| Step | Hyp | Ref
| Expression |
| 1 | | eqid 2736 |
. . . . 5
⊢
(Base‘𝐷) =
(Base‘𝐷) |
| 2 | | eqid 2736 |
. . . . 5
⊢ (Hom
‘𝐷) = (Hom
‘𝐷) |
| 3 | | eqid 2736 |
. . . . 5
⊢
(comp‘𝐷) =
(comp‘𝐷) |
| 4 | | fucass.r |
. . . . . . . . . 10
⊢ (𝜑 → 𝑅 ∈ (𝐹𝑁𝐺)) |
| 5 | | fucass.n |
. . . . . . . . . . 11
⊢ 𝑁 = (𝐶 Nat 𝐷) |
| 6 | 5 | natrcl 17971 |
. . . . . . . . . 10
⊢ (𝑅 ∈ (𝐹𝑁𝐺) → (𝐹 ∈ (𝐶 Func 𝐷) ∧ 𝐺 ∈ (𝐶 Func 𝐷))) |
| 7 | 4, 6 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (𝐹 ∈ (𝐶 Func 𝐷) ∧ 𝐺 ∈ (𝐶 Func 𝐷))) |
| 8 | 7 | simpld 494 |
. . . . . . . 8
⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) |
| 9 | | funcrcl 17881 |
. . . . . . . 8
⊢ (𝐹 ∈ (𝐶 Func 𝐷) → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) |
| 10 | 8, 9 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) |
| 11 | 10 | simprd 495 |
. . . . . 6
⊢ (𝜑 → 𝐷 ∈ Cat) |
| 12 | 11 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → 𝐷 ∈ Cat) |
| 13 | | eqid 2736 |
. . . . . . 7
⊢
(Base‘𝐶) =
(Base‘𝐶) |
| 14 | | relfunc 17880 |
. . . . . . . 8
⊢ Rel
(𝐶 Func 𝐷) |
| 15 | | 1st2ndbr 8046 |
. . . . . . . 8
⊢ ((Rel
(𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → (1st ‘𝐹)(𝐶 Func 𝐷)(2nd ‘𝐹)) |
| 16 | 14, 8, 15 | sylancr 587 |
. . . . . . 7
⊢ (𝜑 → (1st
‘𝐹)(𝐶 Func 𝐷)(2nd ‘𝐹)) |
| 17 | 13, 1, 16 | funcf1 17884 |
. . . . . 6
⊢ (𝜑 → (1st
‘𝐹):(Base‘𝐶)⟶(Base‘𝐷)) |
| 18 | 17 | ffvelcdmda 7079 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → ((1st ‘𝐹)‘𝑥) ∈ (Base‘𝐷)) |
| 19 | 7 | simprd 495 |
. . . . . . . 8
⊢ (𝜑 → 𝐺 ∈ (𝐶 Func 𝐷)) |
| 20 | | 1st2ndbr 8046 |
. . . . . . . 8
⊢ ((Rel
(𝐶 Func 𝐷) ∧ 𝐺 ∈ (𝐶 Func 𝐷)) → (1st ‘𝐺)(𝐶 Func 𝐷)(2nd ‘𝐺)) |
| 21 | 14, 19, 20 | sylancr 587 |
. . . . . . 7
⊢ (𝜑 → (1st
‘𝐺)(𝐶 Func 𝐷)(2nd ‘𝐺)) |
| 22 | 13, 1, 21 | funcf1 17884 |
. . . . . 6
⊢ (𝜑 → (1st
‘𝐺):(Base‘𝐶)⟶(Base‘𝐷)) |
| 23 | 22 | ffvelcdmda 7079 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → ((1st ‘𝐺)‘𝑥) ∈ (Base‘𝐷)) |
| 24 | | fucass.t |
. . . . . . . . . 10
⊢ (𝜑 → 𝑇 ∈ (𝐻𝑁𝐾)) |
| 25 | 5 | natrcl 17971 |
. . . . . . . . . 10
⊢ (𝑇 ∈ (𝐻𝑁𝐾) → (𝐻 ∈ (𝐶 Func 𝐷) ∧ 𝐾 ∈ (𝐶 Func 𝐷))) |
| 26 | 24, 25 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (𝐻 ∈ (𝐶 Func 𝐷) ∧ 𝐾 ∈ (𝐶 Func 𝐷))) |
| 27 | 26 | simpld 494 |
. . . . . . . 8
⊢ (𝜑 → 𝐻 ∈ (𝐶 Func 𝐷)) |
| 28 | | 1st2ndbr 8046 |
. . . . . . . 8
⊢ ((Rel
(𝐶 Func 𝐷) ∧ 𝐻 ∈ (𝐶 Func 𝐷)) → (1st ‘𝐻)(𝐶 Func 𝐷)(2nd ‘𝐻)) |
| 29 | 14, 27, 28 | sylancr 587 |
. . . . . . 7
⊢ (𝜑 → (1st
‘𝐻)(𝐶 Func 𝐷)(2nd ‘𝐻)) |
| 30 | 13, 1, 29 | funcf1 17884 |
. . . . . 6
⊢ (𝜑 → (1st
‘𝐻):(Base‘𝐶)⟶(Base‘𝐷)) |
| 31 | 30 | ffvelcdmda 7079 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → ((1st ‘𝐻)‘𝑥) ∈ (Base‘𝐷)) |
| 32 | 5, 4 | nat1st2nd 17972 |
. . . . . . 7
⊢ (𝜑 → 𝑅 ∈ (〈(1st ‘𝐹), (2nd ‘𝐹)〉𝑁〈(1st ‘𝐺), (2nd ‘𝐺)〉)) |
| 33 | 32 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → 𝑅 ∈ (〈(1st ‘𝐹), (2nd ‘𝐹)〉𝑁〈(1st ‘𝐺), (2nd ‘𝐺)〉)) |
| 34 | | simpr 484 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → 𝑥 ∈ (Base‘𝐶)) |
| 35 | 5, 33, 13, 2, 34 | natcl 17974 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → (𝑅‘𝑥) ∈ (((1st ‘𝐹)‘𝑥)(Hom ‘𝐷)((1st ‘𝐺)‘𝑥))) |
| 36 | | fucass.s |
. . . . . . . 8
⊢ (𝜑 → 𝑆 ∈ (𝐺𝑁𝐻)) |
| 37 | 5, 36 | nat1st2nd 17972 |
. . . . . . 7
⊢ (𝜑 → 𝑆 ∈ (〈(1st ‘𝐺), (2nd ‘𝐺)〉𝑁〈(1st ‘𝐻), (2nd ‘𝐻)〉)) |
| 38 | 37 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → 𝑆 ∈ (〈(1st ‘𝐺), (2nd ‘𝐺)〉𝑁〈(1st ‘𝐻), (2nd ‘𝐻)〉)) |
| 39 | 5, 38, 13, 2, 34 | natcl 17974 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → (𝑆‘𝑥) ∈ (((1st ‘𝐺)‘𝑥)(Hom ‘𝐷)((1st ‘𝐻)‘𝑥))) |
| 40 | 26 | simprd 495 |
. . . . . . . 8
⊢ (𝜑 → 𝐾 ∈ (𝐶 Func 𝐷)) |
| 41 | | 1st2ndbr 8046 |
. . . . . . . 8
⊢ ((Rel
(𝐶 Func 𝐷) ∧ 𝐾 ∈ (𝐶 Func 𝐷)) → (1st ‘𝐾)(𝐶 Func 𝐷)(2nd ‘𝐾)) |
| 42 | 14, 40, 41 | sylancr 587 |
. . . . . . 7
⊢ (𝜑 → (1st
‘𝐾)(𝐶 Func 𝐷)(2nd ‘𝐾)) |
| 43 | 13, 1, 42 | funcf1 17884 |
. . . . . 6
⊢ (𝜑 → (1st
‘𝐾):(Base‘𝐶)⟶(Base‘𝐷)) |
| 44 | 43 | ffvelcdmda 7079 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → ((1st ‘𝐾)‘𝑥) ∈ (Base‘𝐷)) |
| 45 | 5, 24 | nat1st2nd 17972 |
. . . . . . 7
⊢ (𝜑 → 𝑇 ∈ (〈(1st ‘𝐻), (2nd ‘𝐻)〉𝑁〈(1st ‘𝐾), (2nd ‘𝐾)〉)) |
| 46 | 45 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → 𝑇 ∈ (〈(1st ‘𝐻), (2nd ‘𝐻)〉𝑁〈(1st ‘𝐾), (2nd ‘𝐾)〉)) |
| 47 | 5, 46, 13, 2, 34 | natcl 17974 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → (𝑇‘𝑥) ∈ (((1st ‘𝐻)‘𝑥)(Hom ‘𝐷)((1st ‘𝐾)‘𝑥))) |
| 48 | 1, 2, 3, 12, 18, 23, 31, 35, 39, 44, 47 | catass 17703 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → (((𝑇‘𝑥)(〈((1st ‘𝐺)‘𝑥), ((1st ‘𝐻)‘𝑥)〉(comp‘𝐷)((1st ‘𝐾)‘𝑥))(𝑆‘𝑥))(〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉(comp‘𝐷)((1st ‘𝐾)‘𝑥))(𝑅‘𝑥)) = ((𝑇‘𝑥)(〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐻)‘𝑥)〉(comp‘𝐷)((1st ‘𝐾)‘𝑥))((𝑆‘𝑥)(〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉(comp‘𝐷)((1st ‘𝐻)‘𝑥))(𝑅‘𝑥)))) |
| 49 | | fucass.q |
. . . . . 6
⊢ 𝑄 = (𝐶 FuncCat 𝐷) |
| 50 | | fucass.x |
. . . . . 6
⊢ ∙ =
(comp‘𝑄) |
| 51 | 36 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → 𝑆 ∈ (𝐺𝑁𝐻)) |
| 52 | 24 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → 𝑇 ∈ (𝐻𝑁𝐾)) |
| 53 | 49, 5, 13, 3, 50, 51, 52, 34 | fuccoval 17984 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → ((𝑇(〈𝐺, 𝐻〉 ∙ 𝐾)𝑆)‘𝑥) = ((𝑇‘𝑥)(〈((1st ‘𝐺)‘𝑥), ((1st ‘𝐻)‘𝑥)〉(comp‘𝐷)((1st ‘𝐾)‘𝑥))(𝑆‘𝑥))) |
| 54 | 53 | oveq1d 7425 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → (((𝑇(〈𝐺, 𝐻〉 ∙ 𝐾)𝑆)‘𝑥)(〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉(comp‘𝐷)((1st ‘𝐾)‘𝑥))(𝑅‘𝑥)) = (((𝑇‘𝑥)(〈((1st ‘𝐺)‘𝑥), ((1st ‘𝐻)‘𝑥)〉(comp‘𝐷)((1st ‘𝐾)‘𝑥))(𝑆‘𝑥))(〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉(comp‘𝐷)((1st ‘𝐾)‘𝑥))(𝑅‘𝑥))) |
| 55 | 4 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → 𝑅 ∈ (𝐹𝑁𝐺)) |
| 56 | 49, 5, 13, 3, 50, 55, 51, 34 | fuccoval 17984 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → ((𝑆(〈𝐹, 𝐺〉 ∙ 𝐻)𝑅)‘𝑥) = ((𝑆‘𝑥)(〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉(comp‘𝐷)((1st ‘𝐻)‘𝑥))(𝑅‘𝑥))) |
| 57 | 56 | oveq2d 7426 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → ((𝑇‘𝑥)(〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐻)‘𝑥)〉(comp‘𝐷)((1st ‘𝐾)‘𝑥))((𝑆(〈𝐹, 𝐺〉 ∙ 𝐻)𝑅)‘𝑥)) = ((𝑇‘𝑥)(〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐻)‘𝑥)〉(comp‘𝐷)((1st ‘𝐾)‘𝑥))((𝑆‘𝑥)(〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉(comp‘𝐷)((1st ‘𝐻)‘𝑥))(𝑅‘𝑥)))) |
| 58 | 48, 54, 57 | 3eqtr4d 2781 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → (((𝑇(〈𝐺, 𝐻〉 ∙ 𝐾)𝑆)‘𝑥)(〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉(comp‘𝐷)((1st ‘𝐾)‘𝑥))(𝑅‘𝑥)) = ((𝑇‘𝑥)(〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐻)‘𝑥)〉(comp‘𝐷)((1st ‘𝐾)‘𝑥))((𝑆(〈𝐹, 𝐺〉 ∙ 𝐻)𝑅)‘𝑥))) |
| 59 | 58 | mpteq2dva 5219 |
. 2
⊢ (𝜑 → (𝑥 ∈ (Base‘𝐶) ↦ (((𝑇(〈𝐺, 𝐻〉 ∙ 𝐾)𝑆)‘𝑥)(〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉(comp‘𝐷)((1st ‘𝐾)‘𝑥))(𝑅‘𝑥))) = (𝑥 ∈ (Base‘𝐶) ↦ ((𝑇‘𝑥)(〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐻)‘𝑥)〉(comp‘𝐷)((1st ‘𝐾)‘𝑥))((𝑆(〈𝐹, 𝐺〉 ∙ 𝐻)𝑅)‘𝑥)))) |
| 60 | 49, 5, 50, 36, 24 | fuccocl 17985 |
. . 3
⊢ (𝜑 → (𝑇(〈𝐺, 𝐻〉 ∙ 𝐾)𝑆) ∈ (𝐺𝑁𝐾)) |
| 61 | 49, 5, 13, 3, 50, 4, 60 | fucco 17983 |
. 2
⊢ (𝜑 → ((𝑇(〈𝐺, 𝐻〉 ∙ 𝐾)𝑆)(〈𝐹, 𝐺〉 ∙ 𝐾)𝑅) = (𝑥 ∈ (Base‘𝐶) ↦ (((𝑇(〈𝐺, 𝐻〉 ∙ 𝐾)𝑆)‘𝑥)(〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉(comp‘𝐷)((1st ‘𝐾)‘𝑥))(𝑅‘𝑥)))) |
| 62 | 49, 5, 50, 4, 36 | fuccocl 17985 |
. . 3
⊢ (𝜑 → (𝑆(〈𝐹, 𝐺〉 ∙ 𝐻)𝑅) ∈ (𝐹𝑁𝐻)) |
| 63 | 49, 5, 13, 3, 50, 62, 24 | fucco 17983 |
. 2
⊢ (𝜑 → (𝑇(〈𝐹, 𝐻〉 ∙ 𝐾)(𝑆(〈𝐹, 𝐺〉 ∙ 𝐻)𝑅)) = (𝑥 ∈ (Base‘𝐶) ↦ ((𝑇‘𝑥)(〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐻)‘𝑥)〉(comp‘𝐷)((1st ‘𝐾)‘𝑥))((𝑆(〈𝐹, 𝐺〉 ∙ 𝐻)𝑅)‘𝑥)))) |
| 64 | 59, 61, 63 | 3eqtr4d 2781 |
1
⊢ (𝜑 → ((𝑇(〈𝐺, 𝐻〉 ∙ 𝐾)𝑆)(〈𝐹, 𝐺〉 ∙ 𝐾)𝑅) = (𝑇(〈𝐹, 𝐻〉 ∙ 𝐾)(𝑆(〈𝐹, 𝐺〉 ∙ 𝐻)𝑅))) |