MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fuccocl Structured version   Visualization version   GIF version

Theorem fuccocl 17853
Description: The composition of two natural transformations is a natural transformation. Remark 6.14(a) in [Adamek] p. 87. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
fuccocl.q 𝑄 = (𝐶 FuncCat 𝐷)
fuccocl.n 𝑁 = (𝐶 Nat 𝐷)
fuccocl.x = (comp‘𝑄)
fuccocl.r (𝜑𝑅 ∈ (𝐹𝑁𝐺))
fuccocl.s (𝜑𝑆 ∈ (𝐺𝑁𝐻))
Assertion
Ref Expression
fuccocl (𝜑 → (𝑆(⟨𝐹, 𝐺 𝐻)𝑅) ∈ (𝐹𝑁𝐻))

Proof of Theorem fuccocl
Dummy variables 𝑥 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fuccocl.q . . . 4 𝑄 = (𝐶 FuncCat 𝐷)
2 fuccocl.n . . . 4 𝑁 = (𝐶 Nat 𝐷)
3 eqid 2736 . . . 4 (Base‘𝐶) = (Base‘𝐶)
4 eqid 2736 . . . 4 (comp‘𝐷) = (comp‘𝐷)
5 fuccocl.x . . . 4 = (comp‘𝑄)
6 fuccocl.r . . . 4 (𝜑𝑅 ∈ (𝐹𝑁𝐺))
7 fuccocl.s . . . 4 (𝜑𝑆 ∈ (𝐺𝑁𝐻))
81, 2, 3, 4, 5, 6, 7fucco 17851 . . 3 (𝜑 → (𝑆(⟨𝐹, 𝐺 𝐻)𝑅) = (𝑥 ∈ (Base‘𝐶) ↦ ((𝑆𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐻)‘𝑥))(𝑅𝑥))))
9 eqid 2736 . . . . . 6 (Base‘𝐷) = (Base‘𝐷)
10 eqid 2736 . . . . . 6 (Hom ‘𝐷) = (Hom ‘𝐷)
112natrcl 17837 . . . . . . . . . . 11 (𝑅 ∈ (𝐹𝑁𝐺) → (𝐹 ∈ (𝐶 Func 𝐷) ∧ 𝐺 ∈ (𝐶 Func 𝐷)))
126, 11syl 17 . . . . . . . . . 10 (𝜑 → (𝐹 ∈ (𝐶 Func 𝐷) ∧ 𝐺 ∈ (𝐶 Func 𝐷)))
1312simpld 495 . . . . . . . . 9 (𝜑𝐹 ∈ (𝐶 Func 𝐷))
14 funcrcl 17749 . . . . . . . . 9 (𝐹 ∈ (𝐶 Func 𝐷) → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
1513, 14syl 17 . . . . . . . 8 (𝜑 → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
1615simprd 496 . . . . . . 7 (𝜑𝐷 ∈ Cat)
1716adantr 481 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐷 ∈ Cat)
18 relfunc 17748 . . . . . . . . 9 Rel (𝐶 Func 𝐷)
19 1st2ndbr 7974 . . . . . . . . 9 ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
2018, 13, 19sylancr 587 . . . . . . . 8 (𝜑 → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
213, 9, 20funcf1 17752 . . . . . . 7 (𝜑 → (1st𝐹):(Base‘𝐶)⟶(Base‘𝐷))
2221ffvelcdmda 7035 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st𝐹)‘𝑥) ∈ (Base‘𝐷))
232natrcl 17837 . . . . . . . . . . 11 (𝑆 ∈ (𝐺𝑁𝐻) → (𝐺 ∈ (𝐶 Func 𝐷) ∧ 𝐻 ∈ (𝐶 Func 𝐷)))
247, 23syl 17 . . . . . . . . . 10 (𝜑 → (𝐺 ∈ (𝐶 Func 𝐷) ∧ 𝐻 ∈ (𝐶 Func 𝐷)))
2524simpld 495 . . . . . . . . 9 (𝜑𝐺 ∈ (𝐶 Func 𝐷))
26 1st2ndbr 7974 . . . . . . . . 9 ((Rel (𝐶 Func 𝐷) ∧ 𝐺 ∈ (𝐶 Func 𝐷)) → (1st𝐺)(𝐶 Func 𝐷)(2nd𝐺))
2718, 25, 26sylancr 587 . . . . . . . 8 (𝜑 → (1st𝐺)(𝐶 Func 𝐷)(2nd𝐺))
283, 9, 27funcf1 17752 . . . . . . 7 (𝜑 → (1st𝐺):(Base‘𝐶)⟶(Base‘𝐷))
2928ffvelcdmda 7035 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st𝐺)‘𝑥) ∈ (Base‘𝐷))
3024simprd 496 . . . . . . . . 9 (𝜑𝐻 ∈ (𝐶 Func 𝐷))
31 1st2ndbr 7974 . . . . . . . . 9 ((Rel (𝐶 Func 𝐷) ∧ 𝐻 ∈ (𝐶 Func 𝐷)) → (1st𝐻)(𝐶 Func 𝐷)(2nd𝐻))
3218, 30, 31sylancr 587 . . . . . . . 8 (𝜑 → (1st𝐻)(𝐶 Func 𝐷)(2nd𝐻))
333, 9, 32funcf1 17752 . . . . . . 7 (𝜑 → (1st𝐻):(Base‘𝐶)⟶(Base‘𝐷))
3433ffvelcdmda 7035 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st𝐻)‘𝑥) ∈ (Base‘𝐷))
352, 6nat1st2nd 17838 . . . . . . . 8 (𝜑𝑅 ∈ (⟨(1st𝐹), (2nd𝐹)⟩𝑁⟨(1st𝐺), (2nd𝐺)⟩))
3635adantr 481 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝑅 ∈ (⟨(1st𝐹), (2nd𝐹)⟩𝑁⟨(1st𝐺), (2nd𝐺)⟩))
37 simpr 485 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝑥 ∈ (Base‘𝐶))
382, 36, 3, 10, 37natcl 17840 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → (𝑅𝑥) ∈ (((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐺)‘𝑥)))
392, 7nat1st2nd 17838 . . . . . . . 8 (𝜑𝑆 ∈ (⟨(1st𝐺), (2nd𝐺)⟩𝑁⟨(1st𝐻), (2nd𝐻)⟩))
4039adantr 481 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝑆 ∈ (⟨(1st𝐺), (2nd𝐺)⟩𝑁⟨(1st𝐻), (2nd𝐻)⟩))
412, 40, 3, 10, 37natcl 17840 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → (𝑆𝑥) ∈ (((1st𝐺)‘𝑥)(Hom ‘𝐷)((1st𝐻)‘𝑥)))
429, 10, 4, 17, 22, 29, 34, 38, 41catcocl 17565 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((𝑆𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐻)‘𝑥))(𝑅𝑥)) ∈ (((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐻)‘𝑥)))
4342ralrimiva 3143 . . . 4 (𝜑 → ∀𝑥 ∈ (Base‘𝐶)((𝑆𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐻)‘𝑥))(𝑅𝑥)) ∈ (((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐻)‘𝑥)))
44 fvex 6855 . . . . 5 (Base‘𝐶) ∈ V
45 mptelixpg 8873 . . . . 5 ((Base‘𝐶) ∈ V → ((𝑥 ∈ (Base‘𝐶) ↦ ((𝑆𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐻)‘𝑥))(𝑅𝑥))) ∈ X𝑥 ∈ (Base‘𝐶)(((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐻)‘𝑥)) ↔ ∀𝑥 ∈ (Base‘𝐶)((𝑆𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐻)‘𝑥))(𝑅𝑥)) ∈ (((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐻)‘𝑥))))
4644, 45ax-mp 5 . . . 4 ((𝑥 ∈ (Base‘𝐶) ↦ ((𝑆𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐻)‘𝑥))(𝑅𝑥))) ∈ X𝑥 ∈ (Base‘𝐶)(((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐻)‘𝑥)) ↔ ∀𝑥 ∈ (Base‘𝐶)((𝑆𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐻)‘𝑥))(𝑅𝑥)) ∈ (((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐻)‘𝑥)))
4743, 46sylibr 233 . . 3 (𝜑 → (𝑥 ∈ (Base‘𝐶) ↦ ((𝑆𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐻)‘𝑥))(𝑅𝑥))) ∈ X𝑥 ∈ (Base‘𝐶)(((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐻)‘𝑥)))
488, 47eqeltrd 2838 . 2 (𝜑 → (𝑆(⟨𝐹, 𝐺 𝐻)𝑅) ∈ X𝑥 ∈ (Base‘𝐶)(((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐻)‘𝑥)))
4916adantr 481 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → 𝐷 ∈ Cat)
5021adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → (1st𝐹):(Base‘𝐶)⟶(Base‘𝐷))
51 simpr1 1194 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → 𝑥 ∈ (Base‘𝐶))
5250, 51ffvelcdmd 7036 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → ((1st𝐹)‘𝑥) ∈ (Base‘𝐷))
53 simpr2 1195 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → 𝑦 ∈ (Base‘𝐶))
5450, 53ffvelcdmd 7036 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → ((1st𝐹)‘𝑦) ∈ (Base‘𝐷))
5528adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → (1st𝐺):(Base‘𝐶)⟶(Base‘𝐷))
5655, 53ffvelcdmd 7036 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → ((1st𝐺)‘𝑦) ∈ (Base‘𝐷))
57 eqid 2736 . . . . . . . 8 (Hom ‘𝐶) = (Hom ‘𝐶)
5820adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
593, 57, 10, 58, 51, 53funcf2 17754 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → (𝑥(2nd𝐹)𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶(((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑦)))
60 simpr3 1196 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))
6159, 60ffvelcdmd 7036 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → ((𝑥(2nd𝐹)𝑦)‘𝑓) ∈ (((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑦)))
6235adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → 𝑅 ∈ (⟨(1st𝐹), (2nd𝐹)⟩𝑁⟨(1st𝐺), (2nd𝐺)⟩))
632, 62, 3, 10, 53natcl 17840 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → (𝑅𝑦) ∈ (((1st𝐹)‘𝑦)(Hom ‘𝐷)((1st𝐺)‘𝑦)))
6433adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → (1st𝐻):(Base‘𝐶)⟶(Base‘𝐷))
6564, 53ffvelcdmd 7036 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → ((1st𝐻)‘𝑦) ∈ (Base‘𝐷))
6639adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → 𝑆 ∈ (⟨(1st𝐺), (2nd𝐺)⟩𝑁⟨(1st𝐻), (2nd𝐻)⟩))
672, 66, 3, 10, 53natcl 17840 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → (𝑆𝑦) ∈ (((1st𝐺)‘𝑦)(Hom ‘𝐷)((1st𝐻)‘𝑦)))
689, 10, 4, 49, 52, 54, 56, 61, 63, 65, 67catass 17566 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → (((𝑆𝑦)(⟨((1st𝐹)‘𝑦), ((1st𝐺)‘𝑦)⟩(comp‘𝐷)((1st𝐻)‘𝑦))(𝑅𝑦))(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐻)‘𝑦))((𝑥(2nd𝐹)𝑦)‘𝑓)) = ((𝑆𝑦)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑦)⟩(comp‘𝐷)((1st𝐻)‘𝑦))((𝑅𝑦)(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐺)‘𝑦))((𝑥(2nd𝐹)𝑦)‘𝑓))))
692, 62, 3, 57, 4, 51, 53, 60nati 17842 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → ((𝑅𝑦)(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐺)‘𝑦))((𝑥(2nd𝐹)𝑦)‘𝑓)) = (((𝑥(2nd𝐺)𝑦)‘𝑓)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐺)‘𝑦))(𝑅𝑥)))
7069oveq2d 7373 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → ((𝑆𝑦)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑦)⟩(comp‘𝐷)((1st𝐻)‘𝑦))((𝑅𝑦)(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐺)‘𝑦))((𝑥(2nd𝐹)𝑦)‘𝑓))) = ((𝑆𝑦)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑦)⟩(comp‘𝐷)((1st𝐻)‘𝑦))(((𝑥(2nd𝐺)𝑦)‘𝑓)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐺)‘𝑦))(𝑅𝑥))))
7155, 51ffvelcdmd 7036 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → ((1st𝐺)‘𝑥) ∈ (Base‘𝐷))
722, 62, 3, 10, 51natcl 17840 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → (𝑅𝑥) ∈ (((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐺)‘𝑥)))
7327adantr 481 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → (1st𝐺)(𝐶 Func 𝐷)(2nd𝐺))
743, 57, 10, 73, 51, 53funcf2 17754 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → (𝑥(2nd𝐺)𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶(((1st𝐺)‘𝑥)(Hom ‘𝐷)((1st𝐺)‘𝑦)))
7574, 60ffvelcdmd 7036 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → ((𝑥(2nd𝐺)𝑦)‘𝑓) ∈ (((1st𝐺)‘𝑥)(Hom ‘𝐷)((1st𝐺)‘𝑦)))
769, 10, 4, 49, 52, 71, 56, 72, 75, 65, 67catass 17566 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → (((𝑆𝑦)(⟨((1st𝐺)‘𝑥), ((1st𝐺)‘𝑦)⟩(comp‘𝐷)((1st𝐻)‘𝑦))((𝑥(2nd𝐺)𝑦)‘𝑓))(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐻)‘𝑦))(𝑅𝑥)) = ((𝑆𝑦)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑦)⟩(comp‘𝐷)((1st𝐻)‘𝑦))(((𝑥(2nd𝐺)𝑦)‘𝑓)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐺)‘𝑦))(𝑅𝑥))))
772, 66, 3, 57, 4, 51, 53, 60nati 17842 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → ((𝑆𝑦)(⟨((1st𝐺)‘𝑥), ((1st𝐺)‘𝑦)⟩(comp‘𝐷)((1st𝐻)‘𝑦))((𝑥(2nd𝐺)𝑦)‘𝑓)) = (((𝑥(2nd𝐻)𝑦)‘𝑓)(⟨((1st𝐺)‘𝑥), ((1st𝐻)‘𝑥)⟩(comp‘𝐷)((1st𝐻)‘𝑦))(𝑆𝑥)))
7877oveq1d 7372 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → (((𝑆𝑦)(⟨((1st𝐺)‘𝑥), ((1st𝐺)‘𝑦)⟩(comp‘𝐷)((1st𝐻)‘𝑦))((𝑥(2nd𝐺)𝑦)‘𝑓))(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐻)‘𝑦))(𝑅𝑥)) = ((((𝑥(2nd𝐻)𝑦)‘𝑓)(⟨((1st𝐺)‘𝑥), ((1st𝐻)‘𝑥)⟩(comp‘𝐷)((1st𝐻)‘𝑦))(𝑆𝑥))(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐻)‘𝑦))(𝑅𝑥)))
7970, 76, 783eqtr2d 2782 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → ((𝑆𝑦)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑦)⟩(comp‘𝐷)((1st𝐻)‘𝑦))((𝑅𝑦)(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐺)‘𝑦))((𝑥(2nd𝐹)𝑦)‘𝑓))) = ((((𝑥(2nd𝐻)𝑦)‘𝑓)(⟨((1st𝐺)‘𝑥), ((1st𝐻)‘𝑥)⟩(comp‘𝐷)((1st𝐻)‘𝑦))(𝑆𝑥))(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐻)‘𝑦))(𝑅𝑥)))
8064, 51ffvelcdmd 7036 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → ((1st𝐻)‘𝑥) ∈ (Base‘𝐷))
812, 66, 3, 10, 51natcl 17840 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → (𝑆𝑥) ∈ (((1st𝐺)‘𝑥)(Hom ‘𝐷)((1st𝐻)‘𝑥)))
8232adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → (1st𝐻)(𝐶 Func 𝐷)(2nd𝐻))
833, 57, 10, 82, 51, 53funcf2 17754 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → (𝑥(2nd𝐻)𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶(((1st𝐻)‘𝑥)(Hom ‘𝐷)((1st𝐻)‘𝑦)))
8483, 60ffvelcdmd 7036 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → ((𝑥(2nd𝐻)𝑦)‘𝑓) ∈ (((1st𝐻)‘𝑥)(Hom ‘𝐷)((1st𝐻)‘𝑦)))
859, 10, 4, 49, 52, 71, 80, 72, 81, 65, 84catass 17566 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → ((((𝑥(2nd𝐻)𝑦)‘𝑓)(⟨((1st𝐺)‘𝑥), ((1st𝐻)‘𝑥)⟩(comp‘𝐷)((1st𝐻)‘𝑦))(𝑆𝑥))(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐻)‘𝑦))(𝑅𝑥)) = (((𝑥(2nd𝐻)𝑦)‘𝑓)(⟨((1st𝐹)‘𝑥), ((1st𝐻)‘𝑥)⟩(comp‘𝐷)((1st𝐻)‘𝑦))((𝑆𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐻)‘𝑥))(𝑅𝑥))))
8668, 79, 853eqtrd 2780 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → (((𝑆𝑦)(⟨((1st𝐹)‘𝑦), ((1st𝐺)‘𝑦)⟩(comp‘𝐷)((1st𝐻)‘𝑦))(𝑅𝑦))(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐻)‘𝑦))((𝑥(2nd𝐹)𝑦)‘𝑓)) = (((𝑥(2nd𝐻)𝑦)‘𝑓)(⟨((1st𝐹)‘𝑥), ((1st𝐻)‘𝑥)⟩(comp‘𝐷)((1st𝐻)‘𝑦))((𝑆𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐻)‘𝑥))(𝑅𝑥))))
876adantr 481 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → 𝑅 ∈ (𝐹𝑁𝐺))
887adantr 481 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → 𝑆 ∈ (𝐺𝑁𝐻))
891, 2, 3, 4, 5, 87, 88, 53fuccoval 17852 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → ((𝑆(⟨𝐹, 𝐺 𝐻)𝑅)‘𝑦) = ((𝑆𝑦)(⟨((1st𝐹)‘𝑦), ((1st𝐺)‘𝑦)⟩(comp‘𝐷)((1st𝐻)‘𝑦))(𝑅𝑦)))
9089oveq1d 7372 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → (((𝑆(⟨𝐹, 𝐺 𝐻)𝑅)‘𝑦)(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐻)‘𝑦))((𝑥(2nd𝐹)𝑦)‘𝑓)) = (((𝑆𝑦)(⟨((1st𝐹)‘𝑦), ((1st𝐺)‘𝑦)⟩(comp‘𝐷)((1st𝐻)‘𝑦))(𝑅𝑦))(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐻)‘𝑦))((𝑥(2nd𝐹)𝑦)‘𝑓)))
911, 2, 3, 4, 5, 87, 88, 51fuccoval 17852 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → ((𝑆(⟨𝐹, 𝐺 𝐻)𝑅)‘𝑥) = ((𝑆𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐻)‘𝑥))(𝑅𝑥)))
9291oveq2d 7373 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → (((𝑥(2nd𝐻)𝑦)‘𝑓)(⟨((1st𝐹)‘𝑥), ((1st𝐻)‘𝑥)⟩(comp‘𝐷)((1st𝐻)‘𝑦))((𝑆(⟨𝐹, 𝐺 𝐻)𝑅)‘𝑥)) = (((𝑥(2nd𝐻)𝑦)‘𝑓)(⟨((1st𝐹)‘𝑥), ((1st𝐻)‘𝑥)⟩(comp‘𝐷)((1st𝐻)‘𝑦))((𝑆𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐻)‘𝑥))(𝑅𝑥))))
9386, 90, 923eqtr4d 2786 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → (((𝑆(⟨𝐹, 𝐺 𝐻)𝑅)‘𝑦)(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐻)‘𝑦))((𝑥(2nd𝐹)𝑦)‘𝑓)) = (((𝑥(2nd𝐻)𝑦)‘𝑓)(⟨((1st𝐹)‘𝑥), ((1st𝐻)‘𝑥)⟩(comp‘𝐷)((1st𝐻)‘𝑦))((𝑆(⟨𝐹, 𝐺 𝐻)𝑅)‘𝑥)))
9493ralrimivvva 3200 . 2 (𝜑 → ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(((𝑆(⟨𝐹, 𝐺 𝐻)𝑅)‘𝑦)(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐻)‘𝑦))((𝑥(2nd𝐹)𝑦)‘𝑓)) = (((𝑥(2nd𝐻)𝑦)‘𝑓)(⟨((1st𝐹)‘𝑥), ((1st𝐻)‘𝑥)⟩(comp‘𝐷)((1st𝐻)‘𝑦))((𝑆(⟨𝐹, 𝐺 𝐻)𝑅)‘𝑥)))
952, 3, 57, 10, 4, 13, 30isnat2 17835 . 2 (𝜑 → ((𝑆(⟨𝐹, 𝐺 𝐻)𝑅) ∈ (𝐹𝑁𝐻) ↔ ((𝑆(⟨𝐹, 𝐺 𝐻)𝑅) ∈ X𝑥 ∈ (Base‘𝐶)(((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐻)‘𝑥)) ∧ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(((𝑆(⟨𝐹, 𝐺 𝐻)𝑅)‘𝑦)(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐻)‘𝑦))((𝑥(2nd𝐹)𝑦)‘𝑓)) = (((𝑥(2nd𝐻)𝑦)‘𝑓)(⟨((1st𝐹)‘𝑥), ((1st𝐻)‘𝑥)⟩(comp‘𝐷)((1st𝐻)‘𝑦))((𝑆(⟨𝐹, 𝐺 𝐻)𝑅)‘𝑥)))))
9648, 94, 95mpbir2and 711 1 (𝜑 → (𝑆(⟨𝐹, 𝐺 𝐻)𝑅) ∈ (𝐹𝑁𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wral 3064  Vcvv 3445  cop 4592   class class class wbr 5105  cmpt 5188  Rel wrel 5638  wf 6492  cfv 6496  (class class class)co 7357  1st c1st 7919  2nd c2nd 7920  Xcixp 8835  Basecbs 17083  Hom chom 17144  compcco 17145  Catccat 17544   Func cfunc 17740   Nat cnat 17828   FuncCat cfuc 17829
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-fz 13425  df-struct 17019  df-slot 17054  df-ndx 17066  df-base 17084  df-hom 17157  df-cco 17158  df-cat 17548  df-func 17744  df-nat 17830  df-fuc 17831
This theorem is referenced by:  fucass  17857  fuccatid  17858  evlfcllem  18110  yonedalem3b  18168
  Copyright terms: Public domain W3C validator