MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hofcllem Structured version   Visualization version   GIF version

Theorem hofcllem 17892
Description: Lemma for hofcl 17893. (Contributed by Mario Carneiro, 15-Jan-2017.)
Hypotheses
Ref Expression
hofcl.m 𝑀 = (HomF𝐶)
hofcl.o 𝑂 = (oppCat‘𝐶)
hofcl.d 𝐷 = (SetCat‘𝑈)
hofcl.c (𝜑𝐶 ∈ Cat)
hofcl.u (𝜑𝑈𝑉)
hofcl.h (𝜑 → ran (Homf𝐶) ⊆ 𝑈)
hofcllem.b 𝐵 = (Base‘𝐶)
hofcllem.h 𝐻 = (Hom ‘𝐶)
hofcllem.x (𝜑𝑋𝐵)
hofcllem.y (𝜑𝑌𝐵)
hofcllem.z (𝜑𝑍𝐵)
hofcllem.w (𝜑𝑊𝐵)
hofcllem.s (𝜑𝑆𝐵)
hofcllem.t (𝜑𝑇𝐵)
hofcllem.m (𝜑𝐾 ∈ (𝑍𝐻𝑋))
hofcllem.n (𝜑𝐿 ∈ (𝑌𝐻𝑊))
hofcllem.p (𝜑𝑃 ∈ (𝑆𝐻𝑍))
hofcllem.q (𝜑𝑄 ∈ (𝑊𝐻𝑇))
Assertion
Ref Expression
hofcllem (𝜑 → ((𝐾(⟨𝑆, 𝑍⟩(comp‘𝐶)𝑋)𝑃)(⟨𝑋, 𝑌⟩(2nd𝑀)⟨𝑆, 𝑇⟩)(𝑄(⟨𝑌, 𝑊⟩(comp‘𝐶)𝑇)𝐿)) = ((𝑃(⟨𝑍, 𝑊⟩(2nd𝑀)⟨𝑆, 𝑇⟩)𝑄)(⟨(𝑋𝐻𝑌), (𝑍𝐻𝑊)⟩(comp‘𝐷)(𝑆𝐻𝑇))(𝐾(⟨𝑋, 𝑌⟩(2nd𝑀)⟨𝑍, 𝑊⟩)𝐿)))

Proof of Theorem hofcllem
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hofcllem.b . . . . 5 𝐵 = (Base‘𝐶)
2 hofcllem.h . . . . 5 𝐻 = (Hom ‘𝐶)
3 eqid 2738 . . . . 5 (comp‘𝐶) = (comp‘𝐶)
4 hofcl.c . . . . . 6 (𝜑𝐶 ∈ Cat)
54adantr 480 . . . . 5 ((𝜑𝑓 ∈ (𝑋𝐻𝑌)) → 𝐶 ∈ Cat)
6 hofcllem.s . . . . . 6 (𝜑𝑆𝐵)
76adantr 480 . . . . 5 ((𝜑𝑓 ∈ (𝑋𝐻𝑌)) → 𝑆𝐵)
8 hofcllem.z . . . . . 6 (𝜑𝑍𝐵)
98adantr 480 . . . . 5 ((𝜑𝑓 ∈ (𝑋𝐻𝑌)) → 𝑍𝐵)
10 hofcllem.x . . . . . 6 (𝜑𝑋𝐵)
1110adantr 480 . . . . 5 ((𝜑𝑓 ∈ (𝑋𝐻𝑌)) → 𝑋𝐵)
12 hofcllem.p . . . . . 6 (𝜑𝑃 ∈ (𝑆𝐻𝑍))
1312adantr 480 . . . . 5 ((𝜑𝑓 ∈ (𝑋𝐻𝑌)) → 𝑃 ∈ (𝑆𝐻𝑍))
14 hofcllem.m . . . . . 6 (𝜑𝐾 ∈ (𝑍𝐻𝑋))
1514adantr 480 . . . . 5 ((𝜑𝑓 ∈ (𝑋𝐻𝑌)) → 𝐾 ∈ (𝑍𝐻𝑋))
16 hofcllem.t . . . . . 6 (𝜑𝑇𝐵)
1716adantr 480 . . . . 5 ((𝜑𝑓 ∈ (𝑋𝐻𝑌)) → 𝑇𝐵)
18 hofcllem.y . . . . . . 7 (𝜑𝑌𝐵)
1918adantr 480 . . . . . 6 ((𝜑𝑓 ∈ (𝑋𝐻𝑌)) → 𝑌𝐵)
20 simpr 484 . . . . . 6 ((𝜑𝑓 ∈ (𝑋𝐻𝑌)) → 𝑓 ∈ (𝑋𝐻𝑌))
21 hofcllem.w . . . . . . . 8 (𝜑𝑊𝐵)
22 hofcllem.n . . . . . . . 8 (𝜑𝐿 ∈ (𝑌𝐻𝑊))
23 hofcllem.q . . . . . . . 8 (𝜑𝑄 ∈ (𝑊𝐻𝑇))
241, 2, 3, 4, 18, 21, 16, 22, 23catcocl 17311 . . . . . . 7 (𝜑 → (𝑄(⟨𝑌, 𝑊⟩(comp‘𝐶)𝑇)𝐿) ∈ (𝑌𝐻𝑇))
2524adantr 480 . . . . . 6 ((𝜑𝑓 ∈ (𝑋𝐻𝑌)) → (𝑄(⟨𝑌, 𝑊⟩(comp‘𝐶)𝑇)𝐿) ∈ (𝑌𝐻𝑇))
261, 2, 3, 5, 11, 19, 17, 20, 25catcocl 17311 . . . . 5 ((𝜑𝑓 ∈ (𝑋𝐻𝑌)) → ((𝑄(⟨𝑌, 𝑊⟩(comp‘𝐶)𝑇)𝐿)(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑇)𝑓) ∈ (𝑋𝐻𝑇))
271, 2, 3, 5, 7, 9, 11, 13, 15, 17, 26catass 17312 . . . 4 ((𝜑𝑓 ∈ (𝑋𝐻𝑌)) → ((((𝑄(⟨𝑌, 𝑊⟩(comp‘𝐶)𝑇)𝐿)(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑇)𝑓)(⟨𝑍, 𝑋⟩(comp‘𝐶)𝑇)𝐾)(⟨𝑆, 𝑍⟩(comp‘𝐶)𝑇)𝑃) = (((𝑄(⟨𝑌, 𝑊⟩(comp‘𝐶)𝑇)𝐿)(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑇)𝑓)(⟨𝑆, 𝑋⟩(comp‘𝐶)𝑇)(𝐾(⟨𝑆, 𝑍⟩(comp‘𝐶)𝑋)𝑃)))
2821adantr 480 . . . . . . . 8 ((𝜑𝑓 ∈ (𝑋𝐻𝑌)) → 𝑊𝐵)
2922adantr 480 . . . . . . . 8 ((𝜑𝑓 ∈ (𝑋𝐻𝑌)) → 𝐿 ∈ (𝑌𝐻𝑊))
3023adantr 480 . . . . . . . 8 ((𝜑𝑓 ∈ (𝑋𝐻𝑌)) → 𝑄 ∈ (𝑊𝐻𝑇))
311, 2, 3, 5, 11, 19, 28, 20, 29, 17, 30catass 17312 . . . . . . 7 ((𝜑𝑓 ∈ (𝑋𝐻𝑌)) → ((𝑄(⟨𝑌, 𝑊⟩(comp‘𝐶)𝑇)𝐿)(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑇)𝑓) = (𝑄(⟨𝑋, 𝑊⟩(comp‘𝐶)𝑇)(𝐿(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑊)𝑓)))
3231oveq1d 7270 . . . . . 6 ((𝜑𝑓 ∈ (𝑋𝐻𝑌)) → (((𝑄(⟨𝑌, 𝑊⟩(comp‘𝐶)𝑇)𝐿)(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑇)𝑓)(⟨𝑍, 𝑋⟩(comp‘𝐶)𝑇)𝐾) = ((𝑄(⟨𝑋, 𝑊⟩(comp‘𝐶)𝑇)(𝐿(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑊)𝑓))(⟨𝑍, 𝑋⟩(comp‘𝐶)𝑇)𝐾))
331, 2, 3, 5, 11, 19, 28, 20, 29catcocl 17311 . . . . . . 7 ((𝜑𝑓 ∈ (𝑋𝐻𝑌)) → (𝐿(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑊)𝑓) ∈ (𝑋𝐻𝑊))
341, 2, 3, 5, 9, 11, 28, 15, 33, 17, 30catass 17312 . . . . . 6 ((𝜑𝑓 ∈ (𝑋𝐻𝑌)) → ((𝑄(⟨𝑋, 𝑊⟩(comp‘𝐶)𝑇)(𝐿(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑊)𝑓))(⟨𝑍, 𝑋⟩(comp‘𝐶)𝑇)𝐾) = (𝑄(⟨𝑍, 𝑊⟩(comp‘𝐶)𝑇)((𝐿(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑊)𝑓)(⟨𝑍, 𝑋⟩(comp‘𝐶)𝑊)𝐾)))
3532, 34eqtrd 2778 . . . . 5 ((𝜑𝑓 ∈ (𝑋𝐻𝑌)) → (((𝑄(⟨𝑌, 𝑊⟩(comp‘𝐶)𝑇)𝐿)(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑇)𝑓)(⟨𝑍, 𝑋⟩(comp‘𝐶)𝑇)𝐾) = (𝑄(⟨𝑍, 𝑊⟩(comp‘𝐶)𝑇)((𝐿(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑊)𝑓)(⟨𝑍, 𝑋⟩(comp‘𝐶)𝑊)𝐾)))
3635oveq1d 7270 . . . 4 ((𝜑𝑓 ∈ (𝑋𝐻𝑌)) → ((((𝑄(⟨𝑌, 𝑊⟩(comp‘𝐶)𝑇)𝐿)(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑇)𝑓)(⟨𝑍, 𝑋⟩(comp‘𝐶)𝑇)𝐾)(⟨𝑆, 𝑍⟩(comp‘𝐶)𝑇)𝑃) = ((𝑄(⟨𝑍, 𝑊⟩(comp‘𝐶)𝑇)((𝐿(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑊)𝑓)(⟨𝑍, 𝑋⟩(comp‘𝐶)𝑊)𝐾))(⟨𝑆, 𝑍⟩(comp‘𝐶)𝑇)𝑃))
3727, 36eqtr3d 2780 . . 3 ((𝜑𝑓 ∈ (𝑋𝐻𝑌)) → (((𝑄(⟨𝑌, 𝑊⟩(comp‘𝐶)𝑇)𝐿)(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑇)𝑓)(⟨𝑆, 𝑋⟩(comp‘𝐶)𝑇)(𝐾(⟨𝑆, 𝑍⟩(comp‘𝐶)𝑋)𝑃)) = ((𝑄(⟨𝑍, 𝑊⟩(comp‘𝐶)𝑇)((𝐿(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑊)𝑓)(⟨𝑍, 𝑋⟩(comp‘𝐶)𝑊)𝐾))(⟨𝑆, 𝑍⟩(comp‘𝐶)𝑇)𝑃))
3837mpteq2dva 5170 . 2 (𝜑 → (𝑓 ∈ (𝑋𝐻𝑌) ↦ (((𝑄(⟨𝑌, 𝑊⟩(comp‘𝐶)𝑇)𝐿)(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑇)𝑓)(⟨𝑆, 𝑋⟩(comp‘𝐶)𝑇)(𝐾(⟨𝑆, 𝑍⟩(comp‘𝐶)𝑋)𝑃))) = (𝑓 ∈ (𝑋𝐻𝑌) ↦ ((𝑄(⟨𝑍, 𝑊⟩(comp‘𝐶)𝑇)((𝐿(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑊)𝑓)(⟨𝑍, 𝑋⟩(comp‘𝐶)𝑊)𝐾))(⟨𝑆, 𝑍⟩(comp‘𝐶)𝑇)𝑃)))
39 hofcl.m . . 3 𝑀 = (HomF𝐶)
401, 2, 3, 4, 6, 8, 10, 12, 14catcocl 17311 . . 3 (𝜑 → (𝐾(⟨𝑆, 𝑍⟩(comp‘𝐶)𝑋)𝑃) ∈ (𝑆𝐻𝑋))
4139, 4, 1, 2, 10, 18, 6, 16, 3, 40, 24hof2val 17890 . 2 (𝜑 → ((𝐾(⟨𝑆, 𝑍⟩(comp‘𝐶)𝑋)𝑃)(⟨𝑋, 𝑌⟩(2nd𝑀)⟨𝑆, 𝑇⟩)(𝑄(⟨𝑌, 𝑊⟩(comp‘𝐶)𝑇)𝐿)) = (𝑓 ∈ (𝑋𝐻𝑌) ↦ (((𝑄(⟨𝑌, 𝑊⟩(comp‘𝐶)𝑇)𝐿)(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑇)𝑓)(⟨𝑆, 𝑋⟩(comp‘𝐶)𝑇)(𝐾(⟨𝑆, 𝑍⟩(comp‘𝐶)𝑋)𝑃))))
4239, 4, 1, 2, 8, 21, 6, 16, 3, 12, 23hof2val 17890 . . . 4 (𝜑 → (𝑃(⟨𝑍, 𝑊⟩(2nd𝑀)⟨𝑆, 𝑇⟩)𝑄) = (𝑔 ∈ (𝑍𝐻𝑊) ↦ ((𝑄(⟨𝑍, 𝑊⟩(comp‘𝐶)𝑇)𝑔)(⟨𝑆, 𝑍⟩(comp‘𝐶)𝑇)𝑃)))
4339, 4, 1, 2, 10, 18, 8, 21, 3, 14, 22hof2val 17890 . . . 4 (𝜑 → (𝐾(⟨𝑋, 𝑌⟩(2nd𝑀)⟨𝑍, 𝑊⟩)𝐿) = (𝑓 ∈ (𝑋𝐻𝑌) ↦ ((𝐿(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑊)𝑓)(⟨𝑍, 𝑋⟩(comp‘𝐶)𝑊)𝐾)))
4442, 43oveq12d 7273 . . 3 (𝜑 → ((𝑃(⟨𝑍, 𝑊⟩(2nd𝑀)⟨𝑆, 𝑇⟩)𝑄)(⟨(𝑋𝐻𝑌), (𝑍𝐻𝑊)⟩(comp‘𝐷)(𝑆𝐻𝑇))(𝐾(⟨𝑋, 𝑌⟩(2nd𝑀)⟨𝑍, 𝑊⟩)𝐿)) = ((𝑔 ∈ (𝑍𝐻𝑊) ↦ ((𝑄(⟨𝑍, 𝑊⟩(comp‘𝐶)𝑇)𝑔)(⟨𝑆, 𝑍⟩(comp‘𝐶)𝑇)𝑃))(⟨(𝑋𝐻𝑌), (𝑍𝐻𝑊)⟩(comp‘𝐷)(𝑆𝐻𝑇))(𝑓 ∈ (𝑋𝐻𝑌) ↦ ((𝐿(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑊)𝑓)(⟨𝑍, 𝑋⟩(comp‘𝐶)𝑊)𝐾))))
45 hofcl.d . . . 4 𝐷 = (SetCat‘𝑈)
46 hofcl.u . . . 4 (𝜑𝑈𝑉)
47 eqid 2738 . . . 4 (comp‘𝐷) = (comp‘𝐷)
48 eqid 2738 . . . . . 6 (Homf𝐶) = (Homf𝐶)
4948, 1, 2, 10, 18homfval 17318 . . . . 5 (𝜑 → (𝑋(Homf𝐶)𝑌) = (𝑋𝐻𝑌))
5048, 1homffn 17319 . . . . . . . 8 (Homf𝐶) Fn (𝐵 × 𝐵)
5150a1i 11 . . . . . . 7 (𝜑 → (Homf𝐶) Fn (𝐵 × 𝐵))
52 hofcl.h . . . . . . 7 (𝜑 → ran (Homf𝐶) ⊆ 𝑈)
53 df-f 6422 . . . . . . 7 ((Homf𝐶):(𝐵 × 𝐵)⟶𝑈 ↔ ((Homf𝐶) Fn (𝐵 × 𝐵) ∧ ran (Homf𝐶) ⊆ 𝑈))
5451, 52, 53sylanbrc 582 . . . . . 6 (𝜑 → (Homf𝐶):(𝐵 × 𝐵)⟶𝑈)
5554, 10, 18fovrnd 7422 . . . . 5 (𝜑 → (𝑋(Homf𝐶)𝑌) ∈ 𝑈)
5649, 55eqeltrrd 2840 . . . 4 (𝜑 → (𝑋𝐻𝑌) ∈ 𝑈)
5748, 1, 2, 8, 21homfval 17318 . . . . 5 (𝜑 → (𝑍(Homf𝐶)𝑊) = (𝑍𝐻𝑊))
5854, 8, 21fovrnd 7422 . . . . 5 (𝜑 → (𝑍(Homf𝐶)𝑊) ∈ 𝑈)
5957, 58eqeltrrd 2840 . . . 4 (𝜑 → (𝑍𝐻𝑊) ∈ 𝑈)
6048, 1, 2, 6, 16homfval 17318 . . . . 5 (𝜑 → (𝑆(Homf𝐶)𝑇) = (𝑆𝐻𝑇))
6154, 6, 16fovrnd 7422 . . . . 5 (𝜑 → (𝑆(Homf𝐶)𝑇) ∈ 𝑈)
6260, 61eqeltrrd 2840 . . . 4 (𝜑 → (𝑆𝐻𝑇) ∈ 𝑈)
631, 2, 3, 5, 9, 11, 28, 15, 33catcocl 17311 . . . . 5 ((𝜑𝑓 ∈ (𝑋𝐻𝑌)) → ((𝐿(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑊)𝑓)(⟨𝑍, 𝑋⟩(comp‘𝐶)𝑊)𝐾) ∈ (𝑍𝐻𝑊))
6463fmpttd 6971 . . . 4 (𝜑 → (𝑓 ∈ (𝑋𝐻𝑌) ↦ ((𝐿(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑊)𝑓)(⟨𝑍, 𝑋⟩(comp‘𝐶)𝑊)𝐾)):(𝑋𝐻𝑌)⟶(𝑍𝐻𝑊))
654adantr 480 . . . . . 6 ((𝜑𝑔 ∈ (𝑍𝐻𝑊)) → 𝐶 ∈ Cat)
666adantr 480 . . . . . 6 ((𝜑𝑔 ∈ (𝑍𝐻𝑊)) → 𝑆𝐵)
678adantr 480 . . . . . 6 ((𝜑𝑔 ∈ (𝑍𝐻𝑊)) → 𝑍𝐵)
6816adantr 480 . . . . . 6 ((𝜑𝑔 ∈ (𝑍𝐻𝑊)) → 𝑇𝐵)
6912adantr 480 . . . . . 6 ((𝜑𝑔 ∈ (𝑍𝐻𝑊)) → 𝑃 ∈ (𝑆𝐻𝑍))
7021adantr 480 . . . . . . 7 ((𝜑𝑔 ∈ (𝑍𝐻𝑊)) → 𝑊𝐵)
71 simpr 484 . . . . . . 7 ((𝜑𝑔 ∈ (𝑍𝐻𝑊)) → 𝑔 ∈ (𝑍𝐻𝑊))
7223adantr 480 . . . . . . 7 ((𝜑𝑔 ∈ (𝑍𝐻𝑊)) → 𝑄 ∈ (𝑊𝐻𝑇))
731, 2, 3, 65, 67, 70, 68, 71, 72catcocl 17311 . . . . . 6 ((𝜑𝑔 ∈ (𝑍𝐻𝑊)) → (𝑄(⟨𝑍, 𝑊⟩(comp‘𝐶)𝑇)𝑔) ∈ (𝑍𝐻𝑇))
741, 2, 3, 65, 66, 67, 68, 69, 73catcocl 17311 . . . . 5 ((𝜑𝑔 ∈ (𝑍𝐻𝑊)) → ((𝑄(⟨𝑍, 𝑊⟩(comp‘𝐶)𝑇)𝑔)(⟨𝑆, 𝑍⟩(comp‘𝐶)𝑇)𝑃) ∈ (𝑆𝐻𝑇))
7574fmpttd 6971 . . . 4 (𝜑 → (𝑔 ∈ (𝑍𝐻𝑊) ↦ ((𝑄(⟨𝑍, 𝑊⟩(comp‘𝐶)𝑇)𝑔)(⟨𝑆, 𝑍⟩(comp‘𝐶)𝑇)𝑃)):(𝑍𝐻𝑊)⟶(𝑆𝐻𝑇))
7645, 46, 47, 56, 59, 62, 64, 75setcco 17714 . . 3 (𝜑 → ((𝑔 ∈ (𝑍𝐻𝑊) ↦ ((𝑄(⟨𝑍, 𝑊⟩(comp‘𝐶)𝑇)𝑔)(⟨𝑆, 𝑍⟩(comp‘𝐶)𝑇)𝑃))(⟨(𝑋𝐻𝑌), (𝑍𝐻𝑊)⟩(comp‘𝐷)(𝑆𝐻𝑇))(𝑓 ∈ (𝑋𝐻𝑌) ↦ ((𝐿(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑊)𝑓)(⟨𝑍, 𝑋⟩(comp‘𝐶)𝑊)𝐾))) = ((𝑔 ∈ (𝑍𝐻𝑊) ↦ ((𝑄(⟨𝑍, 𝑊⟩(comp‘𝐶)𝑇)𝑔)(⟨𝑆, 𝑍⟩(comp‘𝐶)𝑇)𝑃)) ∘ (𝑓 ∈ (𝑋𝐻𝑌) ↦ ((𝐿(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑊)𝑓)(⟨𝑍, 𝑋⟩(comp‘𝐶)𝑊)𝐾))))
77 eqidd 2739 . . . 4 (𝜑 → (𝑓 ∈ (𝑋𝐻𝑌) ↦ ((𝐿(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑊)𝑓)(⟨𝑍, 𝑋⟩(comp‘𝐶)𝑊)𝐾)) = (𝑓 ∈ (𝑋𝐻𝑌) ↦ ((𝐿(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑊)𝑓)(⟨𝑍, 𝑋⟩(comp‘𝐶)𝑊)𝐾)))
78 eqidd 2739 . . . 4 (𝜑 → (𝑔 ∈ (𝑍𝐻𝑊) ↦ ((𝑄(⟨𝑍, 𝑊⟩(comp‘𝐶)𝑇)𝑔)(⟨𝑆, 𝑍⟩(comp‘𝐶)𝑇)𝑃)) = (𝑔 ∈ (𝑍𝐻𝑊) ↦ ((𝑄(⟨𝑍, 𝑊⟩(comp‘𝐶)𝑇)𝑔)(⟨𝑆, 𝑍⟩(comp‘𝐶)𝑇)𝑃)))
79 oveq2 7263 . . . . 5 (𝑔 = ((𝐿(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑊)𝑓)(⟨𝑍, 𝑋⟩(comp‘𝐶)𝑊)𝐾) → (𝑄(⟨𝑍, 𝑊⟩(comp‘𝐶)𝑇)𝑔) = (𝑄(⟨𝑍, 𝑊⟩(comp‘𝐶)𝑇)((𝐿(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑊)𝑓)(⟨𝑍, 𝑋⟩(comp‘𝐶)𝑊)𝐾)))
8079oveq1d 7270 . . . 4 (𝑔 = ((𝐿(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑊)𝑓)(⟨𝑍, 𝑋⟩(comp‘𝐶)𝑊)𝐾) → ((𝑄(⟨𝑍, 𝑊⟩(comp‘𝐶)𝑇)𝑔)(⟨𝑆, 𝑍⟩(comp‘𝐶)𝑇)𝑃) = ((𝑄(⟨𝑍, 𝑊⟩(comp‘𝐶)𝑇)((𝐿(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑊)𝑓)(⟨𝑍, 𝑋⟩(comp‘𝐶)𝑊)𝐾))(⟨𝑆, 𝑍⟩(comp‘𝐶)𝑇)𝑃))
8163, 77, 78, 80fmptco 6983 . . 3 (𝜑 → ((𝑔 ∈ (𝑍𝐻𝑊) ↦ ((𝑄(⟨𝑍, 𝑊⟩(comp‘𝐶)𝑇)𝑔)(⟨𝑆, 𝑍⟩(comp‘𝐶)𝑇)𝑃)) ∘ (𝑓 ∈ (𝑋𝐻𝑌) ↦ ((𝐿(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑊)𝑓)(⟨𝑍, 𝑋⟩(comp‘𝐶)𝑊)𝐾))) = (𝑓 ∈ (𝑋𝐻𝑌) ↦ ((𝑄(⟨𝑍, 𝑊⟩(comp‘𝐶)𝑇)((𝐿(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑊)𝑓)(⟨𝑍, 𝑋⟩(comp‘𝐶)𝑊)𝐾))(⟨𝑆, 𝑍⟩(comp‘𝐶)𝑇)𝑃)))
8244, 76, 813eqtrd 2782 . 2 (𝜑 → ((𝑃(⟨𝑍, 𝑊⟩(2nd𝑀)⟨𝑆, 𝑇⟩)𝑄)(⟨(𝑋𝐻𝑌), (𝑍𝐻𝑊)⟩(comp‘𝐷)(𝑆𝐻𝑇))(𝐾(⟨𝑋, 𝑌⟩(2nd𝑀)⟨𝑍, 𝑊⟩)𝐿)) = (𝑓 ∈ (𝑋𝐻𝑌) ↦ ((𝑄(⟨𝑍, 𝑊⟩(comp‘𝐶)𝑇)((𝐿(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑊)𝑓)(⟨𝑍, 𝑋⟩(comp‘𝐶)𝑊)𝐾))(⟨𝑆, 𝑍⟩(comp‘𝐶)𝑇)𝑃)))
8338, 41, 823eqtr4d 2788 1 (𝜑 → ((𝐾(⟨𝑆, 𝑍⟩(comp‘𝐶)𝑋)𝑃)(⟨𝑋, 𝑌⟩(2nd𝑀)⟨𝑆, 𝑇⟩)(𝑄(⟨𝑌, 𝑊⟩(comp‘𝐶)𝑇)𝐿)) = ((𝑃(⟨𝑍, 𝑊⟩(2nd𝑀)⟨𝑆, 𝑇⟩)𝑄)(⟨(𝑋𝐻𝑌), (𝑍𝐻𝑊)⟩(comp‘𝐷)(𝑆𝐻𝑇))(𝐾(⟨𝑋, 𝑌⟩(2nd𝑀)⟨𝑍, 𝑊⟩)𝐿)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wss 3883  cop 4564  cmpt 5153   × cxp 5578  ran crn 5581  ccom 5584   Fn wfn 6413  wf 6414  cfv 6418  (class class class)co 7255  2nd c2nd 7803  Basecbs 16840  Hom chom 16899  compcco 16900  Catccat 17290  Homf chomf 17292  oppCatcoppc 17337  SetCatcsetc 17706  HomFchof 17882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-fz 13169  df-struct 16776  df-slot 16811  df-ndx 16823  df-base 16841  df-hom 16912  df-cco 16913  df-cat 17294  df-homf 17296  df-setc 17707  df-hof 17884
This theorem is referenced by:  hofcl  17893
  Copyright terms: Public domain W3C validator