MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sectco Structured version   Visualization version   GIF version

Theorem sectco 17804
Description: Composition of two sections. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
sectco.b 𝐵 = (Base‘𝐶)
sectco.o · = (comp‘𝐶)
sectco.s 𝑆 = (Sect‘𝐶)
sectco.c (𝜑𝐶 ∈ Cat)
sectco.x (𝜑𝑋𝐵)
sectco.y (𝜑𝑌𝐵)
sectco.z (𝜑𝑍𝐵)
sectco.1 (𝜑𝐹(𝑋𝑆𝑌)𝐺)
sectco.2 (𝜑𝐻(𝑌𝑆𝑍)𝐾)
Assertion
Ref Expression
sectco (𝜑 → (𝐻(⟨𝑋, 𝑌· 𝑍)𝐹)(𝑋𝑆𝑍)(𝐺(⟨𝑍, 𝑌· 𝑋)𝐾))

Proof of Theorem sectco
StepHypRef Expression
1 sectco.b . . . 4 𝐵 = (Base‘𝐶)
2 eqid 2735 . . . 4 (Hom ‘𝐶) = (Hom ‘𝐶)
3 sectco.o . . . 4 · = (comp‘𝐶)
4 sectco.c . . . 4 (𝜑𝐶 ∈ Cat)
5 sectco.x . . . 4 (𝜑𝑋𝐵)
6 sectco.z . . . 4 (𝜑𝑍𝐵)
7 sectco.y . . . 4 (𝜑𝑌𝐵)
8 sectco.1 . . . . . . 7 (𝜑𝐹(𝑋𝑆𝑌)𝐺)
9 eqid 2735 . . . . . . . 8 (Id‘𝐶) = (Id‘𝐶)
10 sectco.s . . . . . . . 8 𝑆 = (Sect‘𝐶)
111, 2, 3, 9, 10, 4, 5, 7issect 17801 . . . . . . 7 (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺 ↔ (𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋) ∧ (𝐺(⟨𝑋, 𝑌· 𝑋)𝐹) = ((Id‘𝐶)‘𝑋))))
128, 11mpbid 232 . . . . . 6 (𝜑 → (𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋) ∧ (𝐺(⟨𝑋, 𝑌· 𝑋)𝐹) = ((Id‘𝐶)‘𝑋)))
1312simp1d 1141 . . . . 5 (𝜑𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌))
14 sectco.2 . . . . . . 7 (𝜑𝐻(𝑌𝑆𝑍)𝐾)
151, 2, 3, 9, 10, 4, 7, 6issect 17801 . . . . . . 7 (𝜑 → (𝐻(𝑌𝑆𝑍)𝐾 ↔ (𝐻 ∈ (𝑌(Hom ‘𝐶)𝑍) ∧ 𝐾 ∈ (𝑍(Hom ‘𝐶)𝑌) ∧ (𝐾(⟨𝑌, 𝑍· 𝑌)𝐻) = ((Id‘𝐶)‘𝑌))))
1614, 15mpbid 232 . . . . . 6 (𝜑 → (𝐻 ∈ (𝑌(Hom ‘𝐶)𝑍) ∧ 𝐾 ∈ (𝑍(Hom ‘𝐶)𝑌) ∧ (𝐾(⟨𝑌, 𝑍· 𝑌)𝐻) = ((Id‘𝐶)‘𝑌)))
1716simp1d 1141 . . . . 5 (𝜑𝐻 ∈ (𝑌(Hom ‘𝐶)𝑍))
181, 2, 3, 4, 5, 7, 6, 13, 17catcocl 17730 . . . 4 (𝜑 → (𝐻(⟨𝑋, 𝑌· 𝑍)𝐹) ∈ (𝑋(Hom ‘𝐶)𝑍))
1916simp2d 1142 . . . 4 (𝜑𝐾 ∈ (𝑍(Hom ‘𝐶)𝑌))
2012simp2d 1142 . . . 4 (𝜑𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋))
211, 2, 3, 4, 5, 6, 7, 18, 19, 5, 20catass 17731 . . 3 (𝜑 → ((𝐺(⟨𝑍, 𝑌· 𝑋)𝐾)(⟨𝑋, 𝑍· 𝑋)(𝐻(⟨𝑋, 𝑌· 𝑍)𝐹)) = (𝐺(⟨𝑋, 𝑌· 𝑋)(𝐾(⟨𝑋, 𝑍· 𝑌)(𝐻(⟨𝑋, 𝑌· 𝑍)𝐹))))
2216simp3d 1143 . . . . . 6 (𝜑 → (𝐾(⟨𝑌, 𝑍· 𝑌)𝐻) = ((Id‘𝐶)‘𝑌))
2322oveq1d 7446 . . . . 5 (𝜑 → ((𝐾(⟨𝑌, 𝑍· 𝑌)𝐻)(⟨𝑋, 𝑌· 𝑌)𝐹) = (((Id‘𝐶)‘𝑌)(⟨𝑋, 𝑌· 𝑌)𝐹))
241, 2, 3, 4, 5, 7, 6, 13, 17, 7, 19catass 17731 . . . . 5 (𝜑 → ((𝐾(⟨𝑌, 𝑍· 𝑌)𝐻)(⟨𝑋, 𝑌· 𝑌)𝐹) = (𝐾(⟨𝑋, 𝑍· 𝑌)(𝐻(⟨𝑋, 𝑌· 𝑍)𝐹)))
251, 2, 9, 4, 5, 3, 7, 13catlid 17728 . . . . 5 (𝜑 → (((Id‘𝐶)‘𝑌)(⟨𝑋, 𝑌· 𝑌)𝐹) = 𝐹)
2623, 24, 253eqtr3d 2783 . . . 4 (𝜑 → (𝐾(⟨𝑋, 𝑍· 𝑌)(𝐻(⟨𝑋, 𝑌· 𝑍)𝐹)) = 𝐹)
2726oveq2d 7447 . . 3 (𝜑 → (𝐺(⟨𝑋, 𝑌· 𝑋)(𝐾(⟨𝑋, 𝑍· 𝑌)(𝐻(⟨𝑋, 𝑌· 𝑍)𝐹))) = (𝐺(⟨𝑋, 𝑌· 𝑋)𝐹))
2812simp3d 1143 . . 3 (𝜑 → (𝐺(⟨𝑋, 𝑌· 𝑋)𝐹) = ((Id‘𝐶)‘𝑋))
2921, 27, 283eqtrd 2779 . 2 (𝜑 → ((𝐺(⟨𝑍, 𝑌· 𝑋)𝐾)(⟨𝑋, 𝑍· 𝑋)(𝐻(⟨𝑋, 𝑌· 𝑍)𝐹)) = ((Id‘𝐶)‘𝑋))
301, 2, 3, 4, 6, 7, 5, 19, 20catcocl 17730 . . 3 (𝜑 → (𝐺(⟨𝑍, 𝑌· 𝑋)𝐾) ∈ (𝑍(Hom ‘𝐶)𝑋))
311, 2, 3, 9, 10, 4, 5, 6, 18, 30issect2 17802 . 2 (𝜑 → ((𝐻(⟨𝑋, 𝑌· 𝑍)𝐹)(𝑋𝑆𝑍)(𝐺(⟨𝑍, 𝑌· 𝑋)𝐾) ↔ ((𝐺(⟨𝑍, 𝑌· 𝑋)𝐾)(⟨𝑋, 𝑍· 𝑋)(𝐻(⟨𝑋, 𝑌· 𝑍)𝐹)) = ((Id‘𝐶)‘𝑋)))
3229, 31mpbird 257 1 (𝜑 → (𝐻(⟨𝑋, 𝑌· 𝑍)𝐹)(𝑋𝑆𝑍)(𝐺(⟨𝑍, 𝑌· 𝑋)𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1537  wcel 2106  cop 4637   class class class wbr 5148  cfv 6563  (class class class)co 7431  Basecbs 17245  Hom chom 17309  compcco 17310  Catccat 17709  Idccid 17710  Sectcsect 17792
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8013  df-2nd 8014  df-cat 17713  df-cid 17714  df-sect 17795
This theorem is referenced by:  invco  17819
  Copyright terms: Public domain W3C validator