MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  monsect Structured version   Visualization version   GIF version

Theorem monsect 16882
Description: If 𝐹 is a monomorphism and 𝐺 is a section of 𝐹, then 𝐺 is an inverse of 𝐹 and they are both isomorphisms. This is also stated as "a monomorphism which is also a split epimorphism is an isomorphism". (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
sectmon.b 𝐵 = (Base‘𝐶)
sectmon.m 𝑀 = (Mono‘𝐶)
sectmon.s 𝑆 = (Sect‘𝐶)
sectmon.c (𝜑𝐶 ∈ Cat)
sectmon.x (𝜑𝑋𝐵)
sectmon.y (𝜑𝑌𝐵)
monsect.n 𝑁 = (Inv‘𝐶)
monsect.1 (𝜑𝐹 ∈ (𝑋𝑀𝑌))
monsect.2 (𝜑𝐺(𝑌𝑆𝑋)𝐹)
Assertion
Ref Expression
monsect (𝜑𝐹(𝑋𝑁𝑌)𝐺)

Proof of Theorem monsect
StepHypRef Expression
1 monsect.2 . . . . . . . 8 (𝜑𝐺(𝑌𝑆𝑋)𝐹)
2 sectmon.b . . . . . . . . 9 𝐵 = (Base‘𝐶)
3 eqid 2794 . . . . . . . . 9 (Hom ‘𝐶) = (Hom ‘𝐶)
4 eqid 2794 . . . . . . . . 9 (comp‘𝐶) = (comp‘𝐶)
5 eqid 2794 . . . . . . . . 9 (Id‘𝐶) = (Id‘𝐶)
6 sectmon.s . . . . . . . . 9 𝑆 = (Sect‘𝐶)
7 sectmon.c . . . . . . . . 9 (𝜑𝐶 ∈ Cat)
8 sectmon.y . . . . . . . . 9 (𝜑𝑌𝐵)
9 sectmon.x . . . . . . . . 9 (𝜑𝑋𝐵)
102, 3, 4, 5, 6, 7, 8, 9issect 16852 . . . . . . . 8 (𝜑 → (𝐺(𝑌𝑆𝑋)𝐹 ↔ (𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋) ∧ 𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ (𝐹(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝐺) = ((Id‘𝐶)‘𝑌))))
111, 10mpbid 233 . . . . . . 7 (𝜑 → (𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋) ∧ 𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ (𝐹(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝐺) = ((Id‘𝐶)‘𝑌)))
1211simp3d 1137 . . . . . 6 (𝜑 → (𝐹(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝐺) = ((Id‘𝐶)‘𝑌))
1312oveq1d 7034 . . . . 5 (𝜑 → ((𝐹(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝐺)(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑌)𝐹) = (((Id‘𝐶)‘𝑌)(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑌)𝐹))
1411simp2d 1136 . . . . . 6 (𝜑𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌))
1511simp1d 1135 . . . . . 6 (𝜑𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋))
162, 3, 4, 7, 9, 8, 9, 14, 15, 8, 14catass 16786 . . . . 5 (𝜑 → ((𝐹(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝐺)(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑌)𝐹) = (𝐹(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑌)(𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹)))
172, 3, 5, 7, 9, 4, 8, 14catlid 16783 . . . . . 6 (𝜑 → (((Id‘𝐶)‘𝑌)(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑌)𝐹) = 𝐹)
182, 3, 5, 7, 9, 4, 8, 14catrid 16784 . . . . . 6 (𝜑 → (𝐹(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑌)((Id‘𝐶)‘𝑋)) = 𝐹)
1917, 18eqtr4d 2833 . . . . 5 (𝜑 → (((Id‘𝐶)‘𝑌)(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑌)𝐹) = (𝐹(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑌)((Id‘𝐶)‘𝑋)))
2013, 16, 193eqtr3d 2838 . . . 4 (𝜑 → (𝐹(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑌)(𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹)) = (𝐹(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑌)((Id‘𝐶)‘𝑋)))
21 sectmon.m . . . . 5 𝑀 = (Mono‘𝐶)
22 monsect.1 . . . . 5 (𝜑𝐹 ∈ (𝑋𝑀𝑌))
232, 3, 4, 7, 9, 8, 9, 14, 15catcocl 16785 . . . . 5 (𝜑 → (𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) ∈ (𝑋(Hom ‘𝐶)𝑋))
242, 3, 5, 7, 9catidcl 16782 . . . . 5 (𝜑 → ((Id‘𝐶)‘𝑋) ∈ (𝑋(Hom ‘𝐶)𝑋))
252, 3, 4, 21, 7, 9, 8, 9, 22, 23, 24moni 16835 . . . 4 (𝜑 → ((𝐹(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑌)(𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹)) = (𝐹(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑌)((Id‘𝐶)‘𝑋)) ↔ (𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)))
2620, 25mpbid 233 . . 3 (𝜑 → (𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋))
272, 3, 4, 5, 6, 7, 9, 8, 14, 15issect2 16853 . . 3 (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺 ↔ (𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)))
2826, 27mpbird 258 . 2 (𝜑𝐹(𝑋𝑆𝑌)𝐺)
29 monsect.n . . 3 𝑁 = (Inv‘𝐶)
302, 29, 7, 9, 8, 6isinv 16859 . 2 (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺 ↔ (𝐹(𝑋𝑆𝑌)𝐺𝐺(𝑌𝑆𝑋)𝐹)))
3128, 1, 30mpbir2and 709 1 (𝜑𝐹(𝑋𝑁𝑌)𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1080   = wceq 1522  wcel 2080  cop 4480   class class class wbr 4964  cfv 6228  (class class class)co 7019  Basecbs 16312  Hom chom 16405  compcco 16406  Catccat 16764  Idccid 16765  Monocmon 16827  Sectcsect 16843  Invcinv 16844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1778  ax-4 1792  ax-5 1889  ax-6 1948  ax-7 1993  ax-8 2082  ax-9 2090  ax-10 2111  ax-11 2125  ax-12 2140  ax-13 2343  ax-ext 2768  ax-rep 5084  ax-sep 5097  ax-nul 5104  ax-pow 5160  ax-pr 5224  ax-un 7322
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3an 1082  df-tru 1525  df-ex 1763  df-nf 1767  df-sb 2042  df-mo 2575  df-eu 2611  df-clab 2775  df-cleq 2787  df-clel 2862  df-nfc 2934  df-ne 2984  df-ral 3109  df-rex 3110  df-reu 3111  df-rmo 3112  df-rab 3113  df-v 3438  df-sbc 3708  df-csb 3814  df-dif 3864  df-un 3866  df-in 3868  df-ss 3876  df-nul 4214  df-if 4384  df-pw 4457  df-sn 4475  df-pr 4477  df-op 4481  df-uni 4748  df-iun 4829  df-br 4965  df-opab 5027  df-mpt 5044  df-id 5351  df-xp 5452  df-rel 5453  df-cnv 5454  df-co 5455  df-dm 5456  df-rn 5457  df-res 5458  df-ima 5459  df-iota 6192  df-fun 6230  df-fn 6231  df-f 6232  df-f1 6233  df-fo 6234  df-f1o 6235  df-fv 6236  df-riota 6980  df-ov 7022  df-oprab 7023  df-mpo 7024  df-1st 7548  df-2nd 7549  df-cat 16768  df-cid 16769  df-mon 16829  df-sect 16846  df-inv 16847
This theorem is referenced by:  episect  16884
  Copyright terms: Public domain W3C validator