| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | eqid 2736 | . . . . 5
⊢
(Base‘𝐷) =
(Base‘𝐷) | 
| 2 |  | eqid 2736 | . . . . 5
⊢ (Hom
‘𝐷) = (Hom
‘𝐷) | 
| 3 |  | eqid 2736 | . . . . 5
⊢
(comp‘𝐷) =
(comp‘𝐷) | 
| 4 |  | fucass.r | . . . . . . . . . 10
⊢ (𝜑 → 𝑅 ∈ (𝐹𝑁𝐺)) | 
| 5 |  | fucass.n | . . . . . . . . . . 11
⊢ 𝑁 = (𝐶 Nat 𝐷) | 
| 6 | 5 | natrcl 17999 | . . . . . . . . . 10
⊢ (𝑅 ∈ (𝐹𝑁𝐺) → (𝐹 ∈ (𝐶 Func 𝐷) ∧ 𝐺 ∈ (𝐶 Func 𝐷))) | 
| 7 | 4, 6 | syl 17 | . . . . . . . . 9
⊢ (𝜑 → (𝐹 ∈ (𝐶 Func 𝐷) ∧ 𝐺 ∈ (𝐶 Func 𝐷))) | 
| 8 | 7 | simpld 494 | . . . . . . . 8
⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) | 
| 9 |  | funcrcl 17909 | . . . . . . . 8
⊢ (𝐹 ∈ (𝐶 Func 𝐷) → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) | 
| 10 | 8, 9 | syl 17 | . . . . . . 7
⊢ (𝜑 → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) | 
| 11 | 10 | simprd 495 | . . . . . 6
⊢ (𝜑 → 𝐷 ∈ Cat) | 
| 12 | 11 | adantr 480 | . . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → 𝐷 ∈ Cat) | 
| 13 |  | eqid 2736 | . . . . . . 7
⊢
(Base‘𝐶) =
(Base‘𝐶) | 
| 14 |  | relfunc 17908 | . . . . . . . 8
⊢ Rel
(𝐶 Func 𝐷) | 
| 15 |  | 1st2ndbr 8068 | . . . . . . . 8
⊢ ((Rel
(𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → (1st ‘𝐹)(𝐶 Func 𝐷)(2nd ‘𝐹)) | 
| 16 | 14, 8, 15 | sylancr 587 | . . . . . . 7
⊢ (𝜑 → (1st
‘𝐹)(𝐶 Func 𝐷)(2nd ‘𝐹)) | 
| 17 | 13, 1, 16 | funcf1 17912 | . . . . . 6
⊢ (𝜑 → (1st
‘𝐹):(Base‘𝐶)⟶(Base‘𝐷)) | 
| 18 | 17 | ffvelcdmda 7103 | . . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → ((1st ‘𝐹)‘𝑥) ∈ (Base‘𝐷)) | 
| 19 | 7 | simprd 495 | . . . . . . . 8
⊢ (𝜑 → 𝐺 ∈ (𝐶 Func 𝐷)) | 
| 20 |  | 1st2ndbr 8068 | . . . . . . . 8
⊢ ((Rel
(𝐶 Func 𝐷) ∧ 𝐺 ∈ (𝐶 Func 𝐷)) → (1st ‘𝐺)(𝐶 Func 𝐷)(2nd ‘𝐺)) | 
| 21 | 14, 19, 20 | sylancr 587 | . . . . . . 7
⊢ (𝜑 → (1st
‘𝐺)(𝐶 Func 𝐷)(2nd ‘𝐺)) | 
| 22 | 13, 1, 21 | funcf1 17912 | . . . . . 6
⊢ (𝜑 → (1st
‘𝐺):(Base‘𝐶)⟶(Base‘𝐷)) | 
| 23 | 22 | ffvelcdmda 7103 | . . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → ((1st ‘𝐺)‘𝑥) ∈ (Base‘𝐷)) | 
| 24 |  | fucass.t | . . . . . . . . . 10
⊢ (𝜑 → 𝑇 ∈ (𝐻𝑁𝐾)) | 
| 25 | 5 | natrcl 17999 | . . . . . . . . . 10
⊢ (𝑇 ∈ (𝐻𝑁𝐾) → (𝐻 ∈ (𝐶 Func 𝐷) ∧ 𝐾 ∈ (𝐶 Func 𝐷))) | 
| 26 | 24, 25 | syl 17 | . . . . . . . . 9
⊢ (𝜑 → (𝐻 ∈ (𝐶 Func 𝐷) ∧ 𝐾 ∈ (𝐶 Func 𝐷))) | 
| 27 | 26 | simpld 494 | . . . . . . . 8
⊢ (𝜑 → 𝐻 ∈ (𝐶 Func 𝐷)) | 
| 28 |  | 1st2ndbr 8068 | . . . . . . . 8
⊢ ((Rel
(𝐶 Func 𝐷) ∧ 𝐻 ∈ (𝐶 Func 𝐷)) → (1st ‘𝐻)(𝐶 Func 𝐷)(2nd ‘𝐻)) | 
| 29 | 14, 27, 28 | sylancr 587 | . . . . . . 7
⊢ (𝜑 → (1st
‘𝐻)(𝐶 Func 𝐷)(2nd ‘𝐻)) | 
| 30 | 13, 1, 29 | funcf1 17912 | . . . . . 6
⊢ (𝜑 → (1st
‘𝐻):(Base‘𝐶)⟶(Base‘𝐷)) | 
| 31 | 30 | ffvelcdmda 7103 | . . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → ((1st ‘𝐻)‘𝑥) ∈ (Base‘𝐷)) | 
| 32 | 5, 4 | nat1st2nd 18000 | . . . . . . 7
⊢ (𝜑 → 𝑅 ∈ (〈(1st ‘𝐹), (2nd ‘𝐹)〉𝑁〈(1st ‘𝐺), (2nd ‘𝐺)〉)) | 
| 33 | 32 | adantr 480 | . . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → 𝑅 ∈ (〈(1st ‘𝐹), (2nd ‘𝐹)〉𝑁〈(1st ‘𝐺), (2nd ‘𝐺)〉)) | 
| 34 |  | simpr 484 | . . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → 𝑥 ∈ (Base‘𝐶)) | 
| 35 | 5, 33, 13, 2, 34 | natcl 18002 | . . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → (𝑅‘𝑥) ∈ (((1st ‘𝐹)‘𝑥)(Hom ‘𝐷)((1st ‘𝐺)‘𝑥))) | 
| 36 |  | fucass.s | . . . . . . . 8
⊢ (𝜑 → 𝑆 ∈ (𝐺𝑁𝐻)) | 
| 37 | 5, 36 | nat1st2nd 18000 | . . . . . . 7
⊢ (𝜑 → 𝑆 ∈ (〈(1st ‘𝐺), (2nd ‘𝐺)〉𝑁〈(1st ‘𝐻), (2nd ‘𝐻)〉)) | 
| 38 | 37 | adantr 480 | . . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → 𝑆 ∈ (〈(1st ‘𝐺), (2nd ‘𝐺)〉𝑁〈(1st ‘𝐻), (2nd ‘𝐻)〉)) | 
| 39 | 5, 38, 13, 2, 34 | natcl 18002 | . . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → (𝑆‘𝑥) ∈ (((1st ‘𝐺)‘𝑥)(Hom ‘𝐷)((1st ‘𝐻)‘𝑥))) | 
| 40 | 26 | simprd 495 | . . . . . . . 8
⊢ (𝜑 → 𝐾 ∈ (𝐶 Func 𝐷)) | 
| 41 |  | 1st2ndbr 8068 | . . . . . . . 8
⊢ ((Rel
(𝐶 Func 𝐷) ∧ 𝐾 ∈ (𝐶 Func 𝐷)) → (1st ‘𝐾)(𝐶 Func 𝐷)(2nd ‘𝐾)) | 
| 42 | 14, 40, 41 | sylancr 587 | . . . . . . 7
⊢ (𝜑 → (1st
‘𝐾)(𝐶 Func 𝐷)(2nd ‘𝐾)) | 
| 43 | 13, 1, 42 | funcf1 17912 | . . . . . 6
⊢ (𝜑 → (1st
‘𝐾):(Base‘𝐶)⟶(Base‘𝐷)) | 
| 44 | 43 | ffvelcdmda 7103 | . . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → ((1st ‘𝐾)‘𝑥) ∈ (Base‘𝐷)) | 
| 45 | 5, 24 | nat1st2nd 18000 | . . . . . . 7
⊢ (𝜑 → 𝑇 ∈ (〈(1st ‘𝐻), (2nd ‘𝐻)〉𝑁〈(1st ‘𝐾), (2nd ‘𝐾)〉)) | 
| 46 | 45 | adantr 480 | . . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → 𝑇 ∈ (〈(1st ‘𝐻), (2nd ‘𝐻)〉𝑁〈(1st ‘𝐾), (2nd ‘𝐾)〉)) | 
| 47 | 5, 46, 13, 2, 34 | natcl 18002 | . . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → (𝑇‘𝑥) ∈ (((1st ‘𝐻)‘𝑥)(Hom ‘𝐷)((1st ‘𝐾)‘𝑥))) | 
| 48 | 1, 2, 3, 12, 18, 23, 31, 35, 39, 44, 47 | catass 17730 | . . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → (((𝑇‘𝑥)(〈((1st ‘𝐺)‘𝑥), ((1st ‘𝐻)‘𝑥)〉(comp‘𝐷)((1st ‘𝐾)‘𝑥))(𝑆‘𝑥))(〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉(comp‘𝐷)((1st ‘𝐾)‘𝑥))(𝑅‘𝑥)) = ((𝑇‘𝑥)(〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐻)‘𝑥)〉(comp‘𝐷)((1st ‘𝐾)‘𝑥))((𝑆‘𝑥)(〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉(comp‘𝐷)((1st ‘𝐻)‘𝑥))(𝑅‘𝑥)))) | 
| 49 |  | fucass.q | . . . . . 6
⊢ 𝑄 = (𝐶 FuncCat 𝐷) | 
| 50 |  | fucass.x | . . . . . 6
⊢  ∙ =
(comp‘𝑄) | 
| 51 | 36 | adantr 480 | . . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → 𝑆 ∈ (𝐺𝑁𝐻)) | 
| 52 | 24 | adantr 480 | . . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → 𝑇 ∈ (𝐻𝑁𝐾)) | 
| 53 | 49, 5, 13, 3, 50, 51, 52, 34 | fuccoval 18012 | . . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → ((𝑇(〈𝐺, 𝐻〉 ∙ 𝐾)𝑆)‘𝑥) = ((𝑇‘𝑥)(〈((1st ‘𝐺)‘𝑥), ((1st ‘𝐻)‘𝑥)〉(comp‘𝐷)((1st ‘𝐾)‘𝑥))(𝑆‘𝑥))) | 
| 54 | 53 | oveq1d 7447 | . . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → (((𝑇(〈𝐺, 𝐻〉 ∙ 𝐾)𝑆)‘𝑥)(〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉(comp‘𝐷)((1st ‘𝐾)‘𝑥))(𝑅‘𝑥)) = (((𝑇‘𝑥)(〈((1st ‘𝐺)‘𝑥), ((1st ‘𝐻)‘𝑥)〉(comp‘𝐷)((1st ‘𝐾)‘𝑥))(𝑆‘𝑥))(〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉(comp‘𝐷)((1st ‘𝐾)‘𝑥))(𝑅‘𝑥))) | 
| 55 | 4 | adantr 480 | . . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → 𝑅 ∈ (𝐹𝑁𝐺)) | 
| 56 | 49, 5, 13, 3, 50, 55, 51, 34 | fuccoval 18012 | . . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → ((𝑆(〈𝐹, 𝐺〉 ∙ 𝐻)𝑅)‘𝑥) = ((𝑆‘𝑥)(〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉(comp‘𝐷)((1st ‘𝐻)‘𝑥))(𝑅‘𝑥))) | 
| 57 | 56 | oveq2d 7448 | . . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → ((𝑇‘𝑥)(〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐻)‘𝑥)〉(comp‘𝐷)((1st ‘𝐾)‘𝑥))((𝑆(〈𝐹, 𝐺〉 ∙ 𝐻)𝑅)‘𝑥)) = ((𝑇‘𝑥)(〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐻)‘𝑥)〉(comp‘𝐷)((1st ‘𝐾)‘𝑥))((𝑆‘𝑥)(〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉(comp‘𝐷)((1st ‘𝐻)‘𝑥))(𝑅‘𝑥)))) | 
| 58 | 48, 54, 57 | 3eqtr4d 2786 | . . 3
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → (((𝑇(〈𝐺, 𝐻〉 ∙ 𝐾)𝑆)‘𝑥)(〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉(comp‘𝐷)((1st ‘𝐾)‘𝑥))(𝑅‘𝑥)) = ((𝑇‘𝑥)(〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐻)‘𝑥)〉(comp‘𝐷)((1st ‘𝐾)‘𝑥))((𝑆(〈𝐹, 𝐺〉 ∙ 𝐻)𝑅)‘𝑥))) | 
| 59 | 58 | mpteq2dva 5241 | . 2
⊢ (𝜑 → (𝑥 ∈ (Base‘𝐶) ↦ (((𝑇(〈𝐺, 𝐻〉 ∙ 𝐾)𝑆)‘𝑥)(〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉(comp‘𝐷)((1st ‘𝐾)‘𝑥))(𝑅‘𝑥))) = (𝑥 ∈ (Base‘𝐶) ↦ ((𝑇‘𝑥)(〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐻)‘𝑥)〉(comp‘𝐷)((1st ‘𝐾)‘𝑥))((𝑆(〈𝐹, 𝐺〉 ∙ 𝐻)𝑅)‘𝑥)))) | 
| 60 | 49, 5, 50, 36, 24 | fuccocl 18013 | . . 3
⊢ (𝜑 → (𝑇(〈𝐺, 𝐻〉 ∙ 𝐾)𝑆) ∈ (𝐺𝑁𝐾)) | 
| 61 | 49, 5, 13, 3, 50, 4, 60 | fucco 18011 | . 2
⊢ (𝜑 → ((𝑇(〈𝐺, 𝐻〉 ∙ 𝐾)𝑆)(〈𝐹, 𝐺〉 ∙ 𝐾)𝑅) = (𝑥 ∈ (Base‘𝐶) ↦ (((𝑇(〈𝐺, 𝐻〉 ∙ 𝐾)𝑆)‘𝑥)(〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉(comp‘𝐷)((1st ‘𝐾)‘𝑥))(𝑅‘𝑥)))) | 
| 62 | 49, 5, 50, 4, 36 | fuccocl 18013 | . . 3
⊢ (𝜑 → (𝑆(〈𝐹, 𝐺〉 ∙ 𝐻)𝑅) ∈ (𝐹𝑁𝐻)) | 
| 63 | 49, 5, 13, 3, 50, 62, 24 | fucco 18011 | . 2
⊢ (𝜑 → (𝑇(〈𝐹, 𝐻〉 ∙ 𝐾)(𝑆(〈𝐹, 𝐺〉 ∙ 𝐻)𝑅)) = (𝑥 ∈ (Base‘𝐶) ↦ ((𝑇‘𝑥)(〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐻)‘𝑥)〉(comp‘𝐷)((1st ‘𝐾)‘𝑥))((𝑆(〈𝐹, 𝐺〉 ∙ 𝐻)𝑅)‘𝑥)))) | 
| 64 | 59, 61, 63 | 3eqtr4d 2786 | 1
⊢ (𝜑 → ((𝑇(〈𝐺, 𝐻〉 ∙ 𝐾)𝑆)(〈𝐹, 𝐺〉 ∙ 𝐾)𝑅) = (𝑇(〈𝐹, 𝐻〉 ∙ 𝐾)(𝑆(〈𝐹, 𝐺〉 ∙ 𝐻)𝑅))) |