MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  monsect Structured version   Visualization version   GIF version

Theorem monsect 17734
Description: If 𝐹 is a monomorphism and 𝐺 is a section of 𝐹, then 𝐺 is an inverse of 𝐹 and they are both isomorphisms. This is also stated as "a monomorphism which is also a split epimorphism is an isomorphism". (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
sectmon.b 𝐡 = (Baseβ€˜πΆ)
sectmon.m 𝑀 = (Monoβ€˜πΆ)
sectmon.s 𝑆 = (Sectβ€˜πΆ)
sectmon.c (πœ‘ β†’ 𝐢 ∈ Cat)
sectmon.x (πœ‘ β†’ 𝑋 ∈ 𝐡)
sectmon.y (πœ‘ β†’ π‘Œ ∈ 𝐡)
monsect.n 𝑁 = (Invβ€˜πΆ)
monsect.1 (πœ‘ β†’ 𝐹 ∈ (π‘‹π‘€π‘Œ))
monsect.2 (πœ‘ β†’ 𝐺(π‘Œπ‘†π‘‹)𝐹)
Assertion
Ref Expression
monsect (πœ‘ β†’ 𝐹(π‘‹π‘π‘Œ)𝐺)

Proof of Theorem monsect
StepHypRef Expression
1 monsect.2 . . . . . . . 8 (πœ‘ β†’ 𝐺(π‘Œπ‘†π‘‹)𝐹)
2 sectmon.b . . . . . . . . 9 𝐡 = (Baseβ€˜πΆ)
3 eqid 2730 . . . . . . . . 9 (Hom β€˜πΆ) = (Hom β€˜πΆ)
4 eqid 2730 . . . . . . . . 9 (compβ€˜πΆ) = (compβ€˜πΆ)
5 eqid 2730 . . . . . . . . 9 (Idβ€˜πΆ) = (Idβ€˜πΆ)
6 sectmon.s . . . . . . . . 9 𝑆 = (Sectβ€˜πΆ)
7 sectmon.c . . . . . . . . 9 (πœ‘ β†’ 𝐢 ∈ Cat)
8 sectmon.y . . . . . . . . 9 (πœ‘ β†’ π‘Œ ∈ 𝐡)
9 sectmon.x . . . . . . . . 9 (πœ‘ β†’ 𝑋 ∈ 𝐡)
102, 3, 4, 5, 6, 7, 8, 9issect 17704 . . . . . . . 8 (πœ‘ β†’ (𝐺(π‘Œπ‘†π‘‹)𝐹 ↔ (𝐺 ∈ (π‘Œ(Hom β€˜πΆ)𝑋) ∧ 𝐹 ∈ (𝑋(Hom β€˜πΆ)π‘Œ) ∧ (𝐹(βŸ¨π‘Œ, π‘‹βŸ©(compβ€˜πΆ)π‘Œ)𝐺) = ((Idβ€˜πΆ)β€˜π‘Œ))))
111, 10mpbid 231 . . . . . . 7 (πœ‘ β†’ (𝐺 ∈ (π‘Œ(Hom β€˜πΆ)𝑋) ∧ 𝐹 ∈ (𝑋(Hom β€˜πΆ)π‘Œ) ∧ (𝐹(βŸ¨π‘Œ, π‘‹βŸ©(compβ€˜πΆ)π‘Œ)𝐺) = ((Idβ€˜πΆ)β€˜π‘Œ)))
1211simp3d 1142 . . . . . 6 (πœ‘ β†’ (𝐹(βŸ¨π‘Œ, π‘‹βŸ©(compβ€˜πΆ)π‘Œ)𝐺) = ((Idβ€˜πΆ)β€˜π‘Œ))
1312oveq1d 7426 . . . . 5 (πœ‘ β†’ ((𝐹(βŸ¨π‘Œ, π‘‹βŸ©(compβ€˜πΆ)π‘Œ)𝐺)(βŸ¨π‘‹, π‘ŒβŸ©(compβ€˜πΆ)π‘Œ)𝐹) = (((Idβ€˜πΆ)β€˜π‘Œ)(βŸ¨π‘‹, π‘ŒβŸ©(compβ€˜πΆ)π‘Œ)𝐹))
1411simp2d 1141 . . . . . 6 (πœ‘ β†’ 𝐹 ∈ (𝑋(Hom β€˜πΆ)π‘Œ))
1511simp1d 1140 . . . . . 6 (πœ‘ β†’ 𝐺 ∈ (π‘Œ(Hom β€˜πΆ)𝑋))
162, 3, 4, 7, 9, 8, 9, 14, 15, 8, 14catass 17634 . . . . 5 (πœ‘ β†’ ((𝐹(βŸ¨π‘Œ, π‘‹βŸ©(compβ€˜πΆ)π‘Œ)𝐺)(βŸ¨π‘‹, π‘ŒβŸ©(compβ€˜πΆ)π‘Œ)𝐹) = (𝐹(βŸ¨π‘‹, π‘‹βŸ©(compβ€˜πΆ)π‘Œ)(𝐺(βŸ¨π‘‹, π‘ŒβŸ©(compβ€˜πΆ)𝑋)𝐹)))
172, 3, 5, 7, 9, 4, 8, 14catlid 17631 . . . . . 6 (πœ‘ β†’ (((Idβ€˜πΆ)β€˜π‘Œ)(βŸ¨π‘‹, π‘ŒβŸ©(compβ€˜πΆ)π‘Œ)𝐹) = 𝐹)
182, 3, 5, 7, 9, 4, 8, 14catrid 17632 . . . . . 6 (πœ‘ β†’ (𝐹(βŸ¨π‘‹, π‘‹βŸ©(compβ€˜πΆ)π‘Œ)((Idβ€˜πΆ)β€˜π‘‹)) = 𝐹)
1917, 18eqtr4d 2773 . . . . 5 (πœ‘ β†’ (((Idβ€˜πΆ)β€˜π‘Œ)(βŸ¨π‘‹, π‘ŒβŸ©(compβ€˜πΆ)π‘Œ)𝐹) = (𝐹(βŸ¨π‘‹, π‘‹βŸ©(compβ€˜πΆ)π‘Œ)((Idβ€˜πΆ)β€˜π‘‹)))
2013, 16, 193eqtr3d 2778 . . . 4 (πœ‘ β†’ (𝐹(βŸ¨π‘‹, π‘‹βŸ©(compβ€˜πΆ)π‘Œ)(𝐺(βŸ¨π‘‹, π‘ŒβŸ©(compβ€˜πΆ)𝑋)𝐹)) = (𝐹(βŸ¨π‘‹, π‘‹βŸ©(compβ€˜πΆ)π‘Œ)((Idβ€˜πΆ)β€˜π‘‹)))
21 sectmon.m . . . . 5 𝑀 = (Monoβ€˜πΆ)
22 monsect.1 . . . . 5 (πœ‘ β†’ 𝐹 ∈ (π‘‹π‘€π‘Œ))
232, 3, 4, 7, 9, 8, 9, 14, 15catcocl 17633 . . . . 5 (πœ‘ β†’ (𝐺(βŸ¨π‘‹, π‘ŒβŸ©(compβ€˜πΆ)𝑋)𝐹) ∈ (𝑋(Hom β€˜πΆ)𝑋))
242, 3, 5, 7, 9catidcl 17630 . . . . 5 (πœ‘ β†’ ((Idβ€˜πΆ)β€˜π‘‹) ∈ (𝑋(Hom β€˜πΆ)𝑋))
252, 3, 4, 21, 7, 9, 8, 9, 22, 23, 24moni 17687 . . . 4 (πœ‘ β†’ ((𝐹(βŸ¨π‘‹, π‘‹βŸ©(compβ€˜πΆ)π‘Œ)(𝐺(βŸ¨π‘‹, π‘ŒβŸ©(compβ€˜πΆ)𝑋)𝐹)) = (𝐹(βŸ¨π‘‹, π‘‹βŸ©(compβ€˜πΆ)π‘Œ)((Idβ€˜πΆ)β€˜π‘‹)) ↔ (𝐺(βŸ¨π‘‹, π‘ŒβŸ©(compβ€˜πΆ)𝑋)𝐹) = ((Idβ€˜πΆ)β€˜π‘‹)))
2620, 25mpbid 231 . . 3 (πœ‘ β†’ (𝐺(βŸ¨π‘‹, π‘ŒβŸ©(compβ€˜πΆ)𝑋)𝐹) = ((Idβ€˜πΆ)β€˜π‘‹))
272, 3, 4, 5, 6, 7, 9, 8, 14, 15issect2 17705 . . 3 (πœ‘ β†’ (𝐹(π‘‹π‘†π‘Œ)𝐺 ↔ (𝐺(βŸ¨π‘‹, π‘ŒβŸ©(compβ€˜πΆ)𝑋)𝐹) = ((Idβ€˜πΆ)β€˜π‘‹)))
2826, 27mpbird 256 . 2 (πœ‘ β†’ 𝐹(π‘‹π‘†π‘Œ)𝐺)
29 monsect.n . . 3 𝑁 = (Invβ€˜πΆ)
302, 29, 7, 9, 8, 6isinv 17711 . 2 (πœ‘ β†’ (𝐹(π‘‹π‘π‘Œ)𝐺 ↔ (𝐹(π‘‹π‘†π‘Œ)𝐺 ∧ 𝐺(π‘Œπ‘†π‘‹)𝐹)))
3128, 1, 30mpbir2and 709 1 (πœ‘ β†’ 𝐹(π‘‹π‘π‘Œ)𝐺)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ w3a 1085   = wceq 1539   ∈ wcel 2104  βŸ¨cop 4633   class class class wbr 5147  β€˜cfv 6542  (class class class)co 7411  Basecbs 17148  Hom chom 17212  compcco 17213  Catccat 17612  Idccid 17613  Monocmon 17679  Sectcsect 17695  Invcinv 17696
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-1st 7977  df-2nd 7978  df-cat 17616  df-cid 17617  df-mon 17681  df-sect 17698  df-inv 17699
This theorem is referenced by:  episect  17736
  Copyright terms: Public domain W3C validator