![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sectcan | Structured version Visualization version GIF version |
Description: If 𝐺 is a section of 𝐹 and 𝐹 is a section of 𝐻, then 𝐺 = 𝐻. Proposition 3.10 of [Adamek] p. 28. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
sectcan.b | ⊢ 𝐵 = (Base‘𝐶) |
sectcan.s | ⊢ 𝑆 = (Sect‘𝐶) |
sectcan.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
sectcan.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
sectcan.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
sectcan.1 | ⊢ (𝜑 → 𝐺(𝑋𝑆𝑌)𝐹) |
sectcan.2 | ⊢ (𝜑 → 𝐹(𝑌𝑆𝑋)𝐻) |
Ref | Expression |
---|---|
sectcan | ⊢ (𝜑 → 𝐺 = 𝐻) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sectcan.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
2 | eqid 2740 | . . . 4 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
3 | eqid 2740 | . . . 4 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
4 | sectcan.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
5 | sectcan.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
6 | sectcan.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
7 | sectcan.1 | . . . . . 6 ⊢ (𝜑 → 𝐺(𝑋𝑆𝑌)𝐹) | |
8 | eqid 2740 | . . . . . . 7 ⊢ (Id‘𝐶) = (Id‘𝐶) | |
9 | sectcan.s | . . . . . . 7 ⊢ 𝑆 = (Sect‘𝐶) | |
10 | 1, 2, 3, 8, 9, 4, 5, 6 | issect 17814 | . . . . . 6 ⊢ (𝜑 → (𝐺(𝑋𝑆𝑌)𝐹 ↔ (𝐺 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐹 ∈ (𝑌(Hom ‘𝐶)𝑋) ∧ (𝐹(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐺) = ((Id‘𝐶)‘𝑋)))) |
11 | 7, 10 | mpbid 232 | . . . . 5 ⊢ (𝜑 → (𝐺 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐹 ∈ (𝑌(Hom ‘𝐶)𝑋) ∧ (𝐹(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐺) = ((Id‘𝐶)‘𝑋))) |
12 | 11 | simp1d 1142 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ (𝑋(Hom ‘𝐶)𝑌)) |
13 | sectcan.2 | . . . . . 6 ⊢ (𝜑 → 𝐹(𝑌𝑆𝑋)𝐻) | |
14 | 1, 2, 3, 8, 9, 4, 6, 5 | issect 17814 | . . . . . 6 ⊢ (𝜑 → (𝐹(𝑌𝑆𝑋)𝐻 ↔ (𝐹 ∈ (𝑌(Hom ‘𝐶)𝑋) ∧ 𝐻 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ (𝐻(〈𝑌, 𝑋〉(comp‘𝐶)𝑌)𝐹) = ((Id‘𝐶)‘𝑌)))) |
15 | 13, 14 | mpbid 232 | . . . . 5 ⊢ (𝜑 → (𝐹 ∈ (𝑌(Hom ‘𝐶)𝑋) ∧ 𝐻 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ (𝐻(〈𝑌, 𝑋〉(comp‘𝐶)𝑌)𝐹) = ((Id‘𝐶)‘𝑌))) |
16 | 15 | simp1d 1142 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝑌(Hom ‘𝐶)𝑋)) |
17 | 15 | simp2d 1143 | . . . 4 ⊢ (𝜑 → 𝐻 ∈ (𝑋(Hom ‘𝐶)𝑌)) |
18 | 1, 2, 3, 4, 5, 6, 5, 12, 16, 6, 17 | catass 17744 | . . 3 ⊢ (𝜑 → ((𝐻(〈𝑌, 𝑋〉(comp‘𝐶)𝑌)𝐹)(〈𝑋, 𝑌〉(comp‘𝐶)𝑌)𝐺) = (𝐻(〈𝑋, 𝑋〉(comp‘𝐶)𝑌)(𝐹(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐺))) |
19 | 15 | simp3d 1144 | . . . 4 ⊢ (𝜑 → (𝐻(〈𝑌, 𝑋〉(comp‘𝐶)𝑌)𝐹) = ((Id‘𝐶)‘𝑌)) |
20 | 19 | oveq1d 7463 | . . 3 ⊢ (𝜑 → ((𝐻(〈𝑌, 𝑋〉(comp‘𝐶)𝑌)𝐹)(〈𝑋, 𝑌〉(comp‘𝐶)𝑌)𝐺) = (((Id‘𝐶)‘𝑌)(〈𝑋, 𝑌〉(comp‘𝐶)𝑌)𝐺)) |
21 | 11 | simp3d 1144 | . . . 4 ⊢ (𝜑 → (𝐹(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐺) = ((Id‘𝐶)‘𝑋)) |
22 | 21 | oveq2d 7464 | . . 3 ⊢ (𝜑 → (𝐻(〈𝑋, 𝑋〉(comp‘𝐶)𝑌)(𝐹(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐺)) = (𝐻(〈𝑋, 𝑋〉(comp‘𝐶)𝑌)((Id‘𝐶)‘𝑋))) |
23 | 18, 20, 22 | 3eqtr3d 2788 | . 2 ⊢ (𝜑 → (((Id‘𝐶)‘𝑌)(〈𝑋, 𝑌〉(comp‘𝐶)𝑌)𝐺) = (𝐻(〈𝑋, 𝑋〉(comp‘𝐶)𝑌)((Id‘𝐶)‘𝑋))) |
24 | 1, 2, 8, 4, 5, 3, 6, 12 | catlid 17741 | . 2 ⊢ (𝜑 → (((Id‘𝐶)‘𝑌)(〈𝑋, 𝑌〉(comp‘𝐶)𝑌)𝐺) = 𝐺) |
25 | 1, 2, 8, 4, 5, 3, 6, 17 | catrid 17742 | . 2 ⊢ (𝜑 → (𝐻(〈𝑋, 𝑋〉(comp‘𝐶)𝑌)((Id‘𝐶)‘𝑋)) = 𝐻) |
26 | 23, 24, 25 | 3eqtr3d 2788 | 1 ⊢ (𝜑 → 𝐺 = 𝐻) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 〈cop 4654 class class class wbr 5166 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 Hom chom 17322 compcco 17323 Catccat 17722 Idccid 17723 Sectcsect 17805 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-cat 17726 df-cid 17727 df-sect 17808 |
This theorem is referenced by: invfun 17825 inveq 17835 |
Copyright terms: Public domain | W3C validator |