MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  monsect Structured version   Visualization version   GIF version

Theorem monsect 17242
Description: If 𝐹 is a monomorphism and 𝐺 is a section of 𝐹, then 𝐺 is an inverse of 𝐹 and they are both isomorphisms. This is also stated as "a monomorphism which is also a split epimorphism is an isomorphism". (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
sectmon.b 𝐵 = (Base‘𝐶)
sectmon.m 𝑀 = (Mono‘𝐶)
sectmon.s 𝑆 = (Sect‘𝐶)
sectmon.c (𝜑𝐶 ∈ Cat)
sectmon.x (𝜑𝑋𝐵)
sectmon.y (𝜑𝑌𝐵)
monsect.n 𝑁 = (Inv‘𝐶)
monsect.1 (𝜑𝐹 ∈ (𝑋𝑀𝑌))
monsect.2 (𝜑𝐺(𝑌𝑆𝑋)𝐹)
Assertion
Ref Expression
monsect (𝜑𝐹(𝑋𝑁𝑌)𝐺)

Proof of Theorem monsect
StepHypRef Expression
1 monsect.2 . . . . . . . 8 (𝜑𝐺(𝑌𝑆𝑋)𝐹)
2 sectmon.b . . . . . . . . 9 𝐵 = (Base‘𝐶)
3 eqid 2736 . . . . . . . . 9 (Hom ‘𝐶) = (Hom ‘𝐶)
4 eqid 2736 . . . . . . . . 9 (comp‘𝐶) = (comp‘𝐶)
5 eqid 2736 . . . . . . . . 9 (Id‘𝐶) = (Id‘𝐶)
6 sectmon.s . . . . . . . . 9 𝑆 = (Sect‘𝐶)
7 sectmon.c . . . . . . . . 9 (𝜑𝐶 ∈ Cat)
8 sectmon.y . . . . . . . . 9 (𝜑𝑌𝐵)
9 sectmon.x . . . . . . . . 9 (𝜑𝑋𝐵)
102, 3, 4, 5, 6, 7, 8, 9issect 17212 . . . . . . . 8 (𝜑 → (𝐺(𝑌𝑆𝑋)𝐹 ↔ (𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋) ∧ 𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ (𝐹(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝐺) = ((Id‘𝐶)‘𝑌))))
111, 10mpbid 235 . . . . . . 7 (𝜑 → (𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋) ∧ 𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ (𝐹(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝐺) = ((Id‘𝐶)‘𝑌)))
1211simp3d 1146 . . . . . 6 (𝜑 → (𝐹(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝐺) = ((Id‘𝐶)‘𝑌))
1312oveq1d 7206 . . . . 5 (𝜑 → ((𝐹(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝐺)(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑌)𝐹) = (((Id‘𝐶)‘𝑌)(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑌)𝐹))
1411simp2d 1145 . . . . . 6 (𝜑𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌))
1511simp1d 1144 . . . . . 6 (𝜑𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋))
162, 3, 4, 7, 9, 8, 9, 14, 15, 8, 14catass 17143 . . . . 5 (𝜑 → ((𝐹(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝐺)(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑌)𝐹) = (𝐹(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑌)(𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹)))
172, 3, 5, 7, 9, 4, 8, 14catlid 17140 . . . . . 6 (𝜑 → (((Id‘𝐶)‘𝑌)(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑌)𝐹) = 𝐹)
182, 3, 5, 7, 9, 4, 8, 14catrid 17141 . . . . . 6 (𝜑 → (𝐹(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑌)((Id‘𝐶)‘𝑋)) = 𝐹)
1917, 18eqtr4d 2774 . . . . 5 (𝜑 → (((Id‘𝐶)‘𝑌)(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑌)𝐹) = (𝐹(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑌)((Id‘𝐶)‘𝑋)))
2013, 16, 193eqtr3d 2779 . . . 4 (𝜑 → (𝐹(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑌)(𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹)) = (𝐹(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑌)((Id‘𝐶)‘𝑋)))
21 sectmon.m . . . . 5 𝑀 = (Mono‘𝐶)
22 monsect.1 . . . . 5 (𝜑𝐹 ∈ (𝑋𝑀𝑌))
232, 3, 4, 7, 9, 8, 9, 14, 15catcocl 17142 . . . . 5 (𝜑 → (𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) ∈ (𝑋(Hom ‘𝐶)𝑋))
242, 3, 5, 7, 9catidcl 17139 . . . . 5 (𝜑 → ((Id‘𝐶)‘𝑋) ∈ (𝑋(Hom ‘𝐶)𝑋))
252, 3, 4, 21, 7, 9, 8, 9, 22, 23, 24moni 17195 . . . 4 (𝜑 → ((𝐹(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑌)(𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹)) = (𝐹(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑌)((Id‘𝐶)‘𝑋)) ↔ (𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)))
2620, 25mpbid 235 . . 3 (𝜑 → (𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋))
272, 3, 4, 5, 6, 7, 9, 8, 14, 15issect2 17213 . . 3 (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺 ↔ (𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)))
2826, 27mpbird 260 . 2 (𝜑𝐹(𝑋𝑆𝑌)𝐺)
29 monsect.n . . 3 𝑁 = (Inv‘𝐶)
302, 29, 7, 9, 8, 6isinv 17219 . 2 (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺 ↔ (𝐹(𝑋𝑆𝑌)𝐺𝐺(𝑌𝑆𝑋)𝐹)))
3128, 1, 30mpbir2and 713 1 (𝜑𝐹(𝑋𝑁𝑌)𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1089   = wceq 1543  wcel 2112  cop 4533   class class class wbr 5039  cfv 6358  (class class class)co 7191  Basecbs 16666  Hom chom 16760  compcco 16761  Catccat 17121  Idccid 17122  Monocmon 17187  Sectcsect 17203  Invcinv 17204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-op 4534  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-id 5440  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-1st 7739  df-2nd 7740  df-cat 17125  df-cid 17126  df-mon 17189  df-sect 17206  df-inv 17207
This theorem is referenced by:  episect  17244
  Copyright terms: Public domain W3C validator