MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fuccocl Structured version   Visualization version   GIF version

Theorem fuccocl 18034
Description: The composition of two natural transformations is a natural transformation. Remark 6.14(a) in [Adamek] p. 87. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
fuccocl.q 𝑄 = (𝐶 FuncCat 𝐷)
fuccocl.n 𝑁 = (𝐶 Nat 𝐷)
fuccocl.x = (comp‘𝑄)
fuccocl.r (𝜑𝑅 ∈ (𝐹𝑁𝐺))
fuccocl.s (𝜑𝑆 ∈ (𝐺𝑁𝐻))
Assertion
Ref Expression
fuccocl (𝜑 → (𝑆(⟨𝐹, 𝐺 𝐻)𝑅) ∈ (𝐹𝑁𝐻))

Proof of Theorem fuccocl
Dummy variables 𝑥 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fuccocl.q . . . 4 𝑄 = (𝐶 FuncCat 𝐷)
2 fuccocl.n . . . 4 𝑁 = (𝐶 Nat 𝐷)
3 eqid 2740 . . . 4 (Base‘𝐶) = (Base‘𝐶)
4 eqid 2740 . . . 4 (comp‘𝐷) = (comp‘𝐷)
5 fuccocl.x . . . 4 = (comp‘𝑄)
6 fuccocl.r . . . 4 (𝜑𝑅 ∈ (𝐹𝑁𝐺))
7 fuccocl.s . . . 4 (𝜑𝑆 ∈ (𝐺𝑁𝐻))
81, 2, 3, 4, 5, 6, 7fucco 18032 . . 3 (𝜑 → (𝑆(⟨𝐹, 𝐺 𝐻)𝑅) = (𝑥 ∈ (Base‘𝐶) ↦ ((𝑆𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐻)‘𝑥))(𝑅𝑥))))
9 eqid 2740 . . . . . 6 (Base‘𝐷) = (Base‘𝐷)
10 eqid 2740 . . . . . 6 (Hom ‘𝐷) = (Hom ‘𝐷)
112natrcl 18018 . . . . . . . . . . 11 (𝑅 ∈ (𝐹𝑁𝐺) → (𝐹 ∈ (𝐶 Func 𝐷) ∧ 𝐺 ∈ (𝐶 Func 𝐷)))
126, 11syl 17 . . . . . . . . . 10 (𝜑 → (𝐹 ∈ (𝐶 Func 𝐷) ∧ 𝐺 ∈ (𝐶 Func 𝐷)))
1312simpld 494 . . . . . . . . 9 (𝜑𝐹 ∈ (𝐶 Func 𝐷))
14 funcrcl 17927 . . . . . . . . 9 (𝐹 ∈ (𝐶 Func 𝐷) → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
1513, 14syl 17 . . . . . . . 8 (𝜑 → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
1615simprd 495 . . . . . . 7 (𝜑𝐷 ∈ Cat)
1716adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐷 ∈ Cat)
18 relfunc 17926 . . . . . . . . 9 Rel (𝐶 Func 𝐷)
19 1st2ndbr 8083 . . . . . . . . 9 ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
2018, 13, 19sylancr 586 . . . . . . . 8 (𝜑 → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
213, 9, 20funcf1 17930 . . . . . . 7 (𝜑 → (1st𝐹):(Base‘𝐶)⟶(Base‘𝐷))
2221ffvelcdmda 7118 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st𝐹)‘𝑥) ∈ (Base‘𝐷))
232natrcl 18018 . . . . . . . . . . 11 (𝑆 ∈ (𝐺𝑁𝐻) → (𝐺 ∈ (𝐶 Func 𝐷) ∧ 𝐻 ∈ (𝐶 Func 𝐷)))
247, 23syl 17 . . . . . . . . . 10 (𝜑 → (𝐺 ∈ (𝐶 Func 𝐷) ∧ 𝐻 ∈ (𝐶 Func 𝐷)))
2524simpld 494 . . . . . . . . 9 (𝜑𝐺 ∈ (𝐶 Func 𝐷))
26 1st2ndbr 8083 . . . . . . . . 9 ((Rel (𝐶 Func 𝐷) ∧ 𝐺 ∈ (𝐶 Func 𝐷)) → (1st𝐺)(𝐶 Func 𝐷)(2nd𝐺))
2718, 25, 26sylancr 586 . . . . . . . 8 (𝜑 → (1st𝐺)(𝐶 Func 𝐷)(2nd𝐺))
283, 9, 27funcf1 17930 . . . . . . 7 (𝜑 → (1st𝐺):(Base‘𝐶)⟶(Base‘𝐷))
2928ffvelcdmda 7118 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st𝐺)‘𝑥) ∈ (Base‘𝐷))
3024simprd 495 . . . . . . . . 9 (𝜑𝐻 ∈ (𝐶 Func 𝐷))
31 1st2ndbr 8083 . . . . . . . . 9 ((Rel (𝐶 Func 𝐷) ∧ 𝐻 ∈ (𝐶 Func 𝐷)) → (1st𝐻)(𝐶 Func 𝐷)(2nd𝐻))
3218, 30, 31sylancr 586 . . . . . . . 8 (𝜑 → (1st𝐻)(𝐶 Func 𝐷)(2nd𝐻))
333, 9, 32funcf1 17930 . . . . . . 7 (𝜑 → (1st𝐻):(Base‘𝐶)⟶(Base‘𝐷))
3433ffvelcdmda 7118 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st𝐻)‘𝑥) ∈ (Base‘𝐷))
352, 6nat1st2nd 18019 . . . . . . . 8 (𝜑𝑅 ∈ (⟨(1st𝐹), (2nd𝐹)⟩𝑁⟨(1st𝐺), (2nd𝐺)⟩))
3635adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝑅 ∈ (⟨(1st𝐹), (2nd𝐹)⟩𝑁⟨(1st𝐺), (2nd𝐺)⟩))
37 simpr 484 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝑥 ∈ (Base‘𝐶))
382, 36, 3, 10, 37natcl 18021 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → (𝑅𝑥) ∈ (((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐺)‘𝑥)))
392, 7nat1st2nd 18019 . . . . . . . 8 (𝜑𝑆 ∈ (⟨(1st𝐺), (2nd𝐺)⟩𝑁⟨(1st𝐻), (2nd𝐻)⟩))
4039adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝑆 ∈ (⟨(1st𝐺), (2nd𝐺)⟩𝑁⟨(1st𝐻), (2nd𝐻)⟩))
412, 40, 3, 10, 37natcl 18021 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → (𝑆𝑥) ∈ (((1st𝐺)‘𝑥)(Hom ‘𝐷)((1st𝐻)‘𝑥)))
429, 10, 4, 17, 22, 29, 34, 38, 41catcocl 17743 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((𝑆𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐻)‘𝑥))(𝑅𝑥)) ∈ (((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐻)‘𝑥)))
4342ralrimiva 3152 . . . 4 (𝜑 → ∀𝑥 ∈ (Base‘𝐶)((𝑆𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐻)‘𝑥))(𝑅𝑥)) ∈ (((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐻)‘𝑥)))
44 fvex 6933 . . . . 5 (Base‘𝐶) ∈ V
45 mptelixpg 8993 . . . . 5 ((Base‘𝐶) ∈ V → ((𝑥 ∈ (Base‘𝐶) ↦ ((𝑆𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐻)‘𝑥))(𝑅𝑥))) ∈ X𝑥 ∈ (Base‘𝐶)(((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐻)‘𝑥)) ↔ ∀𝑥 ∈ (Base‘𝐶)((𝑆𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐻)‘𝑥))(𝑅𝑥)) ∈ (((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐻)‘𝑥))))
4644, 45ax-mp 5 . . . 4 ((𝑥 ∈ (Base‘𝐶) ↦ ((𝑆𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐻)‘𝑥))(𝑅𝑥))) ∈ X𝑥 ∈ (Base‘𝐶)(((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐻)‘𝑥)) ↔ ∀𝑥 ∈ (Base‘𝐶)((𝑆𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐻)‘𝑥))(𝑅𝑥)) ∈ (((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐻)‘𝑥)))
4743, 46sylibr 234 . . 3 (𝜑 → (𝑥 ∈ (Base‘𝐶) ↦ ((𝑆𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐻)‘𝑥))(𝑅𝑥))) ∈ X𝑥 ∈ (Base‘𝐶)(((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐻)‘𝑥)))
488, 47eqeltrd 2844 . 2 (𝜑 → (𝑆(⟨𝐹, 𝐺 𝐻)𝑅) ∈ X𝑥 ∈ (Base‘𝐶)(((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐻)‘𝑥)))
4916adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → 𝐷 ∈ Cat)
5021adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → (1st𝐹):(Base‘𝐶)⟶(Base‘𝐷))
51 simpr1 1194 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → 𝑥 ∈ (Base‘𝐶))
5250, 51ffvelcdmd 7119 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → ((1st𝐹)‘𝑥) ∈ (Base‘𝐷))
53 simpr2 1195 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → 𝑦 ∈ (Base‘𝐶))
5450, 53ffvelcdmd 7119 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → ((1st𝐹)‘𝑦) ∈ (Base‘𝐷))
5528adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → (1st𝐺):(Base‘𝐶)⟶(Base‘𝐷))
5655, 53ffvelcdmd 7119 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → ((1st𝐺)‘𝑦) ∈ (Base‘𝐷))
57 eqid 2740 . . . . . . . 8 (Hom ‘𝐶) = (Hom ‘𝐶)
5820adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
593, 57, 10, 58, 51, 53funcf2 17932 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → (𝑥(2nd𝐹)𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶(((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑦)))
60 simpr3 1196 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))
6159, 60ffvelcdmd 7119 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → ((𝑥(2nd𝐹)𝑦)‘𝑓) ∈ (((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑦)))
6235adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → 𝑅 ∈ (⟨(1st𝐹), (2nd𝐹)⟩𝑁⟨(1st𝐺), (2nd𝐺)⟩))
632, 62, 3, 10, 53natcl 18021 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → (𝑅𝑦) ∈ (((1st𝐹)‘𝑦)(Hom ‘𝐷)((1st𝐺)‘𝑦)))
6433adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → (1st𝐻):(Base‘𝐶)⟶(Base‘𝐷))
6564, 53ffvelcdmd 7119 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → ((1st𝐻)‘𝑦) ∈ (Base‘𝐷))
6639adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → 𝑆 ∈ (⟨(1st𝐺), (2nd𝐺)⟩𝑁⟨(1st𝐻), (2nd𝐻)⟩))
672, 66, 3, 10, 53natcl 18021 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → (𝑆𝑦) ∈ (((1st𝐺)‘𝑦)(Hom ‘𝐷)((1st𝐻)‘𝑦)))
689, 10, 4, 49, 52, 54, 56, 61, 63, 65, 67catass 17744 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → (((𝑆𝑦)(⟨((1st𝐹)‘𝑦), ((1st𝐺)‘𝑦)⟩(comp‘𝐷)((1st𝐻)‘𝑦))(𝑅𝑦))(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐻)‘𝑦))((𝑥(2nd𝐹)𝑦)‘𝑓)) = ((𝑆𝑦)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑦)⟩(comp‘𝐷)((1st𝐻)‘𝑦))((𝑅𝑦)(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐺)‘𝑦))((𝑥(2nd𝐹)𝑦)‘𝑓))))
692, 62, 3, 57, 4, 51, 53, 60nati 18023 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → ((𝑅𝑦)(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐺)‘𝑦))((𝑥(2nd𝐹)𝑦)‘𝑓)) = (((𝑥(2nd𝐺)𝑦)‘𝑓)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐺)‘𝑦))(𝑅𝑥)))
7069oveq2d 7464 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → ((𝑆𝑦)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑦)⟩(comp‘𝐷)((1st𝐻)‘𝑦))((𝑅𝑦)(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐺)‘𝑦))((𝑥(2nd𝐹)𝑦)‘𝑓))) = ((𝑆𝑦)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑦)⟩(comp‘𝐷)((1st𝐻)‘𝑦))(((𝑥(2nd𝐺)𝑦)‘𝑓)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐺)‘𝑦))(𝑅𝑥))))
7155, 51ffvelcdmd 7119 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → ((1st𝐺)‘𝑥) ∈ (Base‘𝐷))
722, 62, 3, 10, 51natcl 18021 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → (𝑅𝑥) ∈ (((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐺)‘𝑥)))
7327adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → (1st𝐺)(𝐶 Func 𝐷)(2nd𝐺))
743, 57, 10, 73, 51, 53funcf2 17932 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → (𝑥(2nd𝐺)𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶(((1st𝐺)‘𝑥)(Hom ‘𝐷)((1st𝐺)‘𝑦)))
7574, 60ffvelcdmd 7119 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → ((𝑥(2nd𝐺)𝑦)‘𝑓) ∈ (((1st𝐺)‘𝑥)(Hom ‘𝐷)((1st𝐺)‘𝑦)))
769, 10, 4, 49, 52, 71, 56, 72, 75, 65, 67catass 17744 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → (((𝑆𝑦)(⟨((1st𝐺)‘𝑥), ((1st𝐺)‘𝑦)⟩(comp‘𝐷)((1st𝐻)‘𝑦))((𝑥(2nd𝐺)𝑦)‘𝑓))(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐻)‘𝑦))(𝑅𝑥)) = ((𝑆𝑦)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑦)⟩(comp‘𝐷)((1st𝐻)‘𝑦))(((𝑥(2nd𝐺)𝑦)‘𝑓)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐺)‘𝑦))(𝑅𝑥))))
772, 66, 3, 57, 4, 51, 53, 60nati 18023 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → ((𝑆𝑦)(⟨((1st𝐺)‘𝑥), ((1st𝐺)‘𝑦)⟩(comp‘𝐷)((1st𝐻)‘𝑦))((𝑥(2nd𝐺)𝑦)‘𝑓)) = (((𝑥(2nd𝐻)𝑦)‘𝑓)(⟨((1st𝐺)‘𝑥), ((1st𝐻)‘𝑥)⟩(comp‘𝐷)((1st𝐻)‘𝑦))(𝑆𝑥)))
7877oveq1d 7463 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → (((𝑆𝑦)(⟨((1st𝐺)‘𝑥), ((1st𝐺)‘𝑦)⟩(comp‘𝐷)((1st𝐻)‘𝑦))((𝑥(2nd𝐺)𝑦)‘𝑓))(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐻)‘𝑦))(𝑅𝑥)) = ((((𝑥(2nd𝐻)𝑦)‘𝑓)(⟨((1st𝐺)‘𝑥), ((1st𝐻)‘𝑥)⟩(comp‘𝐷)((1st𝐻)‘𝑦))(𝑆𝑥))(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐻)‘𝑦))(𝑅𝑥)))
7970, 76, 783eqtr2d 2786 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → ((𝑆𝑦)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑦)⟩(comp‘𝐷)((1st𝐻)‘𝑦))((𝑅𝑦)(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐺)‘𝑦))((𝑥(2nd𝐹)𝑦)‘𝑓))) = ((((𝑥(2nd𝐻)𝑦)‘𝑓)(⟨((1st𝐺)‘𝑥), ((1st𝐻)‘𝑥)⟩(comp‘𝐷)((1st𝐻)‘𝑦))(𝑆𝑥))(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐻)‘𝑦))(𝑅𝑥)))
8064, 51ffvelcdmd 7119 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → ((1st𝐻)‘𝑥) ∈ (Base‘𝐷))
812, 66, 3, 10, 51natcl 18021 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → (𝑆𝑥) ∈ (((1st𝐺)‘𝑥)(Hom ‘𝐷)((1st𝐻)‘𝑥)))
8232adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → (1st𝐻)(𝐶 Func 𝐷)(2nd𝐻))
833, 57, 10, 82, 51, 53funcf2 17932 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → (𝑥(2nd𝐻)𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶(((1st𝐻)‘𝑥)(Hom ‘𝐷)((1st𝐻)‘𝑦)))
8483, 60ffvelcdmd 7119 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → ((𝑥(2nd𝐻)𝑦)‘𝑓) ∈ (((1st𝐻)‘𝑥)(Hom ‘𝐷)((1st𝐻)‘𝑦)))
859, 10, 4, 49, 52, 71, 80, 72, 81, 65, 84catass 17744 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → ((((𝑥(2nd𝐻)𝑦)‘𝑓)(⟨((1st𝐺)‘𝑥), ((1st𝐻)‘𝑥)⟩(comp‘𝐷)((1st𝐻)‘𝑦))(𝑆𝑥))(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐻)‘𝑦))(𝑅𝑥)) = (((𝑥(2nd𝐻)𝑦)‘𝑓)(⟨((1st𝐹)‘𝑥), ((1st𝐻)‘𝑥)⟩(comp‘𝐷)((1st𝐻)‘𝑦))((𝑆𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐻)‘𝑥))(𝑅𝑥))))
8668, 79, 853eqtrd 2784 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → (((𝑆𝑦)(⟨((1st𝐹)‘𝑦), ((1st𝐺)‘𝑦)⟩(comp‘𝐷)((1st𝐻)‘𝑦))(𝑅𝑦))(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐻)‘𝑦))((𝑥(2nd𝐹)𝑦)‘𝑓)) = (((𝑥(2nd𝐻)𝑦)‘𝑓)(⟨((1st𝐹)‘𝑥), ((1st𝐻)‘𝑥)⟩(comp‘𝐷)((1st𝐻)‘𝑦))((𝑆𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐻)‘𝑥))(𝑅𝑥))))
876adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → 𝑅 ∈ (𝐹𝑁𝐺))
887adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → 𝑆 ∈ (𝐺𝑁𝐻))
891, 2, 3, 4, 5, 87, 88, 53fuccoval 18033 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → ((𝑆(⟨𝐹, 𝐺 𝐻)𝑅)‘𝑦) = ((𝑆𝑦)(⟨((1st𝐹)‘𝑦), ((1st𝐺)‘𝑦)⟩(comp‘𝐷)((1st𝐻)‘𝑦))(𝑅𝑦)))
9089oveq1d 7463 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → (((𝑆(⟨𝐹, 𝐺 𝐻)𝑅)‘𝑦)(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐻)‘𝑦))((𝑥(2nd𝐹)𝑦)‘𝑓)) = (((𝑆𝑦)(⟨((1st𝐹)‘𝑦), ((1st𝐺)‘𝑦)⟩(comp‘𝐷)((1st𝐻)‘𝑦))(𝑅𝑦))(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐻)‘𝑦))((𝑥(2nd𝐹)𝑦)‘𝑓)))
911, 2, 3, 4, 5, 87, 88, 51fuccoval 18033 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → ((𝑆(⟨𝐹, 𝐺 𝐻)𝑅)‘𝑥) = ((𝑆𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐻)‘𝑥))(𝑅𝑥)))
9291oveq2d 7464 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → (((𝑥(2nd𝐻)𝑦)‘𝑓)(⟨((1st𝐹)‘𝑥), ((1st𝐻)‘𝑥)⟩(comp‘𝐷)((1st𝐻)‘𝑦))((𝑆(⟨𝐹, 𝐺 𝐻)𝑅)‘𝑥)) = (((𝑥(2nd𝐻)𝑦)‘𝑓)(⟨((1st𝐹)‘𝑥), ((1st𝐻)‘𝑥)⟩(comp‘𝐷)((1st𝐻)‘𝑦))((𝑆𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐻)‘𝑥))(𝑅𝑥))))
9386, 90, 923eqtr4d 2790 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → (((𝑆(⟨𝐹, 𝐺 𝐻)𝑅)‘𝑦)(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐻)‘𝑦))((𝑥(2nd𝐹)𝑦)‘𝑓)) = (((𝑥(2nd𝐻)𝑦)‘𝑓)(⟨((1st𝐹)‘𝑥), ((1st𝐻)‘𝑥)⟩(comp‘𝐷)((1st𝐻)‘𝑦))((𝑆(⟨𝐹, 𝐺 𝐻)𝑅)‘𝑥)))
9493ralrimivvva 3211 . 2 (𝜑 → ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(((𝑆(⟨𝐹, 𝐺 𝐻)𝑅)‘𝑦)(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐻)‘𝑦))((𝑥(2nd𝐹)𝑦)‘𝑓)) = (((𝑥(2nd𝐻)𝑦)‘𝑓)(⟨((1st𝐹)‘𝑥), ((1st𝐻)‘𝑥)⟩(comp‘𝐷)((1st𝐻)‘𝑦))((𝑆(⟨𝐹, 𝐺 𝐻)𝑅)‘𝑥)))
952, 3, 57, 10, 4, 13, 30isnat2 18016 . 2 (𝜑 → ((𝑆(⟨𝐹, 𝐺 𝐻)𝑅) ∈ (𝐹𝑁𝐻) ↔ ((𝑆(⟨𝐹, 𝐺 𝐻)𝑅) ∈ X𝑥 ∈ (Base‘𝐶)(((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐻)‘𝑥)) ∧ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(((𝑆(⟨𝐹, 𝐺 𝐻)𝑅)‘𝑦)(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐻)‘𝑦))((𝑥(2nd𝐹)𝑦)‘𝑓)) = (((𝑥(2nd𝐻)𝑦)‘𝑓)(⟨((1st𝐹)‘𝑥), ((1st𝐻)‘𝑥)⟩(comp‘𝐷)((1st𝐻)‘𝑦))((𝑆(⟨𝐹, 𝐺 𝐻)𝑅)‘𝑥)))))
9648, 94, 95mpbir2and 712 1 (𝜑 → (𝑆(⟨𝐹, 𝐺 𝐻)𝑅) ∈ (𝐹𝑁𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  Vcvv 3488  cop 4654   class class class wbr 5166  cmpt 5249  Rel wrel 5705  wf 6569  cfv 6573  (class class class)co 7448  1st c1st 8028  2nd c2nd 8029  Xcixp 8955  Basecbs 17258  Hom chom 17322  compcco 17323  Catccat 17722   Func cfunc 17918   Nat cnat 18009   FuncCat cfuc 18010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-struct 17194  df-slot 17229  df-ndx 17241  df-base 17259  df-hom 17335  df-cco 17336  df-cat 17726  df-func 17922  df-nat 18011  df-fuc 18012
This theorem is referenced by:  fucass  18038  fuccatid  18039  evlfcllem  18291  yonedalem3b  18349
  Copyright terms: Public domain W3C validator