Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > smfpreimagtf | Structured version Visualization version GIF version |
Description: Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval unbounded above is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
smfpreimagtf.x | ⊢ Ⅎ𝑥𝐹 |
smfpreimagtf.s | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
smfpreimagtf.f | ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) |
smfpreimagtf.d | ⊢ 𝐷 = dom 𝐹 |
smfpreimagtf.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
Ref | Expression |
---|---|
smfpreimagtf | ⊢ (𝜑 → {𝑥 ∈ 𝐷 ∣ 𝐴 < (𝐹‘𝑥)} ∈ (𝑆 ↾t 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | smfpreimagtf.d | . . . . 5 ⊢ 𝐷 = dom 𝐹 | |
2 | smfpreimagtf.x | . . . . . 6 ⊢ Ⅎ𝑥𝐹 | |
3 | 2 | nfdm 5788 | . . . . 5 ⊢ Ⅎ𝑥dom 𝐹 |
4 | 1, 3 | nfcxfr 2897 | . . . 4 ⊢ Ⅎ𝑥𝐷 |
5 | nfcv 2899 | . . . 4 ⊢ Ⅎ𝑦𝐷 | |
6 | nfv 1920 | . . . 4 ⊢ Ⅎ𝑦 𝐴 < (𝐹‘𝑥) | |
7 | nfcv 2899 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
8 | nfcv 2899 | . . . . 5 ⊢ Ⅎ𝑥 < | |
9 | nfcv 2899 | . . . . . 6 ⊢ Ⅎ𝑥𝑦 | |
10 | 2, 9 | nffv 6678 | . . . . 5 ⊢ Ⅎ𝑥(𝐹‘𝑦) |
11 | 7, 8, 10 | nfbr 5074 | . . . 4 ⊢ Ⅎ𝑥 𝐴 < (𝐹‘𝑦) |
12 | fveq2 6668 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝐹‘𝑥) = (𝐹‘𝑦)) | |
13 | 12 | breq2d 5039 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝐴 < (𝐹‘𝑥) ↔ 𝐴 < (𝐹‘𝑦))) |
14 | 4, 5, 6, 11, 13 | cbvrabw 3390 | . . 3 ⊢ {𝑥 ∈ 𝐷 ∣ 𝐴 < (𝐹‘𝑥)} = {𝑦 ∈ 𝐷 ∣ 𝐴 < (𝐹‘𝑦)} |
15 | 14 | a1i 11 | . 2 ⊢ (𝜑 → {𝑥 ∈ 𝐷 ∣ 𝐴 < (𝐹‘𝑥)} = {𝑦 ∈ 𝐷 ∣ 𝐴 < (𝐹‘𝑦)}) |
16 | smfpreimagtf.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
17 | smfpreimagtf.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) | |
18 | smfpreimagtf.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
19 | 16, 17, 1, 18 | smfpreimagt 43820 | . 2 ⊢ (𝜑 → {𝑦 ∈ 𝐷 ∣ 𝐴 < (𝐹‘𝑦)} ∈ (𝑆 ↾t 𝐷)) |
20 | 15, 19 | eqeltrd 2833 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐷 ∣ 𝐴 < (𝐹‘𝑥)} ∈ (𝑆 ↾t 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2113 Ⅎwnfc 2879 {crab 3057 class class class wbr 5027 dom cdm 5519 ‘cfv 6333 (class class class)co 7164 ℝcr 10607 < clt 10746 ↾t crest 16790 SAlgcsalg 43375 SMblFncsmblfn 43759 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-10 2144 ax-11 2161 ax-12 2178 ax-ext 2710 ax-rep 5151 ax-sep 5164 ax-nul 5171 ax-pow 5229 ax-pr 5293 ax-un 7473 ax-inf2 9170 ax-cc 9928 ax-ac2 9956 ax-cnex 10664 ax-resscn 10665 ax-1cn 10666 ax-icn 10667 ax-addcl 10668 ax-addrcl 10669 ax-mulcl 10670 ax-mulrcl 10671 ax-mulcom 10672 ax-addass 10673 ax-mulass 10674 ax-distr 10675 ax-i2m1 10676 ax-1ne0 10677 ax-1rid 10678 ax-rnegex 10679 ax-rrecex 10680 ax-cnre 10681 ax-pre-lttri 10682 ax-pre-lttrn 10683 ax-pre-ltadd 10684 ax-pre-mulgt0 10685 ax-pre-sup 10686 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2074 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-reu 3060 df-rmo 3061 df-rab 3062 df-v 3399 df-sbc 3680 df-csb 3789 df-dif 3844 df-un 3846 df-in 3848 df-ss 3858 df-pss 3860 df-nul 4210 df-if 4412 df-pw 4487 df-sn 4514 df-pr 4516 df-tp 4518 df-op 4520 df-uni 4794 df-int 4834 df-iun 4880 df-iin 4881 df-br 5028 df-opab 5090 df-mpt 5108 df-tr 5134 df-id 5425 df-eprel 5430 df-po 5438 df-so 5439 df-fr 5478 df-se 5479 df-we 5480 df-xp 5525 df-rel 5526 df-cnv 5527 df-co 5528 df-dm 5529 df-rn 5530 df-res 5531 df-ima 5532 df-pred 6123 df-ord 6169 df-on 6170 df-lim 6171 df-suc 6172 df-iota 6291 df-fun 6335 df-fn 6336 df-f 6337 df-f1 6338 df-fo 6339 df-f1o 6340 df-fv 6341 df-isom 6342 df-riota 7121 df-ov 7167 df-oprab 7168 df-mpo 7169 df-om 7594 df-1st 7707 df-2nd 7708 df-wrecs 7969 df-recs 8030 df-rdg 8068 df-1o 8124 df-er 8313 df-map 8432 df-pm 8433 df-en 8549 df-dom 8550 df-sdom 8551 df-fin 8552 df-sup 8972 df-inf 8973 df-card 9434 df-acn 9437 df-ac 9609 df-pnf 10748 df-mnf 10749 df-xr 10750 df-ltxr 10751 df-le 10752 df-sub 10943 df-neg 10944 df-div 11369 df-nn 11710 df-n0 11970 df-z 12056 df-uz 12318 df-q 12424 df-rp 12466 df-ioo 12818 df-ico 12820 df-fl 13246 df-rest 16792 df-salg 43376 df-smblfn 43760 |
This theorem is referenced by: smfpimgtxr 43838 smfpimgtmpt 43839 |
Copyright terms: Public domain | W3C validator |