MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fuccocl Structured version   Visualization version   GIF version

Theorem fuccocl 17874
Description: The composition of two natural transformations is a natural transformation. Remark 6.14(a) in [Adamek] p. 87. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
fuccocl.q 𝑄 = (𝐶 FuncCat 𝐷)
fuccocl.n 𝑁 = (𝐶 Nat 𝐷)
fuccocl.x = (comp‘𝑄)
fuccocl.r (𝜑𝑅 ∈ (𝐹𝑁𝐺))
fuccocl.s (𝜑𝑆 ∈ (𝐺𝑁𝐻))
Assertion
Ref Expression
fuccocl (𝜑 → (𝑆(⟨𝐹, 𝐺 𝐻)𝑅) ∈ (𝐹𝑁𝐻))

Proof of Theorem fuccocl
Dummy variables 𝑥 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fuccocl.q . . . 4 𝑄 = (𝐶 FuncCat 𝐷)
2 fuccocl.n . . . 4 𝑁 = (𝐶 Nat 𝐷)
3 eqid 2731 . . . 4 (Base‘𝐶) = (Base‘𝐶)
4 eqid 2731 . . . 4 (comp‘𝐷) = (comp‘𝐷)
5 fuccocl.x . . . 4 = (comp‘𝑄)
6 fuccocl.r . . . 4 (𝜑𝑅 ∈ (𝐹𝑁𝐺))
7 fuccocl.s . . . 4 (𝜑𝑆 ∈ (𝐺𝑁𝐻))
81, 2, 3, 4, 5, 6, 7fucco 17872 . . 3 (𝜑 → (𝑆(⟨𝐹, 𝐺 𝐻)𝑅) = (𝑥 ∈ (Base‘𝐶) ↦ ((𝑆𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐻)‘𝑥))(𝑅𝑥))))
9 eqid 2731 . . . . . 6 (Base‘𝐷) = (Base‘𝐷)
10 eqid 2731 . . . . . 6 (Hom ‘𝐷) = (Hom ‘𝐷)
112natrcl 17860 . . . . . . . . . . 11 (𝑅 ∈ (𝐹𝑁𝐺) → (𝐹 ∈ (𝐶 Func 𝐷) ∧ 𝐺 ∈ (𝐶 Func 𝐷)))
126, 11syl 17 . . . . . . . . . 10 (𝜑 → (𝐹 ∈ (𝐶 Func 𝐷) ∧ 𝐺 ∈ (𝐶 Func 𝐷)))
1312simpld 494 . . . . . . . . 9 (𝜑𝐹 ∈ (𝐶 Func 𝐷))
14 funcrcl 17770 . . . . . . . . 9 (𝐹 ∈ (𝐶 Func 𝐷) → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
1513, 14syl 17 . . . . . . . 8 (𝜑 → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
1615simprd 495 . . . . . . 7 (𝜑𝐷 ∈ Cat)
1716adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐷 ∈ Cat)
18 relfunc 17769 . . . . . . . . 9 Rel (𝐶 Func 𝐷)
19 1st2ndbr 7974 . . . . . . . . 9 ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
2018, 13, 19sylancr 587 . . . . . . . 8 (𝜑 → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
213, 9, 20funcf1 17773 . . . . . . 7 (𝜑 → (1st𝐹):(Base‘𝐶)⟶(Base‘𝐷))
2221ffvelcdmda 7017 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st𝐹)‘𝑥) ∈ (Base‘𝐷))
232natrcl 17860 . . . . . . . . . . 11 (𝑆 ∈ (𝐺𝑁𝐻) → (𝐺 ∈ (𝐶 Func 𝐷) ∧ 𝐻 ∈ (𝐶 Func 𝐷)))
247, 23syl 17 . . . . . . . . . 10 (𝜑 → (𝐺 ∈ (𝐶 Func 𝐷) ∧ 𝐻 ∈ (𝐶 Func 𝐷)))
2524simpld 494 . . . . . . . . 9 (𝜑𝐺 ∈ (𝐶 Func 𝐷))
26 1st2ndbr 7974 . . . . . . . . 9 ((Rel (𝐶 Func 𝐷) ∧ 𝐺 ∈ (𝐶 Func 𝐷)) → (1st𝐺)(𝐶 Func 𝐷)(2nd𝐺))
2718, 25, 26sylancr 587 . . . . . . . 8 (𝜑 → (1st𝐺)(𝐶 Func 𝐷)(2nd𝐺))
283, 9, 27funcf1 17773 . . . . . . 7 (𝜑 → (1st𝐺):(Base‘𝐶)⟶(Base‘𝐷))
2928ffvelcdmda 7017 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st𝐺)‘𝑥) ∈ (Base‘𝐷))
3024simprd 495 . . . . . . . . 9 (𝜑𝐻 ∈ (𝐶 Func 𝐷))
31 1st2ndbr 7974 . . . . . . . . 9 ((Rel (𝐶 Func 𝐷) ∧ 𝐻 ∈ (𝐶 Func 𝐷)) → (1st𝐻)(𝐶 Func 𝐷)(2nd𝐻))
3218, 30, 31sylancr 587 . . . . . . . 8 (𝜑 → (1st𝐻)(𝐶 Func 𝐷)(2nd𝐻))
333, 9, 32funcf1 17773 . . . . . . 7 (𝜑 → (1st𝐻):(Base‘𝐶)⟶(Base‘𝐷))
3433ffvelcdmda 7017 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st𝐻)‘𝑥) ∈ (Base‘𝐷))
352, 6nat1st2nd 17861 . . . . . . . 8 (𝜑𝑅 ∈ (⟨(1st𝐹), (2nd𝐹)⟩𝑁⟨(1st𝐺), (2nd𝐺)⟩))
3635adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝑅 ∈ (⟨(1st𝐹), (2nd𝐹)⟩𝑁⟨(1st𝐺), (2nd𝐺)⟩))
37 simpr 484 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝑥 ∈ (Base‘𝐶))
382, 36, 3, 10, 37natcl 17863 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → (𝑅𝑥) ∈ (((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐺)‘𝑥)))
392, 7nat1st2nd 17861 . . . . . . . 8 (𝜑𝑆 ∈ (⟨(1st𝐺), (2nd𝐺)⟩𝑁⟨(1st𝐻), (2nd𝐻)⟩))
4039adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝑆 ∈ (⟨(1st𝐺), (2nd𝐺)⟩𝑁⟨(1st𝐻), (2nd𝐻)⟩))
412, 40, 3, 10, 37natcl 17863 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → (𝑆𝑥) ∈ (((1st𝐺)‘𝑥)(Hom ‘𝐷)((1st𝐻)‘𝑥)))
429, 10, 4, 17, 22, 29, 34, 38, 41catcocl 17591 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((𝑆𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐻)‘𝑥))(𝑅𝑥)) ∈ (((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐻)‘𝑥)))
4342ralrimiva 3124 . . . 4 (𝜑 → ∀𝑥 ∈ (Base‘𝐶)((𝑆𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐻)‘𝑥))(𝑅𝑥)) ∈ (((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐻)‘𝑥)))
44 fvex 6835 . . . . 5 (Base‘𝐶) ∈ V
45 mptelixpg 8859 . . . . 5 ((Base‘𝐶) ∈ V → ((𝑥 ∈ (Base‘𝐶) ↦ ((𝑆𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐻)‘𝑥))(𝑅𝑥))) ∈ X𝑥 ∈ (Base‘𝐶)(((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐻)‘𝑥)) ↔ ∀𝑥 ∈ (Base‘𝐶)((𝑆𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐻)‘𝑥))(𝑅𝑥)) ∈ (((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐻)‘𝑥))))
4644, 45ax-mp 5 . . . 4 ((𝑥 ∈ (Base‘𝐶) ↦ ((𝑆𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐻)‘𝑥))(𝑅𝑥))) ∈ X𝑥 ∈ (Base‘𝐶)(((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐻)‘𝑥)) ↔ ∀𝑥 ∈ (Base‘𝐶)((𝑆𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐻)‘𝑥))(𝑅𝑥)) ∈ (((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐻)‘𝑥)))
4743, 46sylibr 234 . . 3 (𝜑 → (𝑥 ∈ (Base‘𝐶) ↦ ((𝑆𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐻)‘𝑥))(𝑅𝑥))) ∈ X𝑥 ∈ (Base‘𝐶)(((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐻)‘𝑥)))
488, 47eqeltrd 2831 . 2 (𝜑 → (𝑆(⟨𝐹, 𝐺 𝐻)𝑅) ∈ X𝑥 ∈ (Base‘𝐶)(((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐻)‘𝑥)))
4916adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → 𝐷 ∈ Cat)
5021adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → (1st𝐹):(Base‘𝐶)⟶(Base‘𝐷))
51 simpr1 1195 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → 𝑥 ∈ (Base‘𝐶))
5250, 51ffvelcdmd 7018 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → ((1st𝐹)‘𝑥) ∈ (Base‘𝐷))
53 simpr2 1196 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → 𝑦 ∈ (Base‘𝐶))
5450, 53ffvelcdmd 7018 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → ((1st𝐹)‘𝑦) ∈ (Base‘𝐷))
5528adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → (1st𝐺):(Base‘𝐶)⟶(Base‘𝐷))
5655, 53ffvelcdmd 7018 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → ((1st𝐺)‘𝑦) ∈ (Base‘𝐷))
57 eqid 2731 . . . . . . . 8 (Hom ‘𝐶) = (Hom ‘𝐶)
5820adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
593, 57, 10, 58, 51, 53funcf2 17775 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → (𝑥(2nd𝐹)𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶(((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑦)))
60 simpr3 1197 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))
6159, 60ffvelcdmd 7018 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → ((𝑥(2nd𝐹)𝑦)‘𝑓) ∈ (((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑦)))
6235adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → 𝑅 ∈ (⟨(1st𝐹), (2nd𝐹)⟩𝑁⟨(1st𝐺), (2nd𝐺)⟩))
632, 62, 3, 10, 53natcl 17863 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → (𝑅𝑦) ∈ (((1st𝐹)‘𝑦)(Hom ‘𝐷)((1st𝐺)‘𝑦)))
6433adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → (1st𝐻):(Base‘𝐶)⟶(Base‘𝐷))
6564, 53ffvelcdmd 7018 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → ((1st𝐻)‘𝑦) ∈ (Base‘𝐷))
6639adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → 𝑆 ∈ (⟨(1st𝐺), (2nd𝐺)⟩𝑁⟨(1st𝐻), (2nd𝐻)⟩))
672, 66, 3, 10, 53natcl 17863 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → (𝑆𝑦) ∈ (((1st𝐺)‘𝑦)(Hom ‘𝐷)((1st𝐻)‘𝑦)))
689, 10, 4, 49, 52, 54, 56, 61, 63, 65, 67catass 17592 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → (((𝑆𝑦)(⟨((1st𝐹)‘𝑦), ((1st𝐺)‘𝑦)⟩(comp‘𝐷)((1st𝐻)‘𝑦))(𝑅𝑦))(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐻)‘𝑦))((𝑥(2nd𝐹)𝑦)‘𝑓)) = ((𝑆𝑦)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑦)⟩(comp‘𝐷)((1st𝐻)‘𝑦))((𝑅𝑦)(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐺)‘𝑦))((𝑥(2nd𝐹)𝑦)‘𝑓))))
692, 62, 3, 57, 4, 51, 53, 60nati 17865 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → ((𝑅𝑦)(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐺)‘𝑦))((𝑥(2nd𝐹)𝑦)‘𝑓)) = (((𝑥(2nd𝐺)𝑦)‘𝑓)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐺)‘𝑦))(𝑅𝑥)))
7069oveq2d 7362 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → ((𝑆𝑦)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑦)⟩(comp‘𝐷)((1st𝐻)‘𝑦))((𝑅𝑦)(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐺)‘𝑦))((𝑥(2nd𝐹)𝑦)‘𝑓))) = ((𝑆𝑦)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑦)⟩(comp‘𝐷)((1st𝐻)‘𝑦))(((𝑥(2nd𝐺)𝑦)‘𝑓)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐺)‘𝑦))(𝑅𝑥))))
7155, 51ffvelcdmd 7018 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → ((1st𝐺)‘𝑥) ∈ (Base‘𝐷))
722, 62, 3, 10, 51natcl 17863 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → (𝑅𝑥) ∈ (((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐺)‘𝑥)))
7327adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → (1st𝐺)(𝐶 Func 𝐷)(2nd𝐺))
743, 57, 10, 73, 51, 53funcf2 17775 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → (𝑥(2nd𝐺)𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶(((1st𝐺)‘𝑥)(Hom ‘𝐷)((1st𝐺)‘𝑦)))
7574, 60ffvelcdmd 7018 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → ((𝑥(2nd𝐺)𝑦)‘𝑓) ∈ (((1st𝐺)‘𝑥)(Hom ‘𝐷)((1st𝐺)‘𝑦)))
769, 10, 4, 49, 52, 71, 56, 72, 75, 65, 67catass 17592 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → (((𝑆𝑦)(⟨((1st𝐺)‘𝑥), ((1st𝐺)‘𝑦)⟩(comp‘𝐷)((1st𝐻)‘𝑦))((𝑥(2nd𝐺)𝑦)‘𝑓))(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐻)‘𝑦))(𝑅𝑥)) = ((𝑆𝑦)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑦)⟩(comp‘𝐷)((1st𝐻)‘𝑦))(((𝑥(2nd𝐺)𝑦)‘𝑓)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐺)‘𝑦))(𝑅𝑥))))
772, 66, 3, 57, 4, 51, 53, 60nati 17865 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → ((𝑆𝑦)(⟨((1st𝐺)‘𝑥), ((1st𝐺)‘𝑦)⟩(comp‘𝐷)((1st𝐻)‘𝑦))((𝑥(2nd𝐺)𝑦)‘𝑓)) = (((𝑥(2nd𝐻)𝑦)‘𝑓)(⟨((1st𝐺)‘𝑥), ((1st𝐻)‘𝑥)⟩(comp‘𝐷)((1st𝐻)‘𝑦))(𝑆𝑥)))
7877oveq1d 7361 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → (((𝑆𝑦)(⟨((1st𝐺)‘𝑥), ((1st𝐺)‘𝑦)⟩(comp‘𝐷)((1st𝐻)‘𝑦))((𝑥(2nd𝐺)𝑦)‘𝑓))(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐻)‘𝑦))(𝑅𝑥)) = ((((𝑥(2nd𝐻)𝑦)‘𝑓)(⟨((1st𝐺)‘𝑥), ((1st𝐻)‘𝑥)⟩(comp‘𝐷)((1st𝐻)‘𝑦))(𝑆𝑥))(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐻)‘𝑦))(𝑅𝑥)))
7970, 76, 783eqtr2d 2772 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → ((𝑆𝑦)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑦)⟩(comp‘𝐷)((1st𝐻)‘𝑦))((𝑅𝑦)(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐺)‘𝑦))((𝑥(2nd𝐹)𝑦)‘𝑓))) = ((((𝑥(2nd𝐻)𝑦)‘𝑓)(⟨((1st𝐺)‘𝑥), ((1st𝐻)‘𝑥)⟩(comp‘𝐷)((1st𝐻)‘𝑦))(𝑆𝑥))(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐻)‘𝑦))(𝑅𝑥)))
8064, 51ffvelcdmd 7018 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → ((1st𝐻)‘𝑥) ∈ (Base‘𝐷))
812, 66, 3, 10, 51natcl 17863 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → (𝑆𝑥) ∈ (((1st𝐺)‘𝑥)(Hom ‘𝐷)((1st𝐻)‘𝑥)))
8232adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → (1st𝐻)(𝐶 Func 𝐷)(2nd𝐻))
833, 57, 10, 82, 51, 53funcf2 17775 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → (𝑥(2nd𝐻)𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶(((1st𝐻)‘𝑥)(Hom ‘𝐷)((1st𝐻)‘𝑦)))
8483, 60ffvelcdmd 7018 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → ((𝑥(2nd𝐻)𝑦)‘𝑓) ∈ (((1st𝐻)‘𝑥)(Hom ‘𝐷)((1st𝐻)‘𝑦)))
859, 10, 4, 49, 52, 71, 80, 72, 81, 65, 84catass 17592 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → ((((𝑥(2nd𝐻)𝑦)‘𝑓)(⟨((1st𝐺)‘𝑥), ((1st𝐻)‘𝑥)⟩(comp‘𝐷)((1st𝐻)‘𝑦))(𝑆𝑥))(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐻)‘𝑦))(𝑅𝑥)) = (((𝑥(2nd𝐻)𝑦)‘𝑓)(⟨((1st𝐹)‘𝑥), ((1st𝐻)‘𝑥)⟩(comp‘𝐷)((1st𝐻)‘𝑦))((𝑆𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐻)‘𝑥))(𝑅𝑥))))
8668, 79, 853eqtrd 2770 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → (((𝑆𝑦)(⟨((1st𝐹)‘𝑦), ((1st𝐺)‘𝑦)⟩(comp‘𝐷)((1st𝐻)‘𝑦))(𝑅𝑦))(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐻)‘𝑦))((𝑥(2nd𝐹)𝑦)‘𝑓)) = (((𝑥(2nd𝐻)𝑦)‘𝑓)(⟨((1st𝐹)‘𝑥), ((1st𝐻)‘𝑥)⟩(comp‘𝐷)((1st𝐻)‘𝑦))((𝑆𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐻)‘𝑥))(𝑅𝑥))))
876adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → 𝑅 ∈ (𝐹𝑁𝐺))
887adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → 𝑆 ∈ (𝐺𝑁𝐻))
891, 2, 3, 4, 5, 87, 88, 53fuccoval 17873 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → ((𝑆(⟨𝐹, 𝐺 𝐻)𝑅)‘𝑦) = ((𝑆𝑦)(⟨((1st𝐹)‘𝑦), ((1st𝐺)‘𝑦)⟩(comp‘𝐷)((1st𝐻)‘𝑦))(𝑅𝑦)))
9089oveq1d 7361 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → (((𝑆(⟨𝐹, 𝐺 𝐻)𝑅)‘𝑦)(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐻)‘𝑦))((𝑥(2nd𝐹)𝑦)‘𝑓)) = (((𝑆𝑦)(⟨((1st𝐹)‘𝑦), ((1st𝐺)‘𝑦)⟩(comp‘𝐷)((1st𝐻)‘𝑦))(𝑅𝑦))(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐻)‘𝑦))((𝑥(2nd𝐹)𝑦)‘𝑓)))
911, 2, 3, 4, 5, 87, 88, 51fuccoval 17873 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → ((𝑆(⟨𝐹, 𝐺 𝐻)𝑅)‘𝑥) = ((𝑆𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐻)‘𝑥))(𝑅𝑥)))
9291oveq2d 7362 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → (((𝑥(2nd𝐻)𝑦)‘𝑓)(⟨((1st𝐹)‘𝑥), ((1st𝐻)‘𝑥)⟩(comp‘𝐷)((1st𝐻)‘𝑦))((𝑆(⟨𝐹, 𝐺 𝐻)𝑅)‘𝑥)) = (((𝑥(2nd𝐻)𝑦)‘𝑓)(⟨((1st𝐹)‘𝑥), ((1st𝐻)‘𝑥)⟩(comp‘𝐷)((1st𝐻)‘𝑦))((𝑆𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐻)‘𝑥))(𝑅𝑥))))
9386, 90, 923eqtr4d 2776 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → (((𝑆(⟨𝐹, 𝐺 𝐻)𝑅)‘𝑦)(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐻)‘𝑦))((𝑥(2nd𝐹)𝑦)‘𝑓)) = (((𝑥(2nd𝐻)𝑦)‘𝑓)(⟨((1st𝐹)‘𝑥), ((1st𝐻)‘𝑥)⟩(comp‘𝐷)((1st𝐻)‘𝑦))((𝑆(⟨𝐹, 𝐺 𝐻)𝑅)‘𝑥)))
9493ralrimivvva 3178 . 2 (𝜑 → ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(((𝑆(⟨𝐹, 𝐺 𝐻)𝑅)‘𝑦)(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐻)‘𝑦))((𝑥(2nd𝐹)𝑦)‘𝑓)) = (((𝑥(2nd𝐻)𝑦)‘𝑓)(⟨((1st𝐹)‘𝑥), ((1st𝐻)‘𝑥)⟩(comp‘𝐷)((1st𝐻)‘𝑦))((𝑆(⟨𝐹, 𝐺 𝐻)𝑅)‘𝑥)))
952, 3, 57, 10, 4, 13, 30isnat2 17858 . 2 (𝜑 → ((𝑆(⟨𝐹, 𝐺 𝐻)𝑅) ∈ (𝐹𝑁𝐻) ↔ ((𝑆(⟨𝐹, 𝐺 𝐻)𝑅) ∈ X𝑥 ∈ (Base‘𝐶)(((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐻)‘𝑥)) ∧ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(((𝑆(⟨𝐹, 𝐺 𝐻)𝑅)‘𝑦)(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐻)‘𝑦))((𝑥(2nd𝐹)𝑦)‘𝑓)) = (((𝑥(2nd𝐻)𝑦)‘𝑓)(⟨((1st𝐹)‘𝑥), ((1st𝐻)‘𝑥)⟩(comp‘𝐷)((1st𝐻)‘𝑦))((𝑆(⟨𝐹, 𝐺 𝐻)𝑅)‘𝑥)))))
9648, 94, 95mpbir2and 713 1 (𝜑 → (𝑆(⟨𝐹, 𝐺 𝐻)𝑅) ∈ (𝐹𝑁𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047  Vcvv 3436  cop 4582   class class class wbr 5091  cmpt 5172  Rel wrel 5621  wf 6477  cfv 6481  (class class class)co 7346  1st c1st 7919  2nd c2nd 7920  Xcixp 8821  Basecbs 17120  Hom chom 17172  compcco 17173  Catccat 17570   Func cfunc 17761   Nat cnat 17851   FuncCat cfuc 17852
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-fz 13408  df-struct 17058  df-slot 17093  df-ndx 17105  df-base 17121  df-hom 17185  df-cco 17186  df-cat 17574  df-func 17765  df-nat 17853  df-fuc 17854
This theorem is referenced by:  fucass  17878  fuccatid  17879  evlfcllem  18127  yonedalem3b  18185  xpcfuccocl  49295  fucoppcco  49447
  Copyright terms: Public domain W3C validator