| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | fuccocl.q | . . . 4
⊢ 𝑄 = (𝐶 FuncCat 𝐷) | 
| 2 |  | fuccocl.n | . . . 4
⊢ 𝑁 = (𝐶 Nat 𝐷) | 
| 3 |  | eqid 2736 | . . . 4
⊢
(Base‘𝐶) =
(Base‘𝐶) | 
| 4 |  | eqid 2736 | . . . 4
⊢
(comp‘𝐷) =
(comp‘𝐷) | 
| 5 |  | fuccocl.x | . . . 4
⊢  ∙ =
(comp‘𝑄) | 
| 6 |  | fuccocl.r | . . . 4
⊢ (𝜑 → 𝑅 ∈ (𝐹𝑁𝐺)) | 
| 7 |  | fuccocl.s | . . . 4
⊢ (𝜑 → 𝑆 ∈ (𝐺𝑁𝐻)) | 
| 8 | 1, 2, 3, 4, 5, 6, 7 | fucco 18011 | . . 3
⊢ (𝜑 → (𝑆(〈𝐹, 𝐺〉 ∙ 𝐻)𝑅) = (𝑥 ∈ (Base‘𝐶) ↦ ((𝑆‘𝑥)(〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉(comp‘𝐷)((1st ‘𝐻)‘𝑥))(𝑅‘𝑥)))) | 
| 9 |  | eqid 2736 | . . . . . 6
⊢
(Base‘𝐷) =
(Base‘𝐷) | 
| 10 |  | eqid 2736 | . . . . . 6
⊢ (Hom
‘𝐷) = (Hom
‘𝐷) | 
| 11 | 2 | natrcl 17999 | . . . . . . . . . . 11
⊢ (𝑅 ∈ (𝐹𝑁𝐺) → (𝐹 ∈ (𝐶 Func 𝐷) ∧ 𝐺 ∈ (𝐶 Func 𝐷))) | 
| 12 | 6, 11 | syl 17 | . . . . . . . . . 10
⊢ (𝜑 → (𝐹 ∈ (𝐶 Func 𝐷) ∧ 𝐺 ∈ (𝐶 Func 𝐷))) | 
| 13 | 12 | simpld 494 | . . . . . . . . 9
⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) | 
| 14 |  | funcrcl 17909 | . . . . . . . . 9
⊢ (𝐹 ∈ (𝐶 Func 𝐷) → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) | 
| 15 | 13, 14 | syl 17 | . . . . . . . 8
⊢ (𝜑 → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) | 
| 16 | 15 | simprd 495 | . . . . . . 7
⊢ (𝜑 → 𝐷 ∈ Cat) | 
| 17 | 16 | adantr 480 | . . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → 𝐷 ∈ Cat) | 
| 18 |  | relfunc 17908 | . . . . . . . . 9
⊢ Rel
(𝐶 Func 𝐷) | 
| 19 |  | 1st2ndbr 8068 | . . . . . . . . 9
⊢ ((Rel
(𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → (1st ‘𝐹)(𝐶 Func 𝐷)(2nd ‘𝐹)) | 
| 20 | 18, 13, 19 | sylancr 587 | . . . . . . . 8
⊢ (𝜑 → (1st
‘𝐹)(𝐶 Func 𝐷)(2nd ‘𝐹)) | 
| 21 | 3, 9, 20 | funcf1 17912 | . . . . . . 7
⊢ (𝜑 → (1st
‘𝐹):(Base‘𝐶)⟶(Base‘𝐷)) | 
| 22 | 21 | ffvelcdmda 7103 | . . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → ((1st ‘𝐹)‘𝑥) ∈ (Base‘𝐷)) | 
| 23 | 2 | natrcl 17999 | . . . . . . . . . . 11
⊢ (𝑆 ∈ (𝐺𝑁𝐻) → (𝐺 ∈ (𝐶 Func 𝐷) ∧ 𝐻 ∈ (𝐶 Func 𝐷))) | 
| 24 | 7, 23 | syl 17 | . . . . . . . . . 10
⊢ (𝜑 → (𝐺 ∈ (𝐶 Func 𝐷) ∧ 𝐻 ∈ (𝐶 Func 𝐷))) | 
| 25 | 24 | simpld 494 | . . . . . . . . 9
⊢ (𝜑 → 𝐺 ∈ (𝐶 Func 𝐷)) | 
| 26 |  | 1st2ndbr 8068 | . . . . . . . . 9
⊢ ((Rel
(𝐶 Func 𝐷) ∧ 𝐺 ∈ (𝐶 Func 𝐷)) → (1st ‘𝐺)(𝐶 Func 𝐷)(2nd ‘𝐺)) | 
| 27 | 18, 25, 26 | sylancr 587 | . . . . . . . 8
⊢ (𝜑 → (1st
‘𝐺)(𝐶 Func 𝐷)(2nd ‘𝐺)) | 
| 28 | 3, 9, 27 | funcf1 17912 | . . . . . . 7
⊢ (𝜑 → (1st
‘𝐺):(Base‘𝐶)⟶(Base‘𝐷)) | 
| 29 | 28 | ffvelcdmda 7103 | . . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → ((1st ‘𝐺)‘𝑥) ∈ (Base‘𝐷)) | 
| 30 | 24 | simprd 495 | . . . . . . . . 9
⊢ (𝜑 → 𝐻 ∈ (𝐶 Func 𝐷)) | 
| 31 |  | 1st2ndbr 8068 | . . . . . . . . 9
⊢ ((Rel
(𝐶 Func 𝐷) ∧ 𝐻 ∈ (𝐶 Func 𝐷)) → (1st ‘𝐻)(𝐶 Func 𝐷)(2nd ‘𝐻)) | 
| 32 | 18, 30, 31 | sylancr 587 | . . . . . . . 8
⊢ (𝜑 → (1st
‘𝐻)(𝐶 Func 𝐷)(2nd ‘𝐻)) | 
| 33 | 3, 9, 32 | funcf1 17912 | . . . . . . 7
⊢ (𝜑 → (1st
‘𝐻):(Base‘𝐶)⟶(Base‘𝐷)) | 
| 34 | 33 | ffvelcdmda 7103 | . . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → ((1st ‘𝐻)‘𝑥) ∈ (Base‘𝐷)) | 
| 35 | 2, 6 | nat1st2nd 18000 | . . . . . . . 8
⊢ (𝜑 → 𝑅 ∈ (〈(1st ‘𝐹), (2nd ‘𝐹)〉𝑁〈(1st ‘𝐺), (2nd ‘𝐺)〉)) | 
| 36 | 35 | adantr 480 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → 𝑅 ∈ (〈(1st ‘𝐹), (2nd ‘𝐹)〉𝑁〈(1st ‘𝐺), (2nd ‘𝐺)〉)) | 
| 37 |  | simpr 484 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → 𝑥 ∈ (Base‘𝐶)) | 
| 38 | 2, 36, 3, 10, 37 | natcl 18002 | . . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → (𝑅‘𝑥) ∈ (((1st ‘𝐹)‘𝑥)(Hom ‘𝐷)((1st ‘𝐺)‘𝑥))) | 
| 39 | 2, 7 | nat1st2nd 18000 | . . . . . . . 8
⊢ (𝜑 → 𝑆 ∈ (〈(1st ‘𝐺), (2nd ‘𝐺)〉𝑁〈(1st ‘𝐻), (2nd ‘𝐻)〉)) | 
| 40 | 39 | adantr 480 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → 𝑆 ∈ (〈(1st ‘𝐺), (2nd ‘𝐺)〉𝑁〈(1st ‘𝐻), (2nd ‘𝐻)〉)) | 
| 41 | 2, 40, 3, 10, 37 | natcl 18002 | . . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → (𝑆‘𝑥) ∈ (((1st ‘𝐺)‘𝑥)(Hom ‘𝐷)((1st ‘𝐻)‘𝑥))) | 
| 42 | 9, 10, 4, 17, 22, 29, 34, 38, 41 | catcocl 17729 | . . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → ((𝑆‘𝑥)(〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉(comp‘𝐷)((1st ‘𝐻)‘𝑥))(𝑅‘𝑥)) ∈ (((1st ‘𝐹)‘𝑥)(Hom ‘𝐷)((1st ‘𝐻)‘𝑥))) | 
| 43 | 42 | ralrimiva 3145 | . . . 4
⊢ (𝜑 → ∀𝑥 ∈ (Base‘𝐶)((𝑆‘𝑥)(〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉(comp‘𝐷)((1st ‘𝐻)‘𝑥))(𝑅‘𝑥)) ∈ (((1st ‘𝐹)‘𝑥)(Hom ‘𝐷)((1st ‘𝐻)‘𝑥))) | 
| 44 |  | fvex 6918 | . . . . 5
⊢
(Base‘𝐶)
∈ V | 
| 45 |  | mptelixpg 8976 | . . . . 5
⊢
((Base‘𝐶)
∈ V → ((𝑥 ∈
(Base‘𝐶) ↦
((𝑆‘𝑥)(〈((1st
‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉(comp‘𝐷)((1st ‘𝐻)‘𝑥))(𝑅‘𝑥))) ∈ X𝑥 ∈ (Base‘𝐶)(((1st ‘𝐹)‘𝑥)(Hom ‘𝐷)((1st ‘𝐻)‘𝑥)) ↔ ∀𝑥 ∈ (Base‘𝐶)((𝑆‘𝑥)(〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉(comp‘𝐷)((1st ‘𝐻)‘𝑥))(𝑅‘𝑥)) ∈ (((1st ‘𝐹)‘𝑥)(Hom ‘𝐷)((1st ‘𝐻)‘𝑥)))) | 
| 46 | 44, 45 | ax-mp 5 | . . . 4
⊢ ((𝑥 ∈ (Base‘𝐶) ↦ ((𝑆‘𝑥)(〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉(comp‘𝐷)((1st ‘𝐻)‘𝑥))(𝑅‘𝑥))) ∈ X𝑥 ∈ (Base‘𝐶)(((1st ‘𝐹)‘𝑥)(Hom ‘𝐷)((1st ‘𝐻)‘𝑥)) ↔ ∀𝑥 ∈ (Base‘𝐶)((𝑆‘𝑥)(〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉(comp‘𝐷)((1st ‘𝐻)‘𝑥))(𝑅‘𝑥)) ∈ (((1st ‘𝐹)‘𝑥)(Hom ‘𝐷)((1st ‘𝐻)‘𝑥))) | 
| 47 | 43, 46 | sylibr 234 | . . 3
⊢ (𝜑 → (𝑥 ∈ (Base‘𝐶) ↦ ((𝑆‘𝑥)(〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉(comp‘𝐷)((1st ‘𝐻)‘𝑥))(𝑅‘𝑥))) ∈ X𝑥 ∈ (Base‘𝐶)(((1st ‘𝐹)‘𝑥)(Hom ‘𝐷)((1st ‘𝐻)‘𝑥))) | 
| 48 | 8, 47 | eqeltrd 2840 | . 2
⊢ (𝜑 → (𝑆(〈𝐹, 𝐺〉 ∙ 𝐻)𝑅) ∈ X𝑥 ∈ (Base‘𝐶)(((1st ‘𝐹)‘𝑥)(Hom ‘𝐷)((1st ‘𝐻)‘𝑥))) | 
| 49 | 16 | adantr 480 | . . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → 𝐷 ∈ Cat) | 
| 50 | 21 | adantr 480 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → (1st ‘𝐹):(Base‘𝐶)⟶(Base‘𝐷)) | 
| 51 |  | simpr1 1194 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → 𝑥 ∈ (Base‘𝐶)) | 
| 52 | 50, 51 | ffvelcdmd 7104 | . . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → ((1st ‘𝐹)‘𝑥) ∈ (Base‘𝐷)) | 
| 53 |  | simpr2 1195 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → 𝑦 ∈ (Base‘𝐶)) | 
| 54 | 50, 53 | ffvelcdmd 7104 | . . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → ((1st ‘𝐹)‘𝑦) ∈ (Base‘𝐷)) | 
| 55 | 28 | adantr 480 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → (1st ‘𝐺):(Base‘𝐶)⟶(Base‘𝐷)) | 
| 56 | 55, 53 | ffvelcdmd 7104 | . . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → ((1st ‘𝐺)‘𝑦) ∈ (Base‘𝐷)) | 
| 57 |  | eqid 2736 | . . . . . . . 8
⊢ (Hom
‘𝐶) = (Hom
‘𝐶) | 
| 58 | 20 | adantr 480 | . . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → (1st ‘𝐹)(𝐶 Func 𝐷)(2nd ‘𝐹)) | 
| 59 | 3, 57, 10, 58, 51, 53 | funcf2 17914 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → (𝑥(2nd ‘𝐹)𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶(((1st ‘𝐹)‘𝑥)(Hom ‘𝐷)((1st ‘𝐹)‘𝑦))) | 
| 60 |  | simpr3 1196 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) | 
| 61 | 59, 60 | ffvelcdmd 7104 | . . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → ((𝑥(2nd ‘𝐹)𝑦)‘𝑓) ∈ (((1st ‘𝐹)‘𝑥)(Hom ‘𝐷)((1st ‘𝐹)‘𝑦))) | 
| 62 | 35 | adantr 480 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → 𝑅 ∈ (〈(1st ‘𝐹), (2nd ‘𝐹)〉𝑁〈(1st ‘𝐺), (2nd ‘𝐺)〉)) | 
| 63 | 2, 62, 3, 10, 53 | natcl 18002 | . . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → (𝑅‘𝑦) ∈ (((1st ‘𝐹)‘𝑦)(Hom ‘𝐷)((1st ‘𝐺)‘𝑦))) | 
| 64 | 33 | adantr 480 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → (1st ‘𝐻):(Base‘𝐶)⟶(Base‘𝐷)) | 
| 65 | 64, 53 | ffvelcdmd 7104 | . . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → ((1st ‘𝐻)‘𝑦) ∈ (Base‘𝐷)) | 
| 66 | 39 | adantr 480 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → 𝑆 ∈ (〈(1st ‘𝐺), (2nd ‘𝐺)〉𝑁〈(1st ‘𝐻), (2nd ‘𝐻)〉)) | 
| 67 | 2, 66, 3, 10, 53 | natcl 18002 | . . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → (𝑆‘𝑦) ∈ (((1st ‘𝐺)‘𝑦)(Hom ‘𝐷)((1st ‘𝐻)‘𝑦))) | 
| 68 | 9, 10, 4, 49, 52, 54, 56, 61, 63, 65, 67 | catass 17730 | . . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → (((𝑆‘𝑦)(〈((1st ‘𝐹)‘𝑦), ((1st ‘𝐺)‘𝑦)〉(comp‘𝐷)((1st ‘𝐻)‘𝑦))(𝑅‘𝑦))(〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐹)‘𝑦)〉(comp‘𝐷)((1st ‘𝐻)‘𝑦))((𝑥(2nd ‘𝐹)𝑦)‘𝑓)) = ((𝑆‘𝑦)(〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑦)〉(comp‘𝐷)((1st ‘𝐻)‘𝑦))((𝑅‘𝑦)(〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐹)‘𝑦)〉(comp‘𝐷)((1st ‘𝐺)‘𝑦))((𝑥(2nd ‘𝐹)𝑦)‘𝑓)))) | 
| 69 | 2, 62, 3, 57, 4, 51, 53, 60 | nati 18004 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → ((𝑅‘𝑦)(〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐹)‘𝑦)〉(comp‘𝐷)((1st ‘𝐺)‘𝑦))((𝑥(2nd ‘𝐹)𝑦)‘𝑓)) = (((𝑥(2nd ‘𝐺)𝑦)‘𝑓)(〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉(comp‘𝐷)((1st ‘𝐺)‘𝑦))(𝑅‘𝑥))) | 
| 70 | 69 | oveq2d 7448 | . . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → ((𝑆‘𝑦)(〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑦)〉(comp‘𝐷)((1st ‘𝐻)‘𝑦))((𝑅‘𝑦)(〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐹)‘𝑦)〉(comp‘𝐷)((1st ‘𝐺)‘𝑦))((𝑥(2nd ‘𝐹)𝑦)‘𝑓))) = ((𝑆‘𝑦)(〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑦)〉(comp‘𝐷)((1st ‘𝐻)‘𝑦))(((𝑥(2nd ‘𝐺)𝑦)‘𝑓)(〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉(comp‘𝐷)((1st ‘𝐺)‘𝑦))(𝑅‘𝑥)))) | 
| 71 | 55, 51 | ffvelcdmd 7104 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → ((1st ‘𝐺)‘𝑥) ∈ (Base‘𝐷)) | 
| 72 | 2, 62, 3, 10, 51 | natcl 18002 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → (𝑅‘𝑥) ∈ (((1st ‘𝐹)‘𝑥)(Hom ‘𝐷)((1st ‘𝐺)‘𝑥))) | 
| 73 | 27 | adantr 480 | . . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → (1st ‘𝐺)(𝐶 Func 𝐷)(2nd ‘𝐺)) | 
| 74 | 3, 57, 10, 73, 51, 53 | funcf2 17914 | . . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → (𝑥(2nd ‘𝐺)𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶(((1st ‘𝐺)‘𝑥)(Hom ‘𝐷)((1st ‘𝐺)‘𝑦))) | 
| 75 | 74, 60 | ffvelcdmd 7104 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → ((𝑥(2nd ‘𝐺)𝑦)‘𝑓) ∈ (((1st ‘𝐺)‘𝑥)(Hom ‘𝐷)((1st ‘𝐺)‘𝑦))) | 
| 76 | 9, 10, 4, 49, 52, 71, 56, 72, 75, 65, 67 | catass 17730 | . . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → (((𝑆‘𝑦)(〈((1st ‘𝐺)‘𝑥), ((1st ‘𝐺)‘𝑦)〉(comp‘𝐷)((1st ‘𝐻)‘𝑦))((𝑥(2nd ‘𝐺)𝑦)‘𝑓))(〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉(comp‘𝐷)((1st ‘𝐻)‘𝑦))(𝑅‘𝑥)) = ((𝑆‘𝑦)(〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑦)〉(comp‘𝐷)((1st ‘𝐻)‘𝑦))(((𝑥(2nd ‘𝐺)𝑦)‘𝑓)(〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉(comp‘𝐷)((1st ‘𝐺)‘𝑦))(𝑅‘𝑥)))) | 
| 77 | 2, 66, 3, 57, 4, 51, 53, 60 | nati 18004 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → ((𝑆‘𝑦)(〈((1st ‘𝐺)‘𝑥), ((1st ‘𝐺)‘𝑦)〉(comp‘𝐷)((1st ‘𝐻)‘𝑦))((𝑥(2nd ‘𝐺)𝑦)‘𝑓)) = (((𝑥(2nd ‘𝐻)𝑦)‘𝑓)(〈((1st ‘𝐺)‘𝑥), ((1st ‘𝐻)‘𝑥)〉(comp‘𝐷)((1st ‘𝐻)‘𝑦))(𝑆‘𝑥))) | 
| 78 | 77 | oveq1d 7447 | . . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → (((𝑆‘𝑦)(〈((1st ‘𝐺)‘𝑥), ((1st ‘𝐺)‘𝑦)〉(comp‘𝐷)((1st ‘𝐻)‘𝑦))((𝑥(2nd ‘𝐺)𝑦)‘𝑓))(〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉(comp‘𝐷)((1st ‘𝐻)‘𝑦))(𝑅‘𝑥)) = ((((𝑥(2nd ‘𝐻)𝑦)‘𝑓)(〈((1st ‘𝐺)‘𝑥), ((1st ‘𝐻)‘𝑥)〉(comp‘𝐷)((1st ‘𝐻)‘𝑦))(𝑆‘𝑥))(〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉(comp‘𝐷)((1st ‘𝐻)‘𝑦))(𝑅‘𝑥))) | 
| 79 | 70, 76, 78 | 3eqtr2d 2782 | . . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → ((𝑆‘𝑦)(〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑦)〉(comp‘𝐷)((1st ‘𝐻)‘𝑦))((𝑅‘𝑦)(〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐹)‘𝑦)〉(comp‘𝐷)((1st ‘𝐺)‘𝑦))((𝑥(2nd ‘𝐹)𝑦)‘𝑓))) = ((((𝑥(2nd ‘𝐻)𝑦)‘𝑓)(〈((1st ‘𝐺)‘𝑥), ((1st ‘𝐻)‘𝑥)〉(comp‘𝐷)((1st ‘𝐻)‘𝑦))(𝑆‘𝑥))(〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉(comp‘𝐷)((1st ‘𝐻)‘𝑦))(𝑅‘𝑥))) | 
| 80 | 64, 51 | ffvelcdmd 7104 | . . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → ((1st ‘𝐻)‘𝑥) ∈ (Base‘𝐷)) | 
| 81 | 2, 66, 3, 10, 51 | natcl 18002 | . . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → (𝑆‘𝑥) ∈ (((1st ‘𝐺)‘𝑥)(Hom ‘𝐷)((1st ‘𝐻)‘𝑥))) | 
| 82 | 32 | adantr 480 | . . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → (1st ‘𝐻)(𝐶 Func 𝐷)(2nd ‘𝐻)) | 
| 83 | 3, 57, 10, 82, 51, 53 | funcf2 17914 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → (𝑥(2nd ‘𝐻)𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶(((1st ‘𝐻)‘𝑥)(Hom ‘𝐷)((1st ‘𝐻)‘𝑦))) | 
| 84 | 83, 60 | ffvelcdmd 7104 | . . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → ((𝑥(2nd ‘𝐻)𝑦)‘𝑓) ∈ (((1st ‘𝐻)‘𝑥)(Hom ‘𝐷)((1st ‘𝐻)‘𝑦))) | 
| 85 | 9, 10, 4, 49, 52, 71, 80, 72, 81, 65, 84 | catass 17730 | . . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → ((((𝑥(2nd ‘𝐻)𝑦)‘𝑓)(〈((1st ‘𝐺)‘𝑥), ((1st ‘𝐻)‘𝑥)〉(comp‘𝐷)((1st ‘𝐻)‘𝑦))(𝑆‘𝑥))(〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉(comp‘𝐷)((1st ‘𝐻)‘𝑦))(𝑅‘𝑥)) = (((𝑥(2nd ‘𝐻)𝑦)‘𝑓)(〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐻)‘𝑥)〉(comp‘𝐷)((1st ‘𝐻)‘𝑦))((𝑆‘𝑥)(〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉(comp‘𝐷)((1st ‘𝐻)‘𝑥))(𝑅‘𝑥)))) | 
| 86 | 68, 79, 85 | 3eqtrd 2780 | . . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → (((𝑆‘𝑦)(〈((1st ‘𝐹)‘𝑦), ((1st ‘𝐺)‘𝑦)〉(comp‘𝐷)((1st ‘𝐻)‘𝑦))(𝑅‘𝑦))(〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐹)‘𝑦)〉(comp‘𝐷)((1st ‘𝐻)‘𝑦))((𝑥(2nd ‘𝐹)𝑦)‘𝑓)) = (((𝑥(2nd ‘𝐻)𝑦)‘𝑓)(〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐻)‘𝑥)〉(comp‘𝐷)((1st ‘𝐻)‘𝑦))((𝑆‘𝑥)(〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉(comp‘𝐷)((1st ‘𝐻)‘𝑥))(𝑅‘𝑥)))) | 
| 87 | 6 | adantr 480 | . . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → 𝑅 ∈ (𝐹𝑁𝐺)) | 
| 88 | 7 | adantr 480 | . . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → 𝑆 ∈ (𝐺𝑁𝐻)) | 
| 89 | 1, 2, 3, 4, 5, 87,
88, 53 | fuccoval 18012 | . . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → ((𝑆(〈𝐹, 𝐺〉 ∙ 𝐻)𝑅)‘𝑦) = ((𝑆‘𝑦)(〈((1st ‘𝐹)‘𝑦), ((1st ‘𝐺)‘𝑦)〉(comp‘𝐷)((1st ‘𝐻)‘𝑦))(𝑅‘𝑦))) | 
| 90 | 89 | oveq1d 7447 | . . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → (((𝑆(〈𝐹, 𝐺〉 ∙ 𝐻)𝑅)‘𝑦)(〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐹)‘𝑦)〉(comp‘𝐷)((1st ‘𝐻)‘𝑦))((𝑥(2nd ‘𝐹)𝑦)‘𝑓)) = (((𝑆‘𝑦)(〈((1st ‘𝐹)‘𝑦), ((1st ‘𝐺)‘𝑦)〉(comp‘𝐷)((1st ‘𝐻)‘𝑦))(𝑅‘𝑦))(〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐹)‘𝑦)〉(comp‘𝐷)((1st ‘𝐻)‘𝑦))((𝑥(2nd ‘𝐹)𝑦)‘𝑓))) | 
| 91 | 1, 2, 3, 4, 5, 87,
88, 51 | fuccoval 18012 | . . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → ((𝑆(〈𝐹, 𝐺〉 ∙ 𝐻)𝑅)‘𝑥) = ((𝑆‘𝑥)(〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉(comp‘𝐷)((1st ‘𝐻)‘𝑥))(𝑅‘𝑥))) | 
| 92 | 91 | oveq2d 7448 | . . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → (((𝑥(2nd ‘𝐻)𝑦)‘𝑓)(〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐻)‘𝑥)〉(comp‘𝐷)((1st ‘𝐻)‘𝑦))((𝑆(〈𝐹, 𝐺〉 ∙ 𝐻)𝑅)‘𝑥)) = (((𝑥(2nd ‘𝐻)𝑦)‘𝑓)(〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐻)‘𝑥)〉(comp‘𝐷)((1st ‘𝐻)‘𝑦))((𝑆‘𝑥)(〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉(comp‘𝐷)((1st ‘𝐻)‘𝑥))(𝑅‘𝑥)))) | 
| 93 | 86, 90, 92 | 3eqtr4d 2786 | . . 3
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → (((𝑆(〈𝐹, 𝐺〉 ∙ 𝐻)𝑅)‘𝑦)(〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐹)‘𝑦)〉(comp‘𝐷)((1st ‘𝐻)‘𝑦))((𝑥(2nd ‘𝐹)𝑦)‘𝑓)) = (((𝑥(2nd ‘𝐻)𝑦)‘𝑓)(〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐻)‘𝑥)〉(comp‘𝐷)((1st ‘𝐻)‘𝑦))((𝑆(〈𝐹, 𝐺〉 ∙ 𝐻)𝑅)‘𝑥))) | 
| 94 | 93 | ralrimivvva 3204 | . 2
⊢ (𝜑 → ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(((𝑆(〈𝐹, 𝐺〉 ∙ 𝐻)𝑅)‘𝑦)(〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐹)‘𝑦)〉(comp‘𝐷)((1st ‘𝐻)‘𝑦))((𝑥(2nd ‘𝐹)𝑦)‘𝑓)) = (((𝑥(2nd ‘𝐻)𝑦)‘𝑓)(〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐻)‘𝑥)〉(comp‘𝐷)((1st ‘𝐻)‘𝑦))((𝑆(〈𝐹, 𝐺〉 ∙ 𝐻)𝑅)‘𝑥))) | 
| 95 | 2, 3, 57, 10, 4, 13, 30 | isnat2 17997 | . 2
⊢ (𝜑 → ((𝑆(〈𝐹, 𝐺〉 ∙ 𝐻)𝑅) ∈ (𝐹𝑁𝐻) ↔ ((𝑆(〈𝐹, 𝐺〉 ∙ 𝐻)𝑅) ∈ X𝑥 ∈ (Base‘𝐶)(((1st ‘𝐹)‘𝑥)(Hom ‘𝐷)((1st ‘𝐻)‘𝑥)) ∧ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(((𝑆(〈𝐹, 𝐺〉 ∙ 𝐻)𝑅)‘𝑦)(〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐹)‘𝑦)〉(comp‘𝐷)((1st ‘𝐻)‘𝑦))((𝑥(2nd ‘𝐹)𝑦)‘𝑓)) = (((𝑥(2nd ‘𝐻)𝑦)‘𝑓)(〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐻)‘𝑥)〉(comp‘𝐷)((1st ‘𝐻)‘𝑦))((𝑆(〈𝐹, 𝐺〉 ∙ 𝐻)𝑅)‘𝑥))))) | 
| 96 | 48, 94, 95 | mpbir2and 713 | 1
⊢ (𝜑 → (𝑆(〈𝐹, 𝐺〉 ∙ 𝐻)𝑅) ∈ (𝐹𝑁𝐻)) |