 → (𝑃(⟨𝑍, 𝑊⟩(2nd𝑀)⟨𝑆, 𝑇⟩)𝑄) = (𝑔 ∈ (𝑍𝐻𝑊) ↦ ((𝑄(⟨𝑍, 𝑊⟩(comp‘𝐶)𝑇)𝑔)(⟨𝑆, 𝑍⟩(comp‘𝐶)𝑇)𝑃)))
4339, 4, 1, 2, 10, 18, 8, 21, 3, 14, 22hof2val 18224 . . . 4 (𝜑 → (𝐾(⟨𝑋, 𝑌⟩(2nd𝑀)⟨𝑍, 𝑊⟩)𝐿) = (𝑓 ∈ (𝑋𝐻𝑌) ↦ ((𝐿(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑊)𝑓)(⟨𝑍, 𝑋⟩(comp‘𝐶)𝑊)𝐾)))
4442, 43oveq12d 7408 . . 3 (𝜑 → ((𝑃(⟨𝑍, 𝑊⟩(2nd𝑀)⟨𝑆, 𝑇⟩)𝑄)(⟨(𝑋𝐻𝑌), (𝑍𝐻𝑊)⟩(comp‘𝐷)(𝑆𝐻𝑇))(𝐾(⟨𝑋, 𝑌⟩(2nd𝑀)⟨𝑍, 𝑊⟩)𝐿)) = ((𝑔 ∈ (𝑍𝐻𝑊) ↦ ((𝑄(⟨𝑍, 𝑊⟩(comp‘𝐶)𝑇)𝑔)(⟨𝑆, 𝑍⟩(comp‘𝐶)𝑇)𝑃))(⟨(𝑋𝐻𝑌), (𝑍𝐻𝑊)⟩(comp‘𝐷)(𝑆𝐻𝑇))(𝑓 ∈ (𝑋𝐻𝑌) ↦ ((𝐿(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑊)𝑓)(⟨𝑍, 𝑋⟩(comp‘𝐶)𝑊)𝐾))))
45 hofcl.d . . . 4 𝐷 = (SetCat‘𝑈)
46 hofcl.u . . . 4 (𝜑𝑈𝑉)
47 eqid 2730 . . . 4 (comp‘𝐷) = (comp‘𝐷)
48 eqid 2730 . . . . . 6 (Homf𝐶) = (Homf𝐶)
4948, 1, 2, 10, 18homfval 17660 . . . . 5 (𝜑 → (𝑋(Homf𝐶)𝑌) = (𝑋𝐻𝑌))
5048, 1homffn 17661 . . . . . . . 8 (Homf𝐶) Fn (𝐵 × 𝐵)
5150a1i 11 . . . . . . 7 (𝜑 → (Homf𝐶) Fn (𝐵 × 𝐵))
52 hofcl.h . . . . . . 7 (𝜑 → ran (Homf𝐶) ⊆ 𝑈)
53 df-f 6518 . . . . . . 7 ((Homf𝐶):(𝐵 × 𝐵)⟶𝑈 ↔ ((Homf𝐶) Fn (𝐵 × 𝐵) ∧ ran (Homf𝐶) ⊆ 𝑈))
5451, 52, 53sylanbrc 583 . . . . . 6 (𝜑 → (Homf𝐶):(𝐵 × 𝐵)⟶𝑈)
5554, 10, 18fovcdmd 7564 . . . . 5 (𝜑 → (𝑋(Homf𝐶)𝑌) ∈ 𝑈)
5649, 55eqeltrrd 2830 . . . 4 (𝜑 → (𝑋𝐻𝑌) ∈ 𝑈)
5748, 1, 2, 8, 21homfval 17660 . . . . 5 (𝜑 → (𝑍(Homf𝐶)𝑊) = (𝑍𝐻𝑊))
5854, 8, 21fovcdmd 7564 . . . . 5 (𝜑 → (𝑍(Homf𝐶)𝑊) ∈ 𝑈)
5957, 58eqeltrrd 2830 . . . 4 (𝜑 → (𝑍𝐻𝑊) ∈ 𝑈)
6048, 1, 2, 6, 16homfval 17660 . . . . 5 (𝜑 → (𝑆(Homf𝐶)𝑇) = (𝑆𝐻𝑇))
6154, 6, 16fovcdmd 7564 . . . . 5 (𝜑 → (𝑆(Homf𝐶)𝑇) ∈ 𝑈)
6260, 61eqeltrrd 2830 . . . 4 (𝜑 → (𝑆𝐻𝑇) ∈ 𝑈)
631, 2, 3, 5, 9, 11, 28, 15, 33catcocl 17653 . . . . 5 ((𝜑𝑓 ∈ (𝑋𝐻𝑌)) → ((𝐿(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑊)𝑓)(⟨𝑍, 𝑋⟩(comp‘𝐶)𝑊)𝐾) ∈ (𝑍𝐻𝑊))
6463fmpttd 7090 . . . 4 (𝜑 → (𝑓 ∈ (𝑋𝐻𝑌) ↦ ((𝐿(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑊)𝑓)(⟨𝑍, 𝑋⟩(comp‘𝐶)𝑊)𝐾)):(𝑋𝐻𝑌)⟶(𝑍𝐻𝑊))
654adantr 480 . . . . . 6 ((𝜑𝑔 ∈ (𝑍𝐻𝑊)) → 𝐶 ∈ Cat)
666adantr 480 . . . . . 6 ((𝜑𝑔 ∈ (𝑍𝐻𝑊)) → 𝑆𝐵)
678adantr 480 . . . . . 6 ((𝜑𝑔 ∈ (𝑍𝐻𝑊)) → 𝑍𝐵)
6816adantr 480 . . . . . 6 ((𝜑𝑔 ∈ (𝑍𝐻𝑊)) → 𝑇𝐵)
6912adantr 480 . . . . . 6 ((𝜑𝑔 ∈ (𝑍𝐻𝑊)) → 𝑃 ∈ (𝑆𝐻𝑍))
7021adantr 480 . . . . . . 7 ((𝜑𝑔 ∈ (𝑍𝐻𝑊)) → 𝑊𝐵)
71 simpr 484 . . . . . . 7 ((𝜑𝑔 ∈ (𝑍𝐻𝑊)) → 𝑔 ∈ (𝑍𝐻𝑊))
7223adantr 480 . . . . . . 7 ((𝜑𝑔 ∈ (𝑍𝐻𝑊)) → 𝑄 ∈ (𝑊𝐻𝑇))
731, 2, 3, 65, 67, 70, 68, 71, 72catcocl 17653 . . . . . 6 ((𝜑𝑔 ∈ (𝑍𝐻𝑊)) → (𝑄(⟨𝑍, 𝑊⟩(comp‘𝐶)𝑇)𝑔) ∈ (𝑍𝐻𝑇))
741, 2, 3, 65, 66, 67, 68, 69, 73catcocl 17653 . . . . 5 ((𝜑𝑔 ∈ (𝑍𝐻𝑊)) → ((𝑄(⟨𝑍, 𝑊⟩(comp‘𝐶)𝑇)𝑔)(⟨𝑆, 𝑍⟩(comp‘𝐶)𝑇)𝑃) ∈ (𝑆𝐻𝑇))
7574fmpttd 7090 . . . 4 (𝜑 → (𝑔 ∈ (𝑍𝐻𝑊) ↦ ((𝑄(⟨𝑍, 𝑊⟩(comp‘𝐶)𝑇)𝑔)(⟨𝑆, 𝑍⟩(comp‘𝐶)𝑇)𝑃)):(𝑍𝐻𝑊)⟶(𝑆𝐻𝑇))
7645, 46, 47, 56, 59, 62, 64, 75setcco 18052 . . 3 (𝜑 → ((𝑔 ∈ (𝑍𝐻𝑊) ↦ ((𝑄(⟨𝑍, 𝑊⟩(comp‘𝐶)𝑇)𝑔)(⟨𝑆, 𝑍⟩(comp‘𝐶)𝑇)𝑃))(⟨(𝑋𝐻𝑌), (𝑍𝐻𝑊)⟩(comp‘𝐷)(𝑆𝐻𝑇))(𝑓 ∈ (𝑋𝐻𝑌) ↦ ((𝐿(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑊)𝑓)(⟨𝑍, 𝑋⟩(comp‘𝐶)𝑊)𝐾))) = ((𝑔 ∈ (𝑍𝐻𝑊) ↦ ((𝑄(⟨𝑍, 𝑊⟩(comp‘𝐶)𝑇)𝑔)(⟨𝑆, 𝑍⟩(comp‘𝐶)𝑇)𝑃)) ∘ (𝑓 ∈ (𝑋𝐻𝑌) ↦ ((𝐿(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑊)𝑓)(⟨𝑍, 𝑋⟩(comp‘𝐶)𝑊)𝐾))))
77 eqidd 2731 . . . 4 (𝜑 → (𝑓 ∈ (𝑋𝐻𝑌) ↦ ((𝐿(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑊)𝑓)(⟨𝑍, 𝑋⟩(comp‘𝐶)𝑊)𝐾)) = (𝑓 ∈ (𝑋𝐻𝑌) ↦ ((𝐿(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑊)𝑓)(⟨𝑍, 𝑋⟩(comp‘𝐶)𝑊)𝐾)))
78 eqidd 2731 . . . 4 (𝜑 → (𝑔 ∈ (𝑍𝐻𝑊) ↦ ((𝑄(⟨𝑍, 𝑊⟩(comp‘𝐶)𝑇)𝑔)(⟨𝑆, 𝑍⟩(comp‘𝐶)𝑇)𝑃)) = (𝑔 ∈ (𝑍𝐻𝑊) ↦ ((𝑄(⟨𝑍, 𝑊⟩(comp‘𝐶)𝑇)𝑔)(⟨𝑆, 𝑍⟩(comp‘𝐶)𝑇)𝑃)))
79 oveq2 7398 . . . . 5 (𝑔 = ((𝐿(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑊)𝑓)(⟨𝑍, 𝑋⟩(comp‘𝐶)𝑊)𝐾) → (𝑄(⟨𝑍, 𝑊⟩(comp‘𝐶)𝑇)𝑔) = (𝑄(⟨𝑍, 𝑊⟩(comp‘𝐶)𝑇)((𝐿(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑊)𝑓)(⟨𝑍, 𝑋⟩(comp‘𝐶)𝑊)𝐾)))
8079oveq1d 7405 . . . 4 (𝑔 = ((𝐿(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑊)𝑓)(⟨𝑍, 𝑋⟩(comp‘𝐶)𝑊)𝐾) → ((𝑄(⟨𝑍, 𝑊⟩(comp‘𝐶)𝑇)𝑔)(⟨𝑆, 𝑍⟩(comp‘𝐶)𝑇)𝑃) = ((𝑄(⟨𝑍, 𝑊⟩(comp‘𝐶)𝑇)((𝐿(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑊)𝑓)(⟨𝑍, 𝑋⟩(comp‘𝐶)𝑊)𝐾))(⟨𝑆, 𝑍⟩(comp‘𝐶)𝑇)𝑃))
8163, 77, 78, 80fmptco 7104 . . 3 (𝜑 → ((𝑔 ∈ (𝑍𝐻𝑊) ↦ ((𝑄(⟨𝑍, 𝑊⟩(comp‘𝐶)𝑇)𝑔)(⟨𝑆, 𝑍⟩(comp‘𝐶)𝑇)𝑃)) ∘ (𝑓 ∈ (𝑋𝐻𝑌) ↦ ((𝐿(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑊)𝑓)(⟨𝑍, 𝑋⟩(comp‘𝐶)𝑊)𝐾))) = (𝑓 ∈ (𝑋𝐻𝑌) ↦ ((𝑄(⟨𝑍, 𝑊⟩(comp‘𝐶)𝑇)((𝐿(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑊)𝑓)(⟨𝑍, 𝑋⟩(comp‘𝐶)𝑊)𝐾))(⟨𝑆, 𝑍⟩(comp‘𝐶)𝑇)𝑃)))
8244, 76, 813eqtrd 2769 . 2 (𝜑 → ((𝑃(⟨𝑍, 𝑊⟩(2nd𝑀)⟨𝑆, 𝑇⟩)𝑄)(⟨(𝑋𝐻𝑌), (𝑍𝐻𝑊)⟩(comp‘𝐷)(𝑆𝐻𝑇))(𝐾(⟨𝑋, 𝑌⟩(2nd𝑀)⟨𝑍, 𝑊⟩)𝐿)) = (𝑓 ∈ (𝑋𝐻𝑌) ↦ ((𝑄(⟨𝑍, 𝑊⟩(comp‘𝐶)𝑇)((𝐿(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑊)𝑓)(⟨𝑍, 𝑋⟩(comp‘𝐶)𝑊)𝐾))(⟨𝑆, 𝑍⟩(comp‘𝐶)𝑇)𝑃)))
8338, 41, 823eqtr4d 2775 1 (𝜑 → ((𝐾(⟨𝑆, 𝑍⟩(comp‘𝐶)𝑋)𝑃)(⟨𝑋, 𝑌⟩(2nd𝑀)⟨𝑆, 𝑇⟩)(𝑄(⟨𝑌, 𝑊⟩(comp‘𝐶)𝑇)𝐿)) = ((𝑃(⟨𝑍, 𝑊⟩(2nd𝑀)⟨𝑆, 𝑇⟩)𝑄)(⟨(𝑋𝐻𝑌), (𝑍𝐻𝑊)⟩(comp‘𝐷)(𝑆𝐻𝑇))(𝐾(⟨𝑋, 𝑌⟩(2nd𝑀)⟨𝑍, 𝑊⟩)𝐿)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wss 3917  cop 4598  cmpt 5191   × cxp 5639  ran crn 5642  ccom 5645   Fn wfn 6509  wf 6510  cfv 6514  (class class class)co 7390  2nd c2nd 7970  Basecbs 17186  Hom chom 17238  compcco 17239  Catccat 17632  Homf chomf 17634  oppCatcoppc 17679  SetCatcsetc 18044  HomFchof 18216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-fz 13476  df-struct 17124  df-slot 17159  df-ndx 17171  df-base 17187  df-hom 17251  df-cco 17252  df-cat 17636  df-homf 17638  df-setc 18045  df-hof 18218
This theorem is referenced by:  hofcl  18227
  Copyright terms: Public domain W3C validator