MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  monsect Structured version   Visualization version   GIF version

Theorem monsect 17751
Description: If 𝐹 is a monomorphism and 𝐺 is a section of 𝐹, then 𝐺 is an inverse of 𝐹 and they are both isomorphisms. This is also stated as "a monomorphism which is also a split epimorphism is an isomorphism". (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
sectmon.b 𝐵 = (Base‘𝐶)
sectmon.m 𝑀 = (Mono‘𝐶)
sectmon.s 𝑆 = (Sect‘𝐶)
sectmon.c (𝜑𝐶 ∈ Cat)
sectmon.x (𝜑𝑋𝐵)
sectmon.y (𝜑𝑌𝐵)
monsect.n 𝑁 = (Inv‘𝐶)
monsect.1 (𝜑𝐹 ∈ (𝑋𝑀𝑌))
monsect.2 (𝜑𝐺(𝑌𝑆𝑋)𝐹)
Assertion
Ref Expression
monsect (𝜑𝐹(𝑋𝑁𝑌)𝐺)

Proof of Theorem monsect
StepHypRef Expression
1 monsect.2 . . . . . . . 8 (𝜑𝐺(𝑌𝑆𝑋)𝐹)
2 sectmon.b . . . . . . . . 9 𝐵 = (Base‘𝐶)
3 eqid 2730 . . . . . . . . 9 (Hom ‘𝐶) = (Hom ‘𝐶)
4 eqid 2730 . . . . . . . . 9 (comp‘𝐶) = (comp‘𝐶)
5 eqid 2730 . . . . . . . . 9 (Id‘𝐶) = (Id‘𝐶)
6 sectmon.s . . . . . . . . 9 𝑆 = (Sect‘𝐶)
7 sectmon.c . . . . . . . . 9 (𝜑𝐶 ∈ Cat)
8 sectmon.y . . . . . . . . 9 (𝜑𝑌𝐵)
9 sectmon.x . . . . . . . . 9 (𝜑𝑋𝐵)
102, 3, 4, 5, 6, 7, 8, 9issect 17721 . . . . . . . 8 (𝜑 → (𝐺(𝑌𝑆𝑋)𝐹 ↔ (𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋) ∧ 𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ (𝐹(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝐺) = ((Id‘𝐶)‘𝑌))))
111, 10mpbid 232 . . . . . . 7 (𝜑 → (𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋) ∧ 𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ (𝐹(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝐺) = ((Id‘𝐶)‘𝑌)))
1211simp3d 1144 . . . . . 6 (𝜑 → (𝐹(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝐺) = ((Id‘𝐶)‘𝑌))
1312oveq1d 7404 . . . . 5 (𝜑 → ((𝐹(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝐺)(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑌)𝐹) = (((Id‘𝐶)‘𝑌)(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑌)𝐹))
1411simp2d 1143 . . . . . 6 (𝜑𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌))
1511simp1d 1142 . . . . . 6 (𝜑𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋))
162, 3, 4, 7, 9, 8, 9, 14, 15, 8, 14catass 17653 . . . . 5 (𝜑 → ((𝐹(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝐺)(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑌)𝐹) = (𝐹(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑌)(𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹)))
172, 3, 5, 7, 9, 4, 8, 14catlid 17650 . . . . . 6 (𝜑 → (((Id‘𝐶)‘𝑌)(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑌)𝐹) = 𝐹)
182, 3, 5, 7, 9, 4, 8, 14catrid 17651 . . . . . 6 (𝜑 → (𝐹(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑌)((Id‘𝐶)‘𝑋)) = 𝐹)
1917, 18eqtr4d 2768 . . . . 5 (𝜑 → (((Id‘𝐶)‘𝑌)(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑌)𝐹) = (𝐹(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑌)((Id‘𝐶)‘𝑋)))
2013, 16, 193eqtr3d 2773 . . . 4 (𝜑 → (𝐹(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑌)(𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹)) = (𝐹(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑌)((Id‘𝐶)‘𝑋)))
21 sectmon.m . . . . 5 𝑀 = (Mono‘𝐶)
22 monsect.1 . . . . 5 (𝜑𝐹 ∈ (𝑋𝑀𝑌))
232, 3, 4, 7, 9, 8, 9, 14, 15catcocl 17652 . . . . 5 (𝜑 → (𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) ∈ (𝑋(Hom ‘𝐶)𝑋))
242, 3, 5, 7, 9catidcl 17649 . . . . 5 (𝜑 → ((Id‘𝐶)‘𝑋) ∈ (𝑋(Hom ‘𝐶)𝑋))
252, 3, 4, 21, 7, 9, 8, 9, 22, 23, 24moni 17704 . . . 4 (𝜑 → ((𝐹(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑌)(𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹)) = (𝐹(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑌)((Id‘𝐶)‘𝑋)) ↔ (𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)))
2620, 25mpbid 232 . . 3 (𝜑 → (𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋))
272, 3, 4, 5, 6, 7, 9, 8, 14, 15issect2 17722 . . 3 (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺 ↔ (𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)))
2826, 27mpbird 257 . 2 (𝜑𝐹(𝑋𝑆𝑌)𝐺)
29 monsect.n . . 3 𝑁 = (Inv‘𝐶)
302, 29, 7, 9, 8, 6isinv 17728 . 2 (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺 ↔ (𝐹(𝑋𝑆𝑌)𝐺𝐺(𝑌𝑆𝑋)𝐹)))
3128, 1, 30mpbir2and 713 1 (𝜑𝐹(𝑋𝑁𝑌)𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  cop 4597   class class class wbr 5109  cfv 6513  (class class class)co 7389  Basecbs 17185  Hom chom 17237  compcco 17238  Catccat 17631  Idccid 17632  Monocmon 17696  Sectcsect 17712  Invcinv 17713
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-1st 7970  df-2nd 7971  df-cat 17635  df-cid 17636  df-mon 17698  df-sect 17715  df-inv 17716
This theorem is referenced by:  episect  17753
  Copyright terms: Public domain W3C validator