| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sectcan | Structured version Visualization version GIF version | ||
| Description: If 𝐺 is a section of 𝐹 and 𝐹 is a section of 𝐻, then 𝐺 = 𝐻. Proposition 3.10 of [Adamek] p. 28. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| Ref | Expression |
|---|---|
| sectcan.b | ⊢ 𝐵 = (Base‘𝐶) |
| sectcan.s | ⊢ 𝑆 = (Sect‘𝐶) |
| sectcan.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| sectcan.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| sectcan.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| sectcan.1 | ⊢ (𝜑 → 𝐺(𝑋𝑆𝑌)𝐹) |
| sectcan.2 | ⊢ (𝜑 → 𝐹(𝑌𝑆𝑋)𝐻) |
| Ref | Expression |
|---|---|
| sectcan | ⊢ (𝜑 → 𝐺 = 𝐻) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sectcan.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
| 2 | eqid 2733 | . . . 4 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 3 | eqid 2733 | . . . 4 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
| 4 | sectcan.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 5 | sectcan.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 6 | sectcan.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 7 | sectcan.1 | . . . . . 6 ⊢ (𝜑 → 𝐺(𝑋𝑆𝑌)𝐹) | |
| 8 | eqid 2733 | . . . . . . 7 ⊢ (Id‘𝐶) = (Id‘𝐶) | |
| 9 | sectcan.s | . . . . . . 7 ⊢ 𝑆 = (Sect‘𝐶) | |
| 10 | 1, 2, 3, 8, 9, 4, 5, 6 | issect 17662 | . . . . . 6 ⊢ (𝜑 → (𝐺(𝑋𝑆𝑌)𝐹 ↔ (𝐺 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐹 ∈ (𝑌(Hom ‘𝐶)𝑋) ∧ (𝐹(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐺) = ((Id‘𝐶)‘𝑋)))) |
| 11 | 7, 10 | mpbid 232 | . . . . 5 ⊢ (𝜑 → (𝐺 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐹 ∈ (𝑌(Hom ‘𝐶)𝑋) ∧ (𝐹(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐺) = ((Id‘𝐶)‘𝑋))) |
| 12 | 11 | simp1d 1142 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ (𝑋(Hom ‘𝐶)𝑌)) |
| 13 | sectcan.2 | . . . . . 6 ⊢ (𝜑 → 𝐹(𝑌𝑆𝑋)𝐻) | |
| 14 | 1, 2, 3, 8, 9, 4, 6, 5 | issect 17662 | . . . . . 6 ⊢ (𝜑 → (𝐹(𝑌𝑆𝑋)𝐻 ↔ (𝐹 ∈ (𝑌(Hom ‘𝐶)𝑋) ∧ 𝐻 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ (𝐻(〈𝑌, 𝑋〉(comp‘𝐶)𝑌)𝐹) = ((Id‘𝐶)‘𝑌)))) |
| 15 | 13, 14 | mpbid 232 | . . . . 5 ⊢ (𝜑 → (𝐹 ∈ (𝑌(Hom ‘𝐶)𝑋) ∧ 𝐻 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ (𝐻(〈𝑌, 𝑋〉(comp‘𝐶)𝑌)𝐹) = ((Id‘𝐶)‘𝑌))) |
| 16 | 15 | simp1d 1142 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝑌(Hom ‘𝐶)𝑋)) |
| 17 | 15 | simp2d 1143 | . . . 4 ⊢ (𝜑 → 𝐻 ∈ (𝑋(Hom ‘𝐶)𝑌)) |
| 18 | 1, 2, 3, 4, 5, 6, 5, 12, 16, 6, 17 | catass 17594 | . . 3 ⊢ (𝜑 → ((𝐻(〈𝑌, 𝑋〉(comp‘𝐶)𝑌)𝐹)(〈𝑋, 𝑌〉(comp‘𝐶)𝑌)𝐺) = (𝐻(〈𝑋, 𝑋〉(comp‘𝐶)𝑌)(𝐹(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐺))) |
| 19 | 15 | simp3d 1144 | . . . 4 ⊢ (𝜑 → (𝐻(〈𝑌, 𝑋〉(comp‘𝐶)𝑌)𝐹) = ((Id‘𝐶)‘𝑌)) |
| 20 | 19 | oveq1d 7367 | . . 3 ⊢ (𝜑 → ((𝐻(〈𝑌, 𝑋〉(comp‘𝐶)𝑌)𝐹)(〈𝑋, 𝑌〉(comp‘𝐶)𝑌)𝐺) = (((Id‘𝐶)‘𝑌)(〈𝑋, 𝑌〉(comp‘𝐶)𝑌)𝐺)) |
| 21 | 11 | simp3d 1144 | . . . 4 ⊢ (𝜑 → (𝐹(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐺) = ((Id‘𝐶)‘𝑋)) |
| 22 | 21 | oveq2d 7368 | . . 3 ⊢ (𝜑 → (𝐻(〈𝑋, 𝑋〉(comp‘𝐶)𝑌)(𝐹(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐺)) = (𝐻(〈𝑋, 𝑋〉(comp‘𝐶)𝑌)((Id‘𝐶)‘𝑋))) |
| 23 | 18, 20, 22 | 3eqtr3d 2776 | . 2 ⊢ (𝜑 → (((Id‘𝐶)‘𝑌)(〈𝑋, 𝑌〉(comp‘𝐶)𝑌)𝐺) = (𝐻(〈𝑋, 𝑋〉(comp‘𝐶)𝑌)((Id‘𝐶)‘𝑋))) |
| 24 | 1, 2, 8, 4, 5, 3, 6, 12 | catlid 17591 | . 2 ⊢ (𝜑 → (((Id‘𝐶)‘𝑌)(〈𝑋, 𝑌〉(comp‘𝐶)𝑌)𝐺) = 𝐺) |
| 25 | 1, 2, 8, 4, 5, 3, 6, 17 | catrid 17592 | . 2 ⊢ (𝜑 → (𝐻(〈𝑋, 𝑋〉(comp‘𝐶)𝑌)((Id‘𝐶)‘𝑋)) = 𝐻) |
| 26 | 23, 24, 25 | 3eqtr3d 2776 | 1 ⊢ (𝜑 → 𝐺 = 𝐻) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 〈cop 4581 class class class wbr 5093 ‘cfv 6486 (class class class)co 7352 Basecbs 17122 Hom chom 17174 compcco 17175 Catccat 17572 Idccid 17573 Sectcsect 17653 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-1st 7927 df-2nd 7928 df-cat 17576 df-cid 17577 df-sect 17656 |
| This theorem is referenced by: invfun 17673 inveq 17683 |
| Copyright terms: Public domain | W3C validator |