MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fucass Structured version   Visualization version   GIF version

Theorem fucass 17356
Description: Associativity of natural transformation composition. Remark 6.14(b) in [Adamek] p. 87. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
fucass.q 𝑄 = (𝐶 FuncCat 𝐷)
fucass.n 𝑁 = (𝐶 Nat 𝐷)
fucass.x = (comp‘𝑄)
fucass.r (𝜑𝑅 ∈ (𝐹𝑁𝐺))
fucass.s (𝜑𝑆 ∈ (𝐺𝑁𝐻))
fucass.t (𝜑𝑇 ∈ (𝐻𝑁𝐾))
Assertion
Ref Expression
fucass (𝜑 → ((𝑇(⟨𝐺, 𝐻 𝐾)𝑆)(⟨𝐹, 𝐺 𝐾)𝑅) = (𝑇(⟨𝐹, 𝐻 𝐾)(𝑆(⟨𝐹, 𝐺 𝐻)𝑅)))

Proof of Theorem fucass
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2739 . . . . 5 (Base‘𝐷) = (Base‘𝐷)
2 eqid 2739 . . . . 5 (Hom ‘𝐷) = (Hom ‘𝐷)
3 eqid 2739 . . . . 5 (comp‘𝐷) = (comp‘𝐷)
4 fucass.r . . . . . . . . . 10 (𝜑𝑅 ∈ (𝐹𝑁𝐺))
5 fucass.n . . . . . . . . . . 11 𝑁 = (𝐶 Nat 𝐷)
65natrcl 17338 . . . . . . . . . 10 (𝑅 ∈ (𝐹𝑁𝐺) → (𝐹 ∈ (𝐶 Func 𝐷) ∧ 𝐺 ∈ (𝐶 Func 𝐷)))
74, 6syl 17 . . . . . . . . 9 (𝜑 → (𝐹 ∈ (𝐶 Func 𝐷) ∧ 𝐺 ∈ (𝐶 Func 𝐷)))
87simpld 498 . . . . . . . 8 (𝜑𝐹 ∈ (𝐶 Func 𝐷))
9 funcrcl 17251 . . . . . . . 8 (𝐹 ∈ (𝐶 Func 𝐷) → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
108, 9syl 17 . . . . . . 7 (𝜑 → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
1110simprd 499 . . . . . 6 (𝜑𝐷 ∈ Cat)
1211adantr 484 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐷 ∈ Cat)
13 eqid 2739 . . . . . . 7 (Base‘𝐶) = (Base‘𝐶)
14 relfunc 17250 . . . . . . . 8 Rel (𝐶 Func 𝐷)
15 1st2ndbr 7779 . . . . . . . 8 ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
1614, 8, 15sylancr 590 . . . . . . 7 (𝜑 → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
1713, 1, 16funcf1 17254 . . . . . 6 (𝜑 → (1st𝐹):(Base‘𝐶)⟶(Base‘𝐷))
1817ffvelrnda 6874 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st𝐹)‘𝑥) ∈ (Base‘𝐷))
197simprd 499 . . . . . . . 8 (𝜑𝐺 ∈ (𝐶 Func 𝐷))
20 1st2ndbr 7779 . . . . . . . 8 ((Rel (𝐶 Func 𝐷) ∧ 𝐺 ∈ (𝐶 Func 𝐷)) → (1st𝐺)(𝐶 Func 𝐷)(2nd𝐺))
2114, 19, 20sylancr 590 . . . . . . 7 (𝜑 → (1st𝐺)(𝐶 Func 𝐷)(2nd𝐺))
2213, 1, 21funcf1 17254 . . . . . 6 (𝜑 → (1st𝐺):(Base‘𝐶)⟶(Base‘𝐷))
2322ffvelrnda 6874 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st𝐺)‘𝑥) ∈ (Base‘𝐷))
24 fucass.t . . . . . . . . . 10 (𝜑𝑇 ∈ (𝐻𝑁𝐾))
255natrcl 17338 . . . . . . . . . 10 (𝑇 ∈ (𝐻𝑁𝐾) → (𝐻 ∈ (𝐶 Func 𝐷) ∧ 𝐾 ∈ (𝐶 Func 𝐷)))
2624, 25syl 17 . . . . . . . . 9 (𝜑 → (𝐻 ∈ (𝐶 Func 𝐷) ∧ 𝐾 ∈ (𝐶 Func 𝐷)))
2726simpld 498 . . . . . . . 8 (𝜑𝐻 ∈ (𝐶 Func 𝐷))
28 1st2ndbr 7779 . . . . . . . 8 ((Rel (𝐶 Func 𝐷) ∧ 𝐻 ∈ (𝐶 Func 𝐷)) → (1st𝐻)(𝐶 Func 𝐷)(2nd𝐻))
2914, 27, 28sylancr 590 . . . . . . 7 (𝜑 → (1st𝐻)(𝐶 Func 𝐷)(2nd𝐻))
3013, 1, 29funcf1 17254 . . . . . 6 (𝜑 → (1st𝐻):(Base‘𝐶)⟶(Base‘𝐷))
3130ffvelrnda 6874 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st𝐻)‘𝑥) ∈ (Base‘𝐷))
325, 4nat1st2nd 17339 . . . . . . 7 (𝜑𝑅 ∈ (⟨(1st𝐹), (2nd𝐹)⟩𝑁⟨(1st𝐺), (2nd𝐺)⟩))
3332adantr 484 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝑅 ∈ (⟨(1st𝐹), (2nd𝐹)⟩𝑁⟨(1st𝐺), (2nd𝐺)⟩))
34 simpr 488 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝑥 ∈ (Base‘𝐶))
355, 33, 13, 2, 34natcl 17341 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → (𝑅𝑥) ∈ (((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐺)‘𝑥)))
36 fucass.s . . . . . . . 8 (𝜑𝑆 ∈ (𝐺𝑁𝐻))
375, 36nat1st2nd 17339 . . . . . . 7 (𝜑𝑆 ∈ (⟨(1st𝐺), (2nd𝐺)⟩𝑁⟨(1st𝐻), (2nd𝐻)⟩))
3837adantr 484 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝑆 ∈ (⟨(1st𝐺), (2nd𝐺)⟩𝑁⟨(1st𝐻), (2nd𝐻)⟩))
395, 38, 13, 2, 34natcl 17341 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → (𝑆𝑥) ∈ (((1st𝐺)‘𝑥)(Hom ‘𝐷)((1st𝐻)‘𝑥)))
4026simprd 499 . . . . . . . 8 (𝜑𝐾 ∈ (𝐶 Func 𝐷))
41 1st2ndbr 7779 . . . . . . . 8 ((Rel (𝐶 Func 𝐷) ∧ 𝐾 ∈ (𝐶 Func 𝐷)) → (1st𝐾)(𝐶 Func 𝐷)(2nd𝐾))
4214, 40, 41sylancr 590 . . . . . . 7 (𝜑 → (1st𝐾)(𝐶 Func 𝐷)(2nd𝐾))
4313, 1, 42funcf1 17254 . . . . . 6 (𝜑 → (1st𝐾):(Base‘𝐶)⟶(Base‘𝐷))
4443ffvelrnda 6874 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st𝐾)‘𝑥) ∈ (Base‘𝐷))
455, 24nat1st2nd 17339 . . . . . . 7 (𝜑𝑇 ∈ (⟨(1st𝐻), (2nd𝐻)⟩𝑁⟨(1st𝐾), (2nd𝐾)⟩))
4645adantr 484 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝑇 ∈ (⟨(1st𝐻), (2nd𝐻)⟩𝑁⟨(1st𝐾), (2nd𝐾)⟩))
475, 46, 13, 2, 34natcl 17341 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → (𝑇𝑥) ∈ (((1st𝐻)‘𝑥)(Hom ‘𝐷)((1st𝐾)‘𝑥)))
481, 2, 3, 12, 18, 23, 31, 35, 39, 44, 47catass 17073 . . . 4 ((𝜑𝑥 ∈ (Base‘𝐶)) → (((𝑇𝑥)(⟨((1st𝐺)‘𝑥), ((1st𝐻)‘𝑥)⟩(comp‘𝐷)((1st𝐾)‘𝑥))(𝑆𝑥))(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐾)‘𝑥))(𝑅𝑥)) = ((𝑇𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐻)‘𝑥)⟩(comp‘𝐷)((1st𝐾)‘𝑥))((𝑆𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐻)‘𝑥))(𝑅𝑥))))
49 fucass.q . . . . . 6 𝑄 = (𝐶 FuncCat 𝐷)
50 fucass.x . . . . . 6 = (comp‘𝑄)
5136adantr 484 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝑆 ∈ (𝐺𝑁𝐻))
5224adantr 484 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝑇 ∈ (𝐻𝑁𝐾))
5349, 5, 13, 3, 50, 51, 52, 34fuccoval 17351 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((𝑇(⟨𝐺, 𝐻 𝐾)𝑆)‘𝑥) = ((𝑇𝑥)(⟨((1st𝐺)‘𝑥), ((1st𝐻)‘𝑥)⟩(comp‘𝐷)((1st𝐾)‘𝑥))(𝑆𝑥)))
5453oveq1d 7198 . . . 4 ((𝜑𝑥 ∈ (Base‘𝐶)) → (((𝑇(⟨𝐺, 𝐻 𝐾)𝑆)‘𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐾)‘𝑥))(𝑅𝑥)) = (((𝑇𝑥)(⟨((1st𝐺)‘𝑥), ((1st𝐻)‘𝑥)⟩(comp‘𝐷)((1st𝐾)‘𝑥))(𝑆𝑥))(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐾)‘𝑥))(𝑅𝑥)))
554adantr 484 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝑅 ∈ (𝐹𝑁𝐺))
5649, 5, 13, 3, 50, 55, 51, 34fuccoval 17351 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((𝑆(⟨𝐹, 𝐺 𝐻)𝑅)‘𝑥) = ((𝑆𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐻)‘𝑥))(𝑅𝑥)))
5756oveq2d 7199 . . . 4 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((𝑇𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐻)‘𝑥)⟩(comp‘𝐷)((1st𝐾)‘𝑥))((𝑆(⟨𝐹, 𝐺 𝐻)𝑅)‘𝑥)) = ((𝑇𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐻)‘𝑥)⟩(comp‘𝐷)((1st𝐾)‘𝑥))((𝑆𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐻)‘𝑥))(𝑅𝑥))))
5848, 54, 573eqtr4d 2784 . . 3 ((𝜑𝑥 ∈ (Base‘𝐶)) → (((𝑇(⟨𝐺, 𝐻 𝐾)𝑆)‘𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐾)‘𝑥))(𝑅𝑥)) = ((𝑇𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐻)‘𝑥)⟩(comp‘𝐷)((1st𝐾)‘𝑥))((𝑆(⟨𝐹, 𝐺 𝐻)𝑅)‘𝑥)))
5958mpteq2dva 5135 . 2 (𝜑 → (𝑥 ∈ (Base‘𝐶) ↦ (((𝑇(⟨𝐺, 𝐻 𝐾)𝑆)‘𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐾)‘𝑥))(𝑅𝑥))) = (𝑥 ∈ (Base‘𝐶) ↦ ((𝑇𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐻)‘𝑥)⟩(comp‘𝐷)((1st𝐾)‘𝑥))((𝑆(⟨𝐹, 𝐺 𝐻)𝑅)‘𝑥))))
6049, 5, 50, 36, 24fuccocl 17352 . . 3 (𝜑 → (𝑇(⟨𝐺, 𝐻 𝐾)𝑆) ∈ (𝐺𝑁𝐾))
6149, 5, 13, 3, 50, 4, 60fucco 17350 . 2 (𝜑 → ((𝑇(⟨𝐺, 𝐻 𝐾)𝑆)(⟨𝐹, 𝐺 𝐾)𝑅) = (𝑥 ∈ (Base‘𝐶) ↦ (((𝑇(⟨𝐺, 𝐻 𝐾)𝑆)‘𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐾)‘𝑥))(𝑅𝑥))))
6249, 5, 50, 4, 36fuccocl 17352 . . 3 (𝜑 → (𝑆(⟨𝐹, 𝐺 𝐻)𝑅) ∈ (𝐹𝑁𝐻))
6349, 5, 13, 3, 50, 62, 24fucco 17350 . 2 (𝜑 → (𝑇(⟨𝐹, 𝐻 𝐾)(𝑆(⟨𝐹, 𝐺 𝐻)𝑅)) = (𝑥 ∈ (Base‘𝐶) ↦ ((𝑇𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐻)‘𝑥)⟩(comp‘𝐷)((1st𝐾)‘𝑥))((𝑆(⟨𝐹, 𝐺 𝐻)𝑅)‘𝑥))))
6459, 61, 633eqtr4d 2784 1 (𝜑 → ((𝑇(⟨𝐺, 𝐻 𝐾)𝑆)(⟨𝐹, 𝐺 𝐾)𝑅) = (𝑇(⟨𝐹, 𝐻 𝐾)(𝑆(⟨𝐹, 𝐺 𝐻)𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1542  wcel 2114  cop 4532   class class class wbr 5040  cmpt 5120  Rel wrel 5540  cfv 6350  (class class class)co 7183  1st c1st 7725  2nd c2nd 7726  Basecbs 16599  Hom chom 16692  compcco 16693  Catccat 17051   Func cfunc 17242   Nat cnat 17329   FuncCat cfuc 17330
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5242  ax-pr 5306  ax-un 7492  ax-cnex 10684  ax-resscn 10685  ax-1cn 10686  ax-icn 10687  ax-addcl 10688  ax-addrcl 10689  ax-mulcl 10690  ax-mulrcl 10691  ax-mulcom 10692  ax-addass 10693  ax-mulass 10694  ax-distr 10695  ax-i2m1 10696  ax-1ne0 10697  ax-1rid 10698  ax-rnegex 10699  ax-rrecex 10700  ax-cnre 10701  ax-pre-lttri 10702  ax-pre-lttrn 10703  ax-pre-ltadd 10704  ax-pre-mulgt0 10705
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rab 3063  df-v 3402  df-sbc 3686  df-csb 3801  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4222  df-if 4425  df-pw 4500  df-sn 4527  df-pr 4529  df-tp 4531  df-op 4533  df-uni 4807  df-iun 4893  df-br 5041  df-opab 5103  df-mpt 5121  df-tr 5147  df-id 5439  df-eprel 5444  df-po 5452  df-so 5453  df-fr 5493  df-we 5495  df-xp 5541  df-rel 5542  df-cnv 5543  df-co 5544  df-dm 5545  df-rn 5546  df-res 5547  df-ima 5548  df-pred 6139  df-ord 6186  df-on 6187  df-lim 6188  df-suc 6189  df-iota 6308  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7140  df-ov 7186  df-oprab 7187  df-mpo 7188  df-om 7613  df-1st 7727  df-2nd 7728  df-wrecs 7989  df-recs 8050  df-rdg 8088  df-1o 8144  df-er 8333  df-map 8452  df-ixp 8521  df-en 8569  df-dom 8570  df-sdom 8571  df-fin 8572  df-pnf 10768  df-mnf 10769  df-xr 10770  df-ltxr 10771  df-le 10772  df-sub 10963  df-neg 10964  df-nn 11730  df-2 11792  df-3 11793  df-4 11794  df-5 11795  df-6 11796  df-7 11797  df-8 11798  df-9 11799  df-n0 11990  df-z 12076  df-dec 12193  df-uz 12338  df-fz 12995  df-struct 16601  df-ndx 16602  df-slot 16603  df-base 16605  df-hom 16705  df-cco 16706  df-cat 17055  df-func 17246  df-nat 17331  df-fuc 17332
This theorem is referenced by:  fuccatid  17357
  Copyright terms: Public domain W3C validator