MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  monsect Structured version   Visualization version   GIF version

Theorem monsect 17745
Description: If 𝐹 is a monomorphism and 𝐺 is a section of 𝐹, then 𝐺 is an inverse of 𝐹 and they are both isomorphisms. This is also stated as "a monomorphism which is also a split epimorphism is an isomorphism". (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
sectmon.b 𝐵 = (Base‘𝐶)
sectmon.m 𝑀 = (Mono‘𝐶)
sectmon.s 𝑆 = (Sect‘𝐶)
sectmon.c (𝜑𝐶 ∈ Cat)
sectmon.x (𝜑𝑋𝐵)
sectmon.y (𝜑𝑌𝐵)
monsect.n 𝑁 = (Inv‘𝐶)
monsect.1 (𝜑𝐹 ∈ (𝑋𝑀𝑌))
monsect.2 (𝜑𝐺(𝑌𝑆𝑋)𝐹)
Assertion
Ref Expression
monsect (𝜑𝐹(𝑋𝑁𝑌)𝐺)

Proof of Theorem monsect
StepHypRef Expression
1 monsect.2 . . . . . . . 8 (𝜑𝐺(𝑌𝑆𝑋)𝐹)
2 sectmon.b . . . . . . . . 9 𝐵 = (Base‘𝐶)
3 eqid 2729 . . . . . . . . 9 (Hom ‘𝐶) = (Hom ‘𝐶)
4 eqid 2729 . . . . . . . . 9 (comp‘𝐶) = (comp‘𝐶)
5 eqid 2729 . . . . . . . . 9 (Id‘𝐶) = (Id‘𝐶)
6 sectmon.s . . . . . . . . 9 𝑆 = (Sect‘𝐶)
7 sectmon.c . . . . . . . . 9 (𝜑𝐶 ∈ Cat)
8 sectmon.y . . . . . . . . 9 (𝜑𝑌𝐵)
9 sectmon.x . . . . . . . . 9 (𝜑𝑋𝐵)
102, 3, 4, 5, 6, 7, 8, 9issect 17715 . . . . . . . 8 (𝜑 → (𝐺(𝑌𝑆𝑋)𝐹 ↔ (𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋) ∧ 𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ (𝐹(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝐺) = ((Id‘𝐶)‘𝑌))))
111, 10mpbid 232 . . . . . . 7 (𝜑 → (𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋) ∧ 𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ (𝐹(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝐺) = ((Id‘𝐶)‘𝑌)))
1211simp3d 1144 . . . . . 6 (𝜑 → (𝐹(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝐺) = ((Id‘𝐶)‘𝑌))
1312oveq1d 7402 . . . . 5 (𝜑 → ((𝐹(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝐺)(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑌)𝐹) = (((Id‘𝐶)‘𝑌)(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑌)𝐹))
1411simp2d 1143 . . . . . 6 (𝜑𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌))
1511simp1d 1142 . . . . . 6 (𝜑𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋))
162, 3, 4, 7, 9, 8, 9, 14, 15, 8, 14catass 17647 . . . . 5 (𝜑 → ((𝐹(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝐺)(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑌)𝐹) = (𝐹(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑌)(𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹)))
172, 3, 5, 7, 9, 4, 8, 14catlid 17644 . . . . . 6 (𝜑 → (((Id‘𝐶)‘𝑌)(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑌)𝐹) = 𝐹)
182, 3, 5, 7, 9, 4, 8, 14catrid 17645 . . . . . 6 (𝜑 → (𝐹(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑌)((Id‘𝐶)‘𝑋)) = 𝐹)
1917, 18eqtr4d 2767 . . . . 5 (𝜑 → (((Id‘𝐶)‘𝑌)(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑌)𝐹) = (𝐹(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑌)((Id‘𝐶)‘𝑋)))
2013, 16, 193eqtr3d 2772 . . . 4 (𝜑 → (𝐹(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑌)(𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹)) = (𝐹(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑌)((Id‘𝐶)‘𝑋)))
21 sectmon.m . . . . 5 𝑀 = (Mono‘𝐶)
22 monsect.1 . . . . 5 (𝜑𝐹 ∈ (𝑋𝑀𝑌))
232, 3, 4, 7, 9, 8, 9, 14, 15catcocl 17646 . . . . 5 (𝜑 → (𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) ∈ (𝑋(Hom ‘𝐶)𝑋))
242, 3, 5, 7, 9catidcl 17643 . . . . 5 (𝜑 → ((Id‘𝐶)‘𝑋) ∈ (𝑋(Hom ‘𝐶)𝑋))
252, 3, 4, 21, 7, 9, 8, 9, 22, 23, 24moni 17698 . . . 4 (𝜑 → ((𝐹(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑌)(𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹)) = (𝐹(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑌)((Id‘𝐶)‘𝑋)) ↔ (𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)))
2620, 25mpbid 232 . . 3 (𝜑 → (𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋))
272, 3, 4, 5, 6, 7, 9, 8, 14, 15issect2 17716 . . 3 (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺 ↔ (𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)))
2826, 27mpbird 257 . 2 (𝜑𝐹(𝑋𝑆𝑌)𝐺)
29 monsect.n . . 3 𝑁 = (Inv‘𝐶)
302, 29, 7, 9, 8, 6isinv 17722 . 2 (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺 ↔ (𝐹(𝑋𝑆𝑌)𝐺𝐺(𝑌𝑆𝑋)𝐹)))
3128, 1, 30mpbir2and 713 1 (𝜑𝐹(𝑋𝑁𝑌)𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  cop 4595   class class class wbr 5107  cfv 6511  (class class class)co 7387  Basecbs 17179  Hom chom 17231  compcco 17232  Catccat 17625  Idccid 17626  Monocmon 17690  Sectcsect 17706  Invcinv 17707
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-cat 17629  df-cid 17630  df-mon 17692  df-sect 17709  df-inv 17710
This theorem is referenced by:  episect  17747
  Copyright terms: Public domain W3C validator