![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sectcan | Structured version Visualization version GIF version |
Description: If 𝐺 is a section of 𝐹 and 𝐹 is a section of 𝐻, then 𝐺 = 𝐻. Proposition 3.10 of [Adamek] p. 28. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
sectcan.b | ⊢ 𝐵 = (Base‘𝐶) |
sectcan.s | ⊢ 𝑆 = (Sect‘𝐶) |
sectcan.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
sectcan.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
sectcan.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
sectcan.1 | ⊢ (𝜑 → 𝐺(𝑋𝑆𝑌)𝐹) |
sectcan.2 | ⊢ (𝜑 → 𝐹(𝑌𝑆𝑋)𝐻) |
Ref | Expression |
---|---|
sectcan | ⊢ (𝜑 → 𝐺 = 𝐻) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sectcan.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
2 | eqid 2724 | . . . 4 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
3 | eqid 2724 | . . . 4 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
4 | sectcan.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
5 | sectcan.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
6 | sectcan.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
7 | sectcan.1 | . . . . . 6 ⊢ (𝜑 → 𝐺(𝑋𝑆𝑌)𝐹) | |
8 | eqid 2724 | . . . . . . 7 ⊢ (Id‘𝐶) = (Id‘𝐶) | |
9 | sectcan.s | . . . . . . 7 ⊢ 𝑆 = (Sect‘𝐶) | |
10 | 1, 2, 3, 8, 9, 4, 5, 6 | issect 17699 | . . . . . 6 ⊢ (𝜑 → (𝐺(𝑋𝑆𝑌)𝐹 ↔ (𝐺 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐹 ∈ (𝑌(Hom ‘𝐶)𝑋) ∧ (𝐹(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐺) = ((Id‘𝐶)‘𝑋)))) |
11 | 7, 10 | mpbid 231 | . . . . 5 ⊢ (𝜑 → (𝐺 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐹 ∈ (𝑌(Hom ‘𝐶)𝑋) ∧ (𝐹(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐺) = ((Id‘𝐶)‘𝑋))) |
12 | 11 | simp1d 1139 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ (𝑋(Hom ‘𝐶)𝑌)) |
13 | sectcan.2 | . . . . . 6 ⊢ (𝜑 → 𝐹(𝑌𝑆𝑋)𝐻) | |
14 | 1, 2, 3, 8, 9, 4, 6, 5 | issect 17699 | . . . . . 6 ⊢ (𝜑 → (𝐹(𝑌𝑆𝑋)𝐻 ↔ (𝐹 ∈ (𝑌(Hom ‘𝐶)𝑋) ∧ 𝐻 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ (𝐻(〈𝑌, 𝑋〉(comp‘𝐶)𝑌)𝐹) = ((Id‘𝐶)‘𝑌)))) |
15 | 13, 14 | mpbid 231 | . . . . 5 ⊢ (𝜑 → (𝐹 ∈ (𝑌(Hom ‘𝐶)𝑋) ∧ 𝐻 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ (𝐻(〈𝑌, 𝑋〉(comp‘𝐶)𝑌)𝐹) = ((Id‘𝐶)‘𝑌))) |
16 | 15 | simp1d 1139 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝑌(Hom ‘𝐶)𝑋)) |
17 | 15 | simp2d 1140 | . . . 4 ⊢ (𝜑 → 𝐻 ∈ (𝑋(Hom ‘𝐶)𝑌)) |
18 | 1, 2, 3, 4, 5, 6, 5, 12, 16, 6, 17 | catass 17629 | . . 3 ⊢ (𝜑 → ((𝐻(〈𝑌, 𝑋〉(comp‘𝐶)𝑌)𝐹)(〈𝑋, 𝑌〉(comp‘𝐶)𝑌)𝐺) = (𝐻(〈𝑋, 𝑋〉(comp‘𝐶)𝑌)(𝐹(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐺))) |
19 | 15 | simp3d 1141 | . . . 4 ⊢ (𝜑 → (𝐻(〈𝑌, 𝑋〉(comp‘𝐶)𝑌)𝐹) = ((Id‘𝐶)‘𝑌)) |
20 | 19 | oveq1d 7416 | . . 3 ⊢ (𝜑 → ((𝐻(〈𝑌, 𝑋〉(comp‘𝐶)𝑌)𝐹)(〈𝑋, 𝑌〉(comp‘𝐶)𝑌)𝐺) = (((Id‘𝐶)‘𝑌)(〈𝑋, 𝑌〉(comp‘𝐶)𝑌)𝐺)) |
21 | 11 | simp3d 1141 | . . . 4 ⊢ (𝜑 → (𝐹(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐺) = ((Id‘𝐶)‘𝑋)) |
22 | 21 | oveq2d 7417 | . . 3 ⊢ (𝜑 → (𝐻(〈𝑋, 𝑋〉(comp‘𝐶)𝑌)(𝐹(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐺)) = (𝐻(〈𝑋, 𝑋〉(comp‘𝐶)𝑌)((Id‘𝐶)‘𝑋))) |
23 | 18, 20, 22 | 3eqtr3d 2772 | . 2 ⊢ (𝜑 → (((Id‘𝐶)‘𝑌)(〈𝑋, 𝑌〉(comp‘𝐶)𝑌)𝐺) = (𝐻(〈𝑋, 𝑋〉(comp‘𝐶)𝑌)((Id‘𝐶)‘𝑋))) |
24 | 1, 2, 8, 4, 5, 3, 6, 12 | catlid 17626 | . 2 ⊢ (𝜑 → (((Id‘𝐶)‘𝑌)(〈𝑋, 𝑌〉(comp‘𝐶)𝑌)𝐺) = 𝐺) |
25 | 1, 2, 8, 4, 5, 3, 6, 17 | catrid 17627 | . 2 ⊢ (𝜑 → (𝐻(〈𝑋, 𝑋〉(comp‘𝐶)𝑌)((Id‘𝐶)‘𝑋)) = 𝐻) |
26 | 23, 24, 25 | 3eqtr3d 2772 | 1 ⊢ (𝜑 → 𝐺 = 𝐻) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 〈cop 4626 class class class wbr 5138 ‘cfv 6533 (class class class)co 7401 Basecbs 17143 Hom chom 17207 compcco 17208 Catccat 17607 Idccid 17608 Sectcsect 17690 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-id 5564 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-1st 7968 df-2nd 7969 df-cat 17611 df-cid 17612 df-sect 17693 |
This theorem is referenced by: invfun 17710 inveq 17720 |
Copyright terms: Public domain | W3C validator |