Step | Hyp | Ref
| Expression |
1 | | hofcllem.b |
. . . . 5
⊢ 𝐵 = (Base‘𝐶) |
2 | | hofcllem.h |
. . . . 5
⊢ 𝐻 = (Hom ‘𝐶) |
3 | | eqid 2738 |
. . . . 5
⊢
(comp‘𝐶) =
(comp‘𝐶) |
4 | | hofcl.c |
. . . . . 6
⊢ (𝜑 → 𝐶 ∈ Cat) |
5 | 4 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑓 ∈ (𝑋𝐻𝑌)) → 𝐶 ∈ Cat) |
6 | | hofcllem.s |
. . . . . 6
⊢ (𝜑 → 𝑆 ∈ 𝐵) |
7 | 6 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑓 ∈ (𝑋𝐻𝑌)) → 𝑆 ∈ 𝐵) |
8 | | hofcllem.z |
. . . . . 6
⊢ (𝜑 → 𝑍 ∈ 𝐵) |
9 | 8 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑓 ∈ (𝑋𝐻𝑌)) → 𝑍 ∈ 𝐵) |
10 | | hofcllem.x |
. . . . . 6
⊢ (𝜑 → 𝑋 ∈ 𝐵) |
11 | 10 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑓 ∈ (𝑋𝐻𝑌)) → 𝑋 ∈ 𝐵) |
12 | | hofcllem.p |
. . . . . 6
⊢ (𝜑 → 𝑃 ∈ (𝑆𝐻𝑍)) |
13 | 12 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑓 ∈ (𝑋𝐻𝑌)) → 𝑃 ∈ (𝑆𝐻𝑍)) |
14 | | hofcllem.m |
. . . . . 6
⊢ (𝜑 → 𝐾 ∈ (𝑍𝐻𝑋)) |
15 | 14 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑓 ∈ (𝑋𝐻𝑌)) → 𝐾 ∈ (𝑍𝐻𝑋)) |
16 | | hofcllem.t |
. . . . . 6
⊢ (𝜑 → 𝑇 ∈ 𝐵) |
17 | 16 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑓 ∈ (𝑋𝐻𝑌)) → 𝑇 ∈ 𝐵) |
18 | | hofcllem.y |
. . . . . . 7
⊢ (𝜑 → 𝑌 ∈ 𝐵) |
19 | 18 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑓 ∈ (𝑋𝐻𝑌)) → 𝑌 ∈ 𝐵) |
20 | | simpr 485 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑓 ∈ (𝑋𝐻𝑌)) → 𝑓 ∈ (𝑋𝐻𝑌)) |
21 | | hofcllem.w |
. . . . . . . 8
⊢ (𝜑 → 𝑊 ∈ 𝐵) |
22 | | hofcllem.n |
. . . . . . . 8
⊢ (𝜑 → 𝐿 ∈ (𝑌𝐻𝑊)) |
23 | | hofcllem.q |
. . . . . . . 8
⊢ (𝜑 → 𝑄 ∈ (𝑊𝐻𝑇)) |
24 | 1, 2, 3, 4, 18, 21, 16, 22, 23 | catcocl 17394 |
. . . . . . 7
⊢ (𝜑 → (𝑄(〈𝑌, 𝑊〉(comp‘𝐶)𝑇)𝐿) ∈ (𝑌𝐻𝑇)) |
25 | 24 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑓 ∈ (𝑋𝐻𝑌)) → (𝑄(〈𝑌, 𝑊〉(comp‘𝐶)𝑇)𝐿) ∈ (𝑌𝐻𝑇)) |
26 | 1, 2, 3, 5, 11, 19, 17, 20, 25 | catcocl 17394 |
. . . . 5
⊢ ((𝜑 ∧ 𝑓 ∈ (𝑋𝐻𝑌)) → ((𝑄(〈𝑌, 𝑊〉(comp‘𝐶)𝑇)𝐿)(〈𝑋, 𝑌〉(comp‘𝐶)𝑇)𝑓) ∈ (𝑋𝐻𝑇)) |
27 | 1, 2, 3, 5, 7, 9, 11, 13, 15, 17, 26 | catass 17395 |
. . . 4
⊢ ((𝜑 ∧ 𝑓 ∈ (𝑋𝐻𝑌)) → ((((𝑄(〈𝑌, 𝑊〉(comp‘𝐶)𝑇)𝐿)(〈𝑋, 𝑌〉(comp‘𝐶)𝑇)𝑓)(〈𝑍, 𝑋〉(comp‘𝐶)𝑇)𝐾)(〈𝑆, 𝑍〉(comp‘𝐶)𝑇)𝑃) = (((𝑄(〈𝑌, 𝑊〉(comp‘𝐶)𝑇)𝐿)(〈𝑋, 𝑌〉(comp‘𝐶)𝑇)𝑓)(〈𝑆, 𝑋〉(comp‘𝐶)𝑇)(𝐾(〈𝑆, 𝑍〉(comp‘𝐶)𝑋)𝑃))) |
28 | 21 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑓 ∈ (𝑋𝐻𝑌)) → 𝑊 ∈ 𝐵) |
29 | 22 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑓 ∈ (𝑋𝐻𝑌)) → 𝐿 ∈ (𝑌𝐻𝑊)) |
30 | 23 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑓 ∈ (𝑋𝐻𝑌)) → 𝑄 ∈ (𝑊𝐻𝑇)) |
31 | 1, 2, 3, 5, 11, 19, 28, 20, 29, 17, 30 | catass 17395 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑓 ∈ (𝑋𝐻𝑌)) → ((𝑄(〈𝑌, 𝑊〉(comp‘𝐶)𝑇)𝐿)(〈𝑋, 𝑌〉(comp‘𝐶)𝑇)𝑓) = (𝑄(〈𝑋, 𝑊〉(comp‘𝐶)𝑇)(𝐿(〈𝑋, 𝑌〉(comp‘𝐶)𝑊)𝑓))) |
32 | 31 | oveq1d 7290 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑓 ∈ (𝑋𝐻𝑌)) → (((𝑄(〈𝑌, 𝑊〉(comp‘𝐶)𝑇)𝐿)(〈𝑋, 𝑌〉(comp‘𝐶)𝑇)𝑓)(〈𝑍, 𝑋〉(comp‘𝐶)𝑇)𝐾) = ((𝑄(〈𝑋, 𝑊〉(comp‘𝐶)𝑇)(𝐿(〈𝑋, 𝑌〉(comp‘𝐶)𝑊)𝑓))(〈𝑍, 𝑋〉(comp‘𝐶)𝑇)𝐾)) |
33 | 1, 2, 3, 5, 11, 19, 28, 20, 29 | catcocl 17394 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑓 ∈ (𝑋𝐻𝑌)) → (𝐿(〈𝑋, 𝑌〉(comp‘𝐶)𝑊)𝑓) ∈ (𝑋𝐻𝑊)) |
34 | 1, 2, 3, 5, 9, 11,
28, 15, 33, 17, 30 | catass 17395 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑓 ∈ (𝑋𝐻𝑌)) → ((𝑄(〈𝑋, 𝑊〉(comp‘𝐶)𝑇)(𝐿(〈𝑋, 𝑌〉(comp‘𝐶)𝑊)𝑓))(〈𝑍, 𝑋〉(comp‘𝐶)𝑇)𝐾) = (𝑄(〈𝑍, 𝑊〉(comp‘𝐶)𝑇)((𝐿(〈𝑋, 𝑌〉(comp‘𝐶)𝑊)𝑓)(〈𝑍, 𝑋〉(comp‘𝐶)𝑊)𝐾))) |
35 | 32, 34 | eqtrd 2778 |
. . . . 5
⊢ ((𝜑 ∧ 𝑓 ∈ (𝑋𝐻𝑌)) → (((𝑄(〈𝑌, 𝑊〉(comp‘𝐶)𝑇)𝐿)(〈𝑋, 𝑌〉(comp‘𝐶)𝑇)𝑓)(〈𝑍, 𝑋〉(comp‘𝐶)𝑇)𝐾) = (𝑄(〈𝑍, 𝑊〉(comp‘𝐶)𝑇)((𝐿(〈𝑋, 𝑌〉(comp‘𝐶)𝑊)𝑓)(〈𝑍, 𝑋〉(comp‘𝐶)𝑊)𝐾))) |
36 | 35 | oveq1d 7290 |
. . . 4
⊢ ((𝜑 ∧ 𝑓 ∈ (𝑋𝐻𝑌)) → ((((𝑄(〈𝑌, 𝑊〉(comp‘𝐶)𝑇)𝐿)(〈𝑋, 𝑌〉(comp‘𝐶)𝑇)𝑓)(〈𝑍, 𝑋〉(comp‘𝐶)𝑇)𝐾)(〈𝑆, 𝑍〉(comp‘𝐶)𝑇)𝑃) = ((𝑄(〈𝑍, 𝑊〉(comp‘𝐶)𝑇)((𝐿(〈𝑋, 𝑌〉(comp‘𝐶)𝑊)𝑓)(〈𝑍, 𝑋〉(comp‘𝐶)𝑊)𝐾))(〈𝑆, 𝑍〉(comp‘𝐶)𝑇)𝑃)) |
37 | 27, 36 | eqtr3d 2780 |
. . 3
⊢ ((𝜑 ∧ 𝑓 ∈ (𝑋𝐻𝑌)) → (((𝑄(〈𝑌, 𝑊〉(comp‘𝐶)𝑇)𝐿)(〈𝑋, 𝑌〉(comp‘𝐶)𝑇)𝑓)(〈𝑆, 𝑋〉(comp‘𝐶)𝑇)(𝐾(〈𝑆, 𝑍〉(comp‘𝐶)𝑋)𝑃)) = ((𝑄(〈𝑍, 𝑊〉(comp‘𝐶)𝑇)((𝐿(〈𝑋, 𝑌〉(comp‘𝐶)𝑊)𝑓)(〈𝑍, 𝑋〉(comp‘𝐶)𝑊)𝐾))(〈𝑆, 𝑍〉(comp‘𝐶)𝑇)𝑃)) |
38 | 37 | mpteq2dva 5174 |
. 2
⊢ (𝜑 → (𝑓 ∈ (𝑋𝐻𝑌) ↦ (((𝑄(〈𝑌, 𝑊〉(comp‘𝐶)𝑇)𝐿)(〈𝑋, 𝑌〉(comp‘𝐶)𝑇)𝑓)(〈𝑆, 𝑋〉(comp‘𝐶)𝑇)(𝐾(〈𝑆, 𝑍〉(comp‘𝐶)𝑋)𝑃))) = (𝑓 ∈ (𝑋𝐻𝑌) ↦ ((𝑄(〈𝑍, 𝑊〉(comp‘𝐶)𝑇)((𝐿(〈𝑋, 𝑌〉(comp‘𝐶)𝑊)𝑓)(〈𝑍, 𝑋〉(comp‘𝐶)𝑊)𝐾))(〈𝑆, 𝑍〉(comp‘𝐶)𝑇)𝑃))) |
39 | | hofcl.m |
. . 3
⊢ 𝑀 =
(HomF‘𝐶) |
40 | 1, 2, 3, 4, 6, 8, 10, 12, 14 | catcocl 17394 |
. . 3
⊢ (𝜑 → (𝐾(〈𝑆, 𝑍〉(comp‘𝐶)𝑋)𝑃) ∈ (𝑆𝐻𝑋)) |
41 | 39, 4, 1, 2, 10, 18, 6, 16, 3, 40, 24 | hof2val 17974 |
. 2
⊢ (𝜑 → ((𝐾(〈𝑆, 𝑍〉(comp‘𝐶)𝑋)𝑃)(〈𝑋, 𝑌〉(2nd ‘𝑀)〈𝑆, 𝑇〉)(𝑄(〈𝑌, 𝑊〉(comp‘𝐶)𝑇)𝐿)) = (𝑓 ∈ (𝑋𝐻𝑌) ↦ (((𝑄(〈𝑌, 𝑊〉(comp‘𝐶)𝑇)𝐿)(〈𝑋, 𝑌〉(comp‘𝐶)𝑇)𝑓)(〈𝑆, 𝑋〉(comp‘𝐶)𝑇)(𝐾(〈𝑆, 𝑍〉(comp‘𝐶)𝑋)𝑃)))) |
42 | 39, 4, 1, 2, 8, 21,
6, 16, 3, 12, 23 | hof2val 17974 |
. . . 4
⊢ (𝜑 → (𝑃(〈𝑍, 𝑊〉(2nd ‘𝑀)〈𝑆, 𝑇〉)𝑄) = (𝑔 ∈ (𝑍𝐻𝑊) ↦ ((𝑄(〈𝑍, 𝑊〉(comp‘𝐶)𝑇)𝑔)(〈𝑆, 𝑍〉(comp‘𝐶)𝑇)𝑃))) |
43 | 39, 4, 1, 2, 10, 18, 8, 21, 3, 14, 22 | hof2val 17974 |
. . . 4
⊢ (𝜑 → (𝐾(〈𝑋, 𝑌〉(2nd ‘𝑀)〈𝑍, 𝑊〉)𝐿) = (𝑓 ∈ (𝑋𝐻𝑌) ↦ ((𝐿(〈𝑋, 𝑌〉(comp‘𝐶)𝑊)𝑓)(〈𝑍, 𝑋〉(comp‘𝐶)𝑊)𝐾))) |
44 | 42, 43 | oveq12d 7293 |
. . 3
⊢ (𝜑 → ((𝑃(〈𝑍, 𝑊〉(2nd ‘𝑀)〈𝑆, 𝑇〉)𝑄)(〈(𝑋𝐻𝑌), (𝑍𝐻𝑊)〉(comp‘𝐷)(𝑆𝐻𝑇))(𝐾(〈𝑋, 𝑌〉(2nd ‘𝑀)〈𝑍, 𝑊〉)𝐿)) = ((𝑔 ∈ (𝑍𝐻𝑊) ↦ ((𝑄(〈𝑍, 𝑊〉(comp‘𝐶)𝑇)𝑔)(〈𝑆, 𝑍〉(comp‘𝐶)𝑇)𝑃))(〈(𝑋𝐻𝑌), (𝑍𝐻𝑊)〉(comp‘𝐷)(𝑆𝐻𝑇))(𝑓 ∈ (𝑋𝐻𝑌) ↦ ((𝐿(〈𝑋, 𝑌〉(comp‘𝐶)𝑊)𝑓)(〈𝑍, 𝑋〉(comp‘𝐶)𝑊)𝐾)))) |
45 | | hofcl.d |
. . . 4
⊢ 𝐷 = (SetCat‘𝑈) |
46 | | hofcl.u |
. . . 4
⊢ (𝜑 → 𝑈 ∈ 𝑉) |
47 | | eqid 2738 |
. . . 4
⊢
(comp‘𝐷) =
(comp‘𝐷) |
48 | | eqid 2738 |
. . . . . 6
⊢
(Homf ‘𝐶) = (Homf ‘𝐶) |
49 | 48, 1, 2, 10, 18 | homfval 17401 |
. . . . 5
⊢ (𝜑 → (𝑋(Homf ‘𝐶)𝑌) = (𝑋𝐻𝑌)) |
50 | 48, 1 | homffn 17402 |
. . . . . . . 8
⊢
(Homf ‘𝐶) Fn (𝐵 × 𝐵) |
51 | 50 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → (Homf
‘𝐶) Fn (𝐵 × 𝐵)) |
52 | | hofcl.h |
. . . . . . 7
⊢ (𝜑 → ran
(Homf ‘𝐶) ⊆ 𝑈) |
53 | | df-f 6437 |
. . . . . . 7
⊢
((Homf ‘𝐶):(𝐵 × 𝐵)⟶𝑈 ↔ ((Homf
‘𝐶) Fn (𝐵 × 𝐵) ∧ ran (Homf
‘𝐶) ⊆ 𝑈)) |
54 | 51, 52, 53 | sylanbrc 583 |
. . . . . 6
⊢ (𝜑 → (Homf
‘𝐶):(𝐵 × 𝐵)⟶𝑈) |
55 | 54, 10, 18 | fovrnd 7444 |
. . . . 5
⊢ (𝜑 → (𝑋(Homf ‘𝐶)𝑌) ∈ 𝑈) |
56 | 49, 55 | eqeltrrd 2840 |
. . . 4
⊢ (𝜑 → (𝑋𝐻𝑌) ∈ 𝑈) |
57 | 48, 1, 2, 8, 21 | homfval 17401 |
. . . . 5
⊢ (𝜑 → (𝑍(Homf ‘𝐶)𝑊) = (𝑍𝐻𝑊)) |
58 | 54, 8, 21 | fovrnd 7444 |
. . . . 5
⊢ (𝜑 → (𝑍(Homf ‘𝐶)𝑊) ∈ 𝑈) |
59 | 57, 58 | eqeltrrd 2840 |
. . . 4
⊢ (𝜑 → (𝑍𝐻𝑊) ∈ 𝑈) |
60 | 48, 1, 2, 6, 16 | homfval 17401 |
. . . . 5
⊢ (𝜑 → (𝑆(Homf ‘𝐶)𝑇) = (𝑆𝐻𝑇)) |
61 | 54, 6, 16 | fovrnd 7444 |
. . . . 5
⊢ (𝜑 → (𝑆(Homf ‘𝐶)𝑇) ∈ 𝑈) |
62 | 60, 61 | eqeltrrd 2840 |
. . . 4
⊢ (𝜑 → (𝑆𝐻𝑇) ∈ 𝑈) |
63 | 1, 2, 3, 5, 9, 11,
28, 15, 33 | catcocl 17394 |
. . . . 5
⊢ ((𝜑 ∧ 𝑓 ∈ (𝑋𝐻𝑌)) → ((𝐿(〈𝑋, 𝑌〉(comp‘𝐶)𝑊)𝑓)(〈𝑍, 𝑋〉(comp‘𝐶)𝑊)𝐾) ∈ (𝑍𝐻𝑊)) |
64 | 63 | fmpttd 6989 |
. . . 4
⊢ (𝜑 → (𝑓 ∈ (𝑋𝐻𝑌) ↦ ((𝐿(〈𝑋, 𝑌〉(comp‘𝐶)𝑊)𝑓)(〈𝑍, 𝑋〉(comp‘𝐶)𝑊)𝐾)):(𝑋𝐻𝑌)⟶(𝑍𝐻𝑊)) |
65 | 4 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑔 ∈ (𝑍𝐻𝑊)) → 𝐶 ∈ Cat) |
66 | 6 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑔 ∈ (𝑍𝐻𝑊)) → 𝑆 ∈ 𝐵) |
67 | 8 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑔 ∈ (𝑍𝐻𝑊)) → 𝑍 ∈ 𝐵) |
68 | 16 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑔 ∈ (𝑍𝐻𝑊)) → 𝑇 ∈ 𝐵) |
69 | 12 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑔 ∈ (𝑍𝐻𝑊)) → 𝑃 ∈ (𝑆𝐻𝑍)) |
70 | 21 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑔 ∈ (𝑍𝐻𝑊)) → 𝑊 ∈ 𝐵) |
71 | | simpr 485 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑔 ∈ (𝑍𝐻𝑊)) → 𝑔 ∈ (𝑍𝐻𝑊)) |
72 | 23 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑔 ∈ (𝑍𝐻𝑊)) → 𝑄 ∈ (𝑊𝐻𝑇)) |
73 | 1, 2, 3, 65, 67, 70, 68, 71, 72 | catcocl 17394 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑔 ∈ (𝑍𝐻𝑊)) → (𝑄(〈𝑍, 𝑊〉(comp‘𝐶)𝑇)𝑔) ∈ (𝑍𝐻𝑇)) |
74 | 1, 2, 3, 65, 66, 67, 68, 69, 73 | catcocl 17394 |
. . . . 5
⊢ ((𝜑 ∧ 𝑔 ∈ (𝑍𝐻𝑊)) → ((𝑄(〈𝑍, 𝑊〉(comp‘𝐶)𝑇)𝑔)(〈𝑆, 𝑍〉(comp‘𝐶)𝑇)𝑃) ∈ (𝑆𝐻𝑇)) |
75 | 74 | fmpttd 6989 |
. . . 4
⊢ (𝜑 → (𝑔 ∈ (𝑍𝐻𝑊) ↦ ((𝑄(〈𝑍, 𝑊〉(comp‘𝐶)𝑇)𝑔)(〈𝑆, 𝑍〉(comp‘𝐶)𝑇)𝑃)):(𝑍𝐻𝑊)⟶(𝑆𝐻𝑇)) |
76 | 45, 46, 47, 56, 59, 62, 64, 75 | setcco 17798 |
. . 3
⊢ (𝜑 → ((𝑔 ∈ (𝑍𝐻𝑊) ↦ ((𝑄(〈𝑍, 𝑊〉(comp‘𝐶)𝑇)𝑔)(〈𝑆, 𝑍〉(comp‘𝐶)𝑇)𝑃))(〈(𝑋𝐻𝑌), (𝑍𝐻𝑊)〉(comp‘𝐷)(𝑆𝐻𝑇))(𝑓 ∈ (𝑋𝐻𝑌) ↦ ((𝐿(〈𝑋, 𝑌〉(comp‘𝐶)𝑊)𝑓)(〈𝑍, 𝑋〉(comp‘𝐶)𝑊)𝐾))) = ((𝑔 ∈ (𝑍𝐻𝑊) ↦ ((𝑄(〈𝑍, 𝑊〉(comp‘𝐶)𝑇)𝑔)(〈𝑆, 𝑍〉(comp‘𝐶)𝑇)𝑃)) ∘ (𝑓 ∈ (𝑋𝐻𝑌) ↦ ((𝐿(〈𝑋, 𝑌〉(comp‘𝐶)𝑊)𝑓)(〈𝑍, 𝑋〉(comp‘𝐶)𝑊)𝐾)))) |
77 | | eqidd 2739 |
. . . 4
⊢ (𝜑 → (𝑓 ∈ (𝑋𝐻𝑌) ↦ ((𝐿(〈𝑋, 𝑌〉(comp‘𝐶)𝑊)𝑓)(〈𝑍, 𝑋〉(comp‘𝐶)𝑊)𝐾)) = (𝑓 ∈ (𝑋𝐻𝑌) ↦ ((𝐿(〈𝑋, 𝑌〉(comp‘𝐶)𝑊)𝑓)(〈𝑍, 𝑋〉(comp‘𝐶)𝑊)𝐾))) |
78 | | eqidd 2739 |
. . . 4
⊢ (𝜑 → (𝑔 ∈ (𝑍𝐻𝑊) ↦ ((𝑄(〈𝑍, 𝑊〉(comp‘𝐶)𝑇)𝑔)(〈𝑆, 𝑍〉(comp‘𝐶)𝑇)𝑃)) = (𝑔 ∈ (𝑍𝐻𝑊) ↦ ((𝑄(〈𝑍, 𝑊〉(comp‘𝐶)𝑇)𝑔)(〈𝑆, 𝑍〉(comp‘𝐶)𝑇)𝑃))) |
79 | | oveq2 7283 |
. . . . 5
⊢ (𝑔 = ((𝐿(〈𝑋, 𝑌〉(comp‘𝐶)𝑊)𝑓)(〈𝑍, 𝑋〉(comp‘𝐶)𝑊)𝐾) → (𝑄(〈𝑍, 𝑊〉(comp‘𝐶)𝑇)𝑔) = (𝑄(〈𝑍, 𝑊〉(comp‘𝐶)𝑇)((𝐿(〈𝑋, 𝑌〉(comp‘𝐶)𝑊)𝑓)(〈𝑍, 𝑋〉(comp‘𝐶)𝑊)𝐾))) |
80 | 79 | oveq1d 7290 |
. . . 4
⊢ (𝑔 = ((𝐿(〈𝑋, 𝑌〉(comp‘𝐶)𝑊)𝑓)(〈𝑍, 𝑋〉(comp‘𝐶)𝑊)𝐾) → ((𝑄(〈𝑍, 𝑊〉(comp‘𝐶)𝑇)𝑔)(〈𝑆, 𝑍〉(comp‘𝐶)𝑇)𝑃) = ((𝑄(〈𝑍, 𝑊〉(comp‘𝐶)𝑇)((𝐿(〈𝑋, 𝑌〉(comp‘𝐶)𝑊)𝑓)(〈𝑍, 𝑋〉(comp‘𝐶)𝑊)𝐾))(〈𝑆, 𝑍〉(comp‘𝐶)𝑇)𝑃)) |
81 | 63, 77, 78, 80 | fmptco 7001 |
. . 3
⊢ (𝜑 → ((𝑔 ∈ (𝑍𝐻𝑊) ↦ ((𝑄(〈𝑍, 𝑊〉(comp‘𝐶)𝑇)𝑔)(〈𝑆, 𝑍〉(comp‘𝐶)𝑇)𝑃)) ∘ (𝑓 ∈ (𝑋𝐻𝑌) ↦ ((𝐿(〈𝑋, 𝑌〉(comp‘𝐶)𝑊)𝑓)(〈𝑍, 𝑋〉(comp‘𝐶)𝑊)𝐾))) = (𝑓 ∈ (𝑋𝐻𝑌) ↦ ((𝑄(〈𝑍, 𝑊〉(comp‘𝐶)𝑇)((𝐿(〈𝑋, 𝑌〉(comp‘𝐶)𝑊)𝑓)(〈𝑍, 𝑋〉(comp‘𝐶)𝑊)𝐾))(〈𝑆, 𝑍〉(comp‘𝐶)𝑇)𝑃))) |
82 | 44, 76, 81 | 3eqtrd 2782 |
. 2
⊢ (𝜑 → ((𝑃(〈𝑍, 𝑊〉(2nd ‘𝑀)〈𝑆, 𝑇〉)𝑄)(〈(𝑋𝐻𝑌), (𝑍𝐻𝑊)〉(comp‘𝐷)(𝑆𝐻𝑇))(𝐾(〈𝑋, 𝑌〉(2nd ‘𝑀)〈𝑍, 𝑊〉)𝐿)) = (𝑓 ∈ (𝑋𝐻𝑌) ↦ ((𝑄(〈𝑍, 𝑊〉(comp‘𝐶)𝑇)((𝐿(〈𝑋, 𝑌〉(comp‘𝐶)𝑊)𝑓)(〈𝑍, 𝑋〉(comp‘𝐶)𝑊)𝐾))(〈𝑆, 𝑍〉(comp‘𝐶)𝑇)𝑃))) |
83 | 38, 41, 82 | 3eqtr4d 2788 |
1
⊢ (𝜑 → ((𝐾(〈𝑆, 𝑍〉(comp‘𝐶)𝑋)𝑃)(〈𝑋, 𝑌〉(2nd ‘𝑀)〈𝑆, 𝑇〉)(𝑄(〈𝑌, 𝑊〉(comp‘𝐶)𝑇)𝐿)) = ((𝑃(〈𝑍, 𝑊〉(2nd ‘𝑀)〈𝑆, 𝑇〉)𝑄)(〈(𝑋𝐻𝑌), (𝑍𝐻𝑊)〉(comp‘𝐷)(𝑆𝐻𝑇))(𝐾(〈𝑋, 𝑌〉(2nd ‘𝑀)〈𝑍, 𝑊〉)𝐿))) |