MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fucass Structured version   Visualization version   GIF version

Theorem fucass 16839
Description: Associativity of natural transformation composition. Remark 6.14(b) in [Adamek] p. 87. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
fucass.q 𝑄 = (𝐶 FuncCat 𝐷)
fucass.n 𝑁 = (𝐶 Nat 𝐷)
fucass.x = (comp‘𝑄)
fucass.r (𝜑𝑅 ∈ (𝐹𝑁𝐺))
fucass.s (𝜑𝑆 ∈ (𝐺𝑁𝐻))
fucass.t (𝜑𝑇 ∈ (𝐻𝑁𝐾))
Assertion
Ref Expression
fucass (𝜑 → ((𝑇(⟨𝐺, 𝐻 𝐾)𝑆)(⟨𝐹, 𝐺 𝐾)𝑅) = (𝑇(⟨𝐹, 𝐻 𝐾)(𝑆(⟨𝐹, 𝐺 𝐻)𝑅)))

Proof of Theorem fucass
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2817 . . . . 5 (Base‘𝐷) = (Base‘𝐷)
2 eqid 2817 . . . . 5 (Hom ‘𝐷) = (Hom ‘𝐷)
3 eqid 2817 . . . . 5 (comp‘𝐷) = (comp‘𝐷)
4 fucass.r . . . . . . . . . 10 (𝜑𝑅 ∈ (𝐹𝑁𝐺))
5 fucass.n . . . . . . . . . . 11 𝑁 = (𝐶 Nat 𝐷)
65natrcl 16821 . . . . . . . . . 10 (𝑅 ∈ (𝐹𝑁𝐺) → (𝐹 ∈ (𝐶 Func 𝐷) ∧ 𝐺 ∈ (𝐶 Func 𝐷)))
74, 6syl 17 . . . . . . . . 9 (𝜑 → (𝐹 ∈ (𝐶 Func 𝐷) ∧ 𝐺 ∈ (𝐶 Func 𝐷)))
87simpld 484 . . . . . . . 8 (𝜑𝐹 ∈ (𝐶 Func 𝐷))
9 funcrcl 16734 . . . . . . . 8 (𝐹 ∈ (𝐶 Func 𝐷) → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
108, 9syl 17 . . . . . . 7 (𝜑 → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
1110simprd 485 . . . . . 6 (𝜑𝐷 ∈ Cat)
1211adantr 468 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐷 ∈ Cat)
13 eqid 2817 . . . . . . 7 (Base‘𝐶) = (Base‘𝐶)
14 relfunc 16733 . . . . . . . 8 Rel (𝐶 Func 𝐷)
15 1st2ndbr 7456 . . . . . . . 8 ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
1614, 8, 15sylancr 577 . . . . . . 7 (𝜑 → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
1713, 1, 16funcf1 16737 . . . . . 6 (𝜑 → (1st𝐹):(Base‘𝐶)⟶(Base‘𝐷))
1817ffvelrnda 6588 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st𝐹)‘𝑥) ∈ (Base‘𝐷))
197simprd 485 . . . . . . . 8 (𝜑𝐺 ∈ (𝐶 Func 𝐷))
20 1st2ndbr 7456 . . . . . . . 8 ((Rel (𝐶 Func 𝐷) ∧ 𝐺 ∈ (𝐶 Func 𝐷)) → (1st𝐺)(𝐶 Func 𝐷)(2nd𝐺))
2114, 19, 20sylancr 577 . . . . . . 7 (𝜑 → (1st𝐺)(𝐶 Func 𝐷)(2nd𝐺))
2213, 1, 21funcf1 16737 . . . . . 6 (𝜑 → (1st𝐺):(Base‘𝐶)⟶(Base‘𝐷))
2322ffvelrnda 6588 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st𝐺)‘𝑥) ∈ (Base‘𝐷))
24 fucass.t . . . . . . . . . 10 (𝜑𝑇 ∈ (𝐻𝑁𝐾))
255natrcl 16821 . . . . . . . . . 10 (𝑇 ∈ (𝐻𝑁𝐾) → (𝐻 ∈ (𝐶 Func 𝐷) ∧ 𝐾 ∈ (𝐶 Func 𝐷)))
2624, 25syl 17 . . . . . . . . 9 (𝜑 → (𝐻 ∈ (𝐶 Func 𝐷) ∧ 𝐾 ∈ (𝐶 Func 𝐷)))
2726simpld 484 . . . . . . . 8 (𝜑𝐻 ∈ (𝐶 Func 𝐷))
28 1st2ndbr 7456 . . . . . . . 8 ((Rel (𝐶 Func 𝐷) ∧ 𝐻 ∈ (𝐶 Func 𝐷)) → (1st𝐻)(𝐶 Func 𝐷)(2nd𝐻))
2914, 27, 28sylancr 577 . . . . . . 7 (𝜑 → (1st𝐻)(𝐶 Func 𝐷)(2nd𝐻))
3013, 1, 29funcf1 16737 . . . . . 6 (𝜑 → (1st𝐻):(Base‘𝐶)⟶(Base‘𝐷))
3130ffvelrnda 6588 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st𝐻)‘𝑥) ∈ (Base‘𝐷))
325, 4nat1st2nd 16822 . . . . . . 7 (𝜑𝑅 ∈ (⟨(1st𝐹), (2nd𝐹)⟩𝑁⟨(1st𝐺), (2nd𝐺)⟩))
3332adantr 468 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝑅 ∈ (⟨(1st𝐹), (2nd𝐹)⟩𝑁⟨(1st𝐺), (2nd𝐺)⟩))
34 simpr 473 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝑥 ∈ (Base‘𝐶))
355, 33, 13, 2, 34natcl 16824 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → (𝑅𝑥) ∈ (((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐺)‘𝑥)))
36 fucass.s . . . . . . . 8 (𝜑𝑆 ∈ (𝐺𝑁𝐻))
375, 36nat1st2nd 16822 . . . . . . 7 (𝜑𝑆 ∈ (⟨(1st𝐺), (2nd𝐺)⟩𝑁⟨(1st𝐻), (2nd𝐻)⟩))
3837adantr 468 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝑆 ∈ (⟨(1st𝐺), (2nd𝐺)⟩𝑁⟨(1st𝐻), (2nd𝐻)⟩))
395, 38, 13, 2, 34natcl 16824 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → (𝑆𝑥) ∈ (((1st𝐺)‘𝑥)(Hom ‘𝐷)((1st𝐻)‘𝑥)))
4026simprd 485 . . . . . . . 8 (𝜑𝐾 ∈ (𝐶 Func 𝐷))
41 1st2ndbr 7456 . . . . . . . 8 ((Rel (𝐶 Func 𝐷) ∧ 𝐾 ∈ (𝐶 Func 𝐷)) → (1st𝐾)(𝐶 Func 𝐷)(2nd𝐾))
4214, 40, 41sylancr 577 . . . . . . 7 (𝜑 → (1st𝐾)(𝐶 Func 𝐷)(2nd𝐾))
4313, 1, 42funcf1 16737 . . . . . 6 (𝜑 → (1st𝐾):(Base‘𝐶)⟶(Base‘𝐷))
4443ffvelrnda 6588 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st𝐾)‘𝑥) ∈ (Base‘𝐷))
455, 24nat1st2nd 16822 . . . . . . 7 (𝜑𝑇 ∈ (⟨(1st𝐻), (2nd𝐻)⟩𝑁⟨(1st𝐾), (2nd𝐾)⟩))
4645adantr 468 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝑇 ∈ (⟨(1st𝐻), (2nd𝐻)⟩𝑁⟨(1st𝐾), (2nd𝐾)⟩))
475, 46, 13, 2, 34natcl 16824 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → (𝑇𝑥) ∈ (((1st𝐻)‘𝑥)(Hom ‘𝐷)((1st𝐾)‘𝑥)))
481, 2, 3, 12, 18, 23, 31, 35, 39, 44, 47catass 16558 . . . 4 ((𝜑𝑥 ∈ (Base‘𝐶)) → (((𝑇𝑥)(⟨((1st𝐺)‘𝑥), ((1st𝐻)‘𝑥)⟩(comp‘𝐷)((1st𝐾)‘𝑥))(𝑆𝑥))(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐾)‘𝑥))(𝑅𝑥)) = ((𝑇𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐻)‘𝑥)⟩(comp‘𝐷)((1st𝐾)‘𝑥))((𝑆𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐻)‘𝑥))(𝑅𝑥))))
49 fucass.q . . . . . 6 𝑄 = (𝐶 FuncCat 𝐷)
50 fucass.x . . . . . 6 = (comp‘𝑄)
5136adantr 468 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝑆 ∈ (𝐺𝑁𝐻))
5224adantr 468 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝑇 ∈ (𝐻𝑁𝐾))
5349, 5, 13, 3, 50, 51, 52, 34fuccoval 16834 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((𝑇(⟨𝐺, 𝐻 𝐾)𝑆)‘𝑥) = ((𝑇𝑥)(⟨((1st𝐺)‘𝑥), ((1st𝐻)‘𝑥)⟩(comp‘𝐷)((1st𝐾)‘𝑥))(𝑆𝑥)))
5453oveq1d 6896 . . . 4 ((𝜑𝑥 ∈ (Base‘𝐶)) → (((𝑇(⟨𝐺, 𝐻 𝐾)𝑆)‘𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐾)‘𝑥))(𝑅𝑥)) = (((𝑇𝑥)(⟨((1st𝐺)‘𝑥), ((1st𝐻)‘𝑥)⟩(comp‘𝐷)((1st𝐾)‘𝑥))(𝑆𝑥))(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐾)‘𝑥))(𝑅𝑥)))
554adantr 468 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝑅 ∈ (𝐹𝑁𝐺))
5649, 5, 13, 3, 50, 55, 51, 34fuccoval 16834 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((𝑆(⟨𝐹, 𝐺 𝐻)𝑅)‘𝑥) = ((𝑆𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐻)‘𝑥))(𝑅𝑥)))
5756oveq2d 6897 . . . 4 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((𝑇𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐻)‘𝑥)⟩(comp‘𝐷)((1st𝐾)‘𝑥))((𝑆(⟨𝐹, 𝐺 𝐻)𝑅)‘𝑥)) = ((𝑇𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐻)‘𝑥)⟩(comp‘𝐷)((1st𝐾)‘𝑥))((𝑆𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐻)‘𝑥))(𝑅𝑥))))
5848, 54, 573eqtr4d 2861 . . 3 ((𝜑𝑥 ∈ (Base‘𝐶)) → (((𝑇(⟨𝐺, 𝐻 𝐾)𝑆)‘𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐾)‘𝑥))(𝑅𝑥)) = ((𝑇𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐻)‘𝑥)⟩(comp‘𝐷)((1st𝐾)‘𝑥))((𝑆(⟨𝐹, 𝐺 𝐻)𝑅)‘𝑥)))
5958mpteq2dva 4949 . 2 (𝜑 → (𝑥 ∈ (Base‘𝐶) ↦ (((𝑇(⟨𝐺, 𝐻 𝐾)𝑆)‘𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐾)‘𝑥))(𝑅𝑥))) = (𝑥 ∈ (Base‘𝐶) ↦ ((𝑇𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐻)‘𝑥)⟩(comp‘𝐷)((1st𝐾)‘𝑥))((𝑆(⟨𝐹, 𝐺 𝐻)𝑅)‘𝑥))))
6049, 5, 50, 36, 24fuccocl 16835 . . 3 (𝜑 → (𝑇(⟨𝐺, 𝐻 𝐾)𝑆) ∈ (𝐺𝑁𝐾))
6149, 5, 13, 3, 50, 4, 60fucco 16833 . 2 (𝜑 → ((𝑇(⟨𝐺, 𝐻 𝐾)𝑆)(⟨𝐹, 𝐺 𝐾)𝑅) = (𝑥 ∈ (Base‘𝐶) ↦ (((𝑇(⟨𝐺, 𝐻 𝐾)𝑆)‘𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩(comp‘𝐷)((1st𝐾)‘𝑥))(𝑅𝑥))))
6249, 5, 50, 4, 36fuccocl 16835 . . 3 (𝜑 → (𝑆(⟨𝐹, 𝐺 𝐻)𝑅) ∈ (𝐹𝑁𝐻))
6349, 5, 13, 3, 50, 62, 24fucco 16833 . 2 (𝜑 → (𝑇(⟨𝐹, 𝐻 𝐾)(𝑆(⟨𝐹, 𝐺 𝐻)𝑅)) = (𝑥 ∈ (Base‘𝐶) ↦ ((𝑇𝑥)(⟨((1st𝐹)‘𝑥), ((1st𝐻)‘𝑥)⟩(comp‘𝐷)((1st𝐾)‘𝑥))((𝑆(⟨𝐹, 𝐺 𝐻)𝑅)‘𝑥))))
6459, 61, 633eqtr4d 2861 1 (𝜑 → ((𝑇(⟨𝐺, 𝐻 𝐾)𝑆)(⟨𝐹, 𝐺 𝐾)𝑅) = (𝑇(⟨𝐹, 𝐻 𝐾)(𝑆(⟨𝐹, 𝐺 𝐻)𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1637  wcel 2157  cop 4387   class class class wbr 4855  cmpt 4934  Rel wrel 5327  cfv 6108  (class class class)co 6881  1st c1st 7403  2nd c2nd 7404  Basecbs 16075  Hom chom 16171  compcco 16172  Catccat 16536   Func cfunc 16725   Nat cnat 16812   FuncCat cfuc 16813
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2069  ax-7 2105  ax-8 2159  ax-9 2166  ax-10 2186  ax-11 2202  ax-12 2215  ax-13 2422  ax-ext 2795  ax-rep 4975  ax-sep 4986  ax-nul 4994  ax-pow 5046  ax-pr 5107  ax-un 7186  ax-cnex 10284  ax-resscn 10285  ax-1cn 10286  ax-icn 10287  ax-addcl 10288  ax-addrcl 10289  ax-mulcl 10290  ax-mulrcl 10291  ax-mulcom 10292  ax-addass 10293  ax-mulass 10294  ax-distr 10295  ax-i2m1 10296  ax-1ne0 10297  ax-1rid 10298  ax-rnegex 10299  ax-rrecex 10300  ax-cnre 10301  ax-pre-lttri 10302  ax-pre-lttrn 10303  ax-pre-ltadd 10304  ax-pre-mulgt0 10305
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2062  df-mo 2635  df-eu 2642  df-clab 2804  df-cleq 2810  df-clel 2813  df-nfc 2948  df-ne 2990  df-nel 3093  df-ral 3112  df-rex 3113  df-reu 3114  df-rab 3116  df-v 3404  df-sbc 3645  df-csb 3740  df-dif 3783  df-un 3785  df-in 3787  df-ss 3794  df-pss 3796  df-nul 4128  df-if 4291  df-pw 4364  df-sn 4382  df-pr 4384  df-tp 4386  df-op 4388  df-uni 4642  df-int 4681  df-iun 4725  df-br 4856  df-opab 4918  df-mpt 4935  df-tr 4958  df-id 5230  df-eprel 5235  df-po 5243  df-so 5244  df-fr 5281  df-we 5283  df-xp 5328  df-rel 5329  df-cnv 5330  df-co 5331  df-dm 5332  df-rn 5333  df-res 5334  df-ima 5335  df-pred 5904  df-ord 5950  df-on 5951  df-lim 5952  df-suc 5953  df-iota 6071  df-fun 6110  df-fn 6111  df-f 6112  df-f1 6113  df-fo 6114  df-f1o 6115  df-fv 6116  df-riota 6842  df-ov 6884  df-oprab 6885  df-mpt2 6886  df-om 7303  df-1st 7405  df-2nd 7406  df-wrecs 7649  df-recs 7711  df-rdg 7749  df-1o 7803  df-oadd 7807  df-er 7986  df-map 8101  df-ixp 8153  df-en 8200  df-dom 8201  df-sdom 8202  df-fin 8203  df-pnf 10368  df-mnf 10369  df-xr 10370  df-ltxr 10371  df-le 10372  df-sub 10560  df-neg 10561  df-nn 11313  df-2 11371  df-3 11372  df-4 11373  df-5 11374  df-6 11375  df-7 11376  df-8 11377  df-9 11378  df-n0 11567  df-z 11651  df-dec 11767  df-uz 11912  df-fz 12557  df-struct 16077  df-ndx 16078  df-slot 16079  df-base 16081  df-hom 16184  df-cco 16185  df-cat 16540  df-func 16729  df-nat 16814  df-fuc 16815
This theorem is referenced by:  fuccatid  16840
  Copyright terms: Public domain W3C validator