| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sectcan | Structured version Visualization version GIF version | ||
| Description: If 𝐺 is a section of 𝐹 and 𝐹 is a section of 𝐻, then 𝐺 = 𝐻. Proposition 3.10 of [Adamek] p. 28. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| Ref | Expression |
|---|---|
| sectcan.b | ⊢ 𝐵 = (Base‘𝐶) |
| sectcan.s | ⊢ 𝑆 = (Sect‘𝐶) |
| sectcan.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| sectcan.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| sectcan.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| sectcan.1 | ⊢ (𝜑 → 𝐺(𝑋𝑆𝑌)𝐹) |
| sectcan.2 | ⊢ (𝜑 → 𝐹(𝑌𝑆𝑋)𝐻) |
| Ref | Expression |
|---|---|
| sectcan | ⊢ (𝜑 → 𝐺 = 𝐻) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sectcan.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
| 2 | eqid 2729 | . . . 4 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 3 | eqid 2729 | . . . 4 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
| 4 | sectcan.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 5 | sectcan.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 6 | sectcan.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 7 | sectcan.1 | . . . . . 6 ⊢ (𝜑 → 𝐺(𝑋𝑆𝑌)𝐹) | |
| 8 | eqid 2729 | . . . . . . 7 ⊢ (Id‘𝐶) = (Id‘𝐶) | |
| 9 | sectcan.s | . . . . . . 7 ⊢ 𝑆 = (Sect‘𝐶) | |
| 10 | 1, 2, 3, 8, 9, 4, 5, 6 | issect 17715 | . . . . . 6 ⊢ (𝜑 → (𝐺(𝑋𝑆𝑌)𝐹 ↔ (𝐺 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐹 ∈ (𝑌(Hom ‘𝐶)𝑋) ∧ (𝐹(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐺) = ((Id‘𝐶)‘𝑋)))) |
| 11 | 7, 10 | mpbid 232 | . . . . 5 ⊢ (𝜑 → (𝐺 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐹 ∈ (𝑌(Hom ‘𝐶)𝑋) ∧ (𝐹(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐺) = ((Id‘𝐶)‘𝑋))) |
| 12 | 11 | simp1d 1142 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ (𝑋(Hom ‘𝐶)𝑌)) |
| 13 | sectcan.2 | . . . . . 6 ⊢ (𝜑 → 𝐹(𝑌𝑆𝑋)𝐻) | |
| 14 | 1, 2, 3, 8, 9, 4, 6, 5 | issect 17715 | . . . . . 6 ⊢ (𝜑 → (𝐹(𝑌𝑆𝑋)𝐻 ↔ (𝐹 ∈ (𝑌(Hom ‘𝐶)𝑋) ∧ 𝐻 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ (𝐻(〈𝑌, 𝑋〉(comp‘𝐶)𝑌)𝐹) = ((Id‘𝐶)‘𝑌)))) |
| 15 | 13, 14 | mpbid 232 | . . . . 5 ⊢ (𝜑 → (𝐹 ∈ (𝑌(Hom ‘𝐶)𝑋) ∧ 𝐻 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ (𝐻(〈𝑌, 𝑋〉(comp‘𝐶)𝑌)𝐹) = ((Id‘𝐶)‘𝑌))) |
| 16 | 15 | simp1d 1142 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝑌(Hom ‘𝐶)𝑋)) |
| 17 | 15 | simp2d 1143 | . . . 4 ⊢ (𝜑 → 𝐻 ∈ (𝑋(Hom ‘𝐶)𝑌)) |
| 18 | 1, 2, 3, 4, 5, 6, 5, 12, 16, 6, 17 | catass 17647 | . . 3 ⊢ (𝜑 → ((𝐻(〈𝑌, 𝑋〉(comp‘𝐶)𝑌)𝐹)(〈𝑋, 𝑌〉(comp‘𝐶)𝑌)𝐺) = (𝐻(〈𝑋, 𝑋〉(comp‘𝐶)𝑌)(𝐹(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐺))) |
| 19 | 15 | simp3d 1144 | . . . 4 ⊢ (𝜑 → (𝐻(〈𝑌, 𝑋〉(comp‘𝐶)𝑌)𝐹) = ((Id‘𝐶)‘𝑌)) |
| 20 | 19 | oveq1d 7402 | . . 3 ⊢ (𝜑 → ((𝐻(〈𝑌, 𝑋〉(comp‘𝐶)𝑌)𝐹)(〈𝑋, 𝑌〉(comp‘𝐶)𝑌)𝐺) = (((Id‘𝐶)‘𝑌)(〈𝑋, 𝑌〉(comp‘𝐶)𝑌)𝐺)) |
| 21 | 11 | simp3d 1144 | . . . 4 ⊢ (𝜑 → (𝐹(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐺) = ((Id‘𝐶)‘𝑋)) |
| 22 | 21 | oveq2d 7403 | . . 3 ⊢ (𝜑 → (𝐻(〈𝑋, 𝑋〉(comp‘𝐶)𝑌)(𝐹(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐺)) = (𝐻(〈𝑋, 𝑋〉(comp‘𝐶)𝑌)((Id‘𝐶)‘𝑋))) |
| 23 | 18, 20, 22 | 3eqtr3d 2772 | . 2 ⊢ (𝜑 → (((Id‘𝐶)‘𝑌)(〈𝑋, 𝑌〉(comp‘𝐶)𝑌)𝐺) = (𝐻(〈𝑋, 𝑋〉(comp‘𝐶)𝑌)((Id‘𝐶)‘𝑋))) |
| 24 | 1, 2, 8, 4, 5, 3, 6, 12 | catlid 17644 | . 2 ⊢ (𝜑 → (((Id‘𝐶)‘𝑌)(〈𝑋, 𝑌〉(comp‘𝐶)𝑌)𝐺) = 𝐺) |
| 25 | 1, 2, 8, 4, 5, 3, 6, 17 | catrid 17645 | . 2 ⊢ (𝜑 → (𝐻(〈𝑋, 𝑋〉(comp‘𝐶)𝑌)((Id‘𝐶)‘𝑋)) = 𝐻) |
| 26 | 23, 24, 25 | 3eqtr3d 2772 | 1 ⊢ (𝜑 → 𝐺 = 𝐻) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 〈cop 4595 class class class wbr 5107 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 Hom chom 17231 compcco 17232 Catccat 17625 Idccid 17626 Sectcsect 17706 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-cat 17629 df-cid 17630 df-sect 17709 |
| This theorem is referenced by: invfun 17726 inveq 17736 |
| Copyright terms: Public domain | W3C validator |