MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  monsect Structured version   Visualization version   GIF version

Theorem monsect 17796
Description: If 𝐹 is a monomorphism and 𝐺 is a section of 𝐹, then 𝐺 is an inverse of 𝐹 and they are both isomorphisms. This is also stated as "a monomorphism which is also a split epimorphism is an isomorphism". (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
sectmon.b 𝐵 = (Base‘𝐶)
sectmon.m 𝑀 = (Mono‘𝐶)
sectmon.s 𝑆 = (Sect‘𝐶)
sectmon.c (𝜑𝐶 ∈ Cat)
sectmon.x (𝜑𝑋𝐵)
sectmon.y (𝜑𝑌𝐵)
monsect.n 𝑁 = (Inv‘𝐶)
monsect.1 (𝜑𝐹 ∈ (𝑋𝑀𝑌))
monsect.2 (𝜑𝐺(𝑌𝑆𝑋)𝐹)
Assertion
Ref Expression
monsect (𝜑𝐹(𝑋𝑁𝑌)𝐺)

Proof of Theorem monsect
StepHypRef Expression
1 monsect.2 . . . . . . . 8 (𝜑𝐺(𝑌𝑆𝑋)𝐹)
2 sectmon.b . . . . . . . . 9 𝐵 = (Base‘𝐶)
3 eqid 2735 . . . . . . . . 9 (Hom ‘𝐶) = (Hom ‘𝐶)
4 eqid 2735 . . . . . . . . 9 (comp‘𝐶) = (comp‘𝐶)
5 eqid 2735 . . . . . . . . 9 (Id‘𝐶) = (Id‘𝐶)
6 sectmon.s . . . . . . . . 9 𝑆 = (Sect‘𝐶)
7 sectmon.c . . . . . . . . 9 (𝜑𝐶 ∈ Cat)
8 sectmon.y . . . . . . . . 9 (𝜑𝑌𝐵)
9 sectmon.x . . . . . . . . 9 (𝜑𝑋𝐵)
102, 3, 4, 5, 6, 7, 8, 9issect 17766 . . . . . . . 8 (𝜑 → (𝐺(𝑌𝑆𝑋)𝐹 ↔ (𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋) ∧ 𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ (𝐹(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝐺) = ((Id‘𝐶)‘𝑌))))
111, 10mpbid 232 . . . . . . 7 (𝜑 → (𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋) ∧ 𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ (𝐹(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝐺) = ((Id‘𝐶)‘𝑌)))
1211simp3d 1144 . . . . . 6 (𝜑 → (𝐹(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝐺) = ((Id‘𝐶)‘𝑌))
1312oveq1d 7420 . . . . 5 (𝜑 → ((𝐹(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝐺)(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑌)𝐹) = (((Id‘𝐶)‘𝑌)(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑌)𝐹))
1411simp2d 1143 . . . . . 6 (𝜑𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌))
1511simp1d 1142 . . . . . 6 (𝜑𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋))
162, 3, 4, 7, 9, 8, 9, 14, 15, 8, 14catass 17698 . . . . 5 (𝜑 → ((𝐹(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝐺)(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑌)𝐹) = (𝐹(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑌)(𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹)))
172, 3, 5, 7, 9, 4, 8, 14catlid 17695 . . . . . 6 (𝜑 → (((Id‘𝐶)‘𝑌)(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑌)𝐹) = 𝐹)
182, 3, 5, 7, 9, 4, 8, 14catrid 17696 . . . . . 6 (𝜑 → (𝐹(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑌)((Id‘𝐶)‘𝑋)) = 𝐹)
1917, 18eqtr4d 2773 . . . . 5 (𝜑 → (((Id‘𝐶)‘𝑌)(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑌)𝐹) = (𝐹(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑌)((Id‘𝐶)‘𝑋)))
2013, 16, 193eqtr3d 2778 . . . 4 (𝜑 → (𝐹(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑌)(𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹)) = (𝐹(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑌)((Id‘𝐶)‘𝑋)))
21 sectmon.m . . . . 5 𝑀 = (Mono‘𝐶)
22 monsect.1 . . . . 5 (𝜑𝐹 ∈ (𝑋𝑀𝑌))
232, 3, 4, 7, 9, 8, 9, 14, 15catcocl 17697 . . . . 5 (𝜑 → (𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) ∈ (𝑋(Hom ‘𝐶)𝑋))
242, 3, 5, 7, 9catidcl 17694 . . . . 5 (𝜑 → ((Id‘𝐶)‘𝑋) ∈ (𝑋(Hom ‘𝐶)𝑋))
252, 3, 4, 21, 7, 9, 8, 9, 22, 23, 24moni 17749 . . . 4 (𝜑 → ((𝐹(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑌)(𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹)) = (𝐹(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑌)((Id‘𝐶)‘𝑋)) ↔ (𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)))
2620, 25mpbid 232 . . 3 (𝜑 → (𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋))
272, 3, 4, 5, 6, 7, 9, 8, 14, 15issect2 17767 . . 3 (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺 ↔ (𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)))
2826, 27mpbird 257 . 2 (𝜑𝐹(𝑋𝑆𝑌)𝐺)
29 monsect.n . . 3 𝑁 = (Inv‘𝐶)
302, 29, 7, 9, 8, 6isinv 17773 . 2 (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺 ↔ (𝐹(𝑋𝑆𝑌)𝐺𝐺(𝑌𝑆𝑋)𝐹)))
3128, 1, 30mpbir2and 713 1 (𝜑𝐹(𝑋𝑁𝑌)𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2108  cop 4607   class class class wbr 5119  cfv 6531  (class class class)co 7405  Basecbs 17228  Hom chom 17282  compcco 17283  Catccat 17676  Idccid 17677  Monocmon 17741  Sectcsect 17757  Invcinv 17758
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7988  df-2nd 7989  df-cat 17680  df-cid 17681  df-mon 17743  df-sect 17760  df-inv 17761
This theorem is referenced by:  episect  17798
  Copyright terms: Public domain W3C validator