Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfpreimagtf Structured version   Visualization version   GIF version

Theorem smfpreimagtf 42906
Description: Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval unbounded above is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
smfpreimagtf.x 𝑥𝐹
smfpreimagtf.s (𝜑𝑆 ∈ SAlg)
smfpreimagtf.f (𝜑𝐹 ∈ (SMblFn‘𝑆))
smfpreimagtf.d 𝐷 = dom 𝐹
smfpreimagtf.a (𝜑𝐴 ∈ ℝ)
Assertion
Ref Expression
smfpreimagtf (𝜑 → {𝑥𝐷𝐴 < (𝐹𝑥)} ∈ (𝑆t 𝐷))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐷(𝑥)   𝑆(𝑥)   𝐹(𝑥)

Proof of Theorem smfpreimagtf
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 smfpreimagtf.d . . . . 5 𝐷 = dom 𝐹
2 smfpreimagtf.x . . . . . 6 𝑥𝐹
32nfdm 5821 . . . . 5 𝑥dom 𝐹
41, 3nfcxfr 2979 . . . 4 𝑥𝐷
5 nfcv 2981 . . . 4 𝑦𝐷
6 nfv 1908 . . . 4 𝑦 𝐴 < (𝐹𝑥)
7 nfcv 2981 . . . . 5 𝑥𝐴
8 nfcv 2981 . . . . 5 𝑥 <
9 nfcv 2981 . . . . . 6 𝑥𝑦
102, 9nffv 6676 . . . . 5 𝑥(𝐹𝑦)
117, 8, 10nfbr 5109 . . . 4 𝑥 𝐴 < (𝐹𝑦)
12 fveq2 6666 . . . . 5 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
1312breq2d 5074 . . . 4 (𝑥 = 𝑦 → (𝐴 < (𝐹𝑥) ↔ 𝐴 < (𝐹𝑦)))
144, 5, 6, 11, 13cbvrab 3495 . . 3 {𝑥𝐷𝐴 < (𝐹𝑥)} = {𝑦𝐷𝐴 < (𝐹𝑦)}
1514a1i 11 . 2 (𝜑 → {𝑥𝐷𝐴 < (𝐹𝑥)} = {𝑦𝐷𝐴 < (𝐹𝑦)})
16 smfpreimagtf.s . . 3 (𝜑𝑆 ∈ SAlg)
17 smfpreimagtf.f . . 3 (𝜑𝐹 ∈ (SMblFn‘𝑆))
18 smfpreimagtf.a . . 3 (𝜑𝐴 ∈ ℝ)
1916, 17, 1, 18smfpreimagt 42900 . 2 (𝜑 → {𝑦𝐷𝐴 < (𝐹𝑦)} ∈ (𝑆t 𝐷))
2015, 19eqeltrd 2917 1 (𝜑 → {𝑥𝐷𝐴 < (𝐹𝑥)} ∈ (𝑆t 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1530  wcel 2107  wnfc 2965  {crab 3146   class class class wbr 5062  dom cdm 5553  cfv 6351  (class class class)co 7151  cr 10528   < clt 10667  t crest 16686  SAlgcsalg 42455  SMblFncsmblfn 42839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-13 2385  ax-ext 2797  ax-rep 5186  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-inf2 9096  ax-cc 9849  ax-ac2 9877  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rmo 3150  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-int 4874  df-iun 4918  df-iin 4919  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-se 5513  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-isom 6360  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7572  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8282  df-map 8401  df-pm 8402  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-sup 8898  df-inf 8899  df-card 9360  df-acn 9363  df-ac 9534  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-n0 11890  df-z 11974  df-uz 12236  df-q 12341  df-rp 12383  df-ioo 12735  df-ico 12737  df-fl 13155  df-rest 16688  df-salg 42456  df-smblfn 42840
This theorem is referenced by:  smfpimgtxr  42918  smfpimgtmpt  42919
  Copyright terms: Public domain W3C validator