Step | Hyp | Ref
| Expression |
1 | | monsect.2 |
. . . . . . . 8
β’ (π β πΊ(πππ)πΉ) |
2 | | sectmon.b |
. . . . . . . . 9
β’ π΅ = (BaseβπΆ) |
3 | | eqid 2730 |
. . . . . . . . 9
β’ (Hom
βπΆ) = (Hom
βπΆ) |
4 | | eqid 2730 |
. . . . . . . . 9
β’
(compβπΆ) =
(compβπΆ) |
5 | | eqid 2730 |
. . . . . . . . 9
β’
(IdβπΆ) =
(IdβπΆ) |
6 | | sectmon.s |
. . . . . . . . 9
β’ π = (SectβπΆ) |
7 | | sectmon.c |
. . . . . . . . 9
β’ (π β πΆ β Cat) |
8 | | sectmon.y |
. . . . . . . . 9
β’ (π β π β π΅) |
9 | | sectmon.x |
. . . . . . . . 9
β’ (π β π β π΅) |
10 | 2, 3, 4, 5, 6, 7, 8, 9 | issect 17704 |
. . . . . . . 8
β’ (π β (πΊ(πππ)πΉ β (πΊ β (π(Hom βπΆ)π) β§ πΉ β (π(Hom βπΆ)π) β§ (πΉ(β¨π, πβ©(compβπΆ)π)πΊ) = ((IdβπΆ)βπ)))) |
11 | 1, 10 | mpbid 231 |
. . . . . . 7
β’ (π β (πΊ β (π(Hom βπΆ)π) β§ πΉ β (π(Hom βπΆ)π) β§ (πΉ(β¨π, πβ©(compβπΆ)π)πΊ) = ((IdβπΆ)βπ))) |
12 | 11 | simp3d 1142 |
. . . . . 6
β’ (π β (πΉ(β¨π, πβ©(compβπΆ)π)πΊ) = ((IdβπΆ)βπ)) |
13 | 12 | oveq1d 7426 |
. . . . 5
β’ (π β ((πΉ(β¨π, πβ©(compβπΆ)π)πΊ)(β¨π, πβ©(compβπΆ)π)πΉ) = (((IdβπΆ)βπ)(β¨π, πβ©(compβπΆ)π)πΉ)) |
14 | 11 | simp2d 1141 |
. . . . . 6
β’ (π β πΉ β (π(Hom βπΆ)π)) |
15 | 11 | simp1d 1140 |
. . . . . 6
β’ (π β πΊ β (π(Hom βπΆ)π)) |
16 | 2, 3, 4, 7, 9, 8, 9, 14, 15, 8, 14 | catass 17634 |
. . . . 5
β’ (π β ((πΉ(β¨π, πβ©(compβπΆ)π)πΊ)(β¨π, πβ©(compβπΆ)π)πΉ) = (πΉ(β¨π, πβ©(compβπΆ)π)(πΊ(β¨π, πβ©(compβπΆ)π)πΉ))) |
17 | 2, 3, 5, 7, 9, 4, 8, 14 | catlid 17631 |
. . . . . 6
β’ (π β (((IdβπΆ)βπ)(β¨π, πβ©(compβπΆ)π)πΉ) = πΉ) |
18 | 2, 3, 5, 7, 9, 4, 8, 14 | catrid 17632 |
. . . . . 6
β’ (π β (πΉ(β¨π, πβ©(compβπΆ)π)((IdβπΆ)βπ)) = πΉ) |
19 | 17, 18 | eqtr4d 2773 |
. . . . 5
β’ (π β (((IdβπΆ)βπ)(β¨π, πβ©(compβπΆ)π)πΉ) = (πΉ(β¨π, πβ©(compβπΆ)π)((IdβπΆ)βπ))) |
20 | 13, 16, 19 | 3eqtr3d 2778 |
. . . 4
β’ (π β (πΉ(β¨π, πβ©(compβπΆ)π)(πΊ(β¨π, πβ©(compβπΆ)π)πΉ)) = (πΉ(β¨π, πβ©(compβπΆ)π)((IdβπΆ)βπ))) |
21 | | sectmon.m |
. . . . 5
β’ π = (MonoβπΆ) |
22 | | monsect.1 |
. . . . 5
β’ (π β πΉ β (πππ)) |
23 | 2, 3, 4, 7, 9, 8, 9, 14, 15 | catcocl 17633 |
. . . . 5
β’ (π β (πΊ(β¨π, πβ©(compβπΆ)π)πΉ) β (π(Hom βπΆ)π)) |
24 | 2, 3, 5, 7, 9 | catidcl 17630 |
. . . . 5
β’ (π β ((IdβπΆ)βπ) β (π(Hom βπΆ)π)) |
25 | 2, 3, 4, 21, 7, 9,
8, 9, 22, 23, 24 | moni 17687 |
. . . 4
β’ (π β ((πΉ(β¨π, πβ©(compβπΆ)π)(πΊ(β¨π, πβ©(compβπΆ)π)πΉ)) = (πΉ(β¨π, πβ©(compβπΆ)π)((IdβπΆ)βπ)) β (πΊ(β¨π, πβ©(compβπΆ)π)πΉ) = ((IdβπΆ)βπ))) |
26 | 20, 25 | mpbid 231 |
. . 3
β’ (π β (πΊ(β¨π, πβ©(compβπΆ)π)πΉ) = ((IdβπΆ)βπ)) |
27 | 2, 3, 4, 5, 6, 7, 9, 8, 14, 15 | issect2 17705 |
. . 3
β’ (π β (πΉ(πππ)πΊ β (πΊ(β¨π, πβ©(compβπΆ)π)πΉ) = ((IdβπΆ)βπ))) |
28 | 26, 27 | mpbird 256 |
. 2
β’ (π β πΉ(πππ)πΊ) |
29 | | monsect.n |
. . 3
β’ π = (InvβπΆ) |
30 | 2, 29, 7, 9, 8, 6 | isinv 17711 |
. 2
β’ (π β (πΉ(πππ)πΊ β (πΉ(πππ)πΊ β§ πΊ(πππ)πΉ))) |
31 | 28, 1, 30 | mpbir2and 709 |
1
β’ (π β πΉ(πππ)πΊ) |