![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > smfpreimagtf | Structured version Visualization version GIF version |
Description: Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval unbounded above is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
smfpreimagtf.x | ⊢ Ⅎ𝑥𝐹 |
smfpreimagtf.s | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
smfpreimagtf.f | ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) |
smfpreimagtf.d | ⊢ 𝐷 = dom 𝐹 |
smfpreimagtf.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
Ref | Expression |
---|---|
smfpreimagtf | ⊢ (𝜑 → {𝑥 ∈ 𝐷 ∣ 𝐴 < (𝐹‘𝑥)} ∈ (𝑆 ↾t 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | smfpreimagtf.d | . . . . 5 ⊢ 𝐷 = dom 𝐹 | |
2 | smfpreimagtf.x | . . . . . 6 ⊢ Ⅎ𝑥𝐹 | |
3 | 2 | nfdm 5947 | . . . . 5 ⊢ Ⅎ𝑥dom 𝐹 |
4 | 1, 3 | nfcxfr 2896 | . . . 4 ⊢ Ⅎ𝑥𝐷 |
5 | nfcv 2898 | . . . 4 ⊢ Ⅎ𝑦𝐷 | |
6 | nfv 1910 | . . . 4 ⊢ Ⅎ𝑦 𝐴 < (𝐹‘𝑥) | |
7 | nfcv 2898 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
8 | nfcv 2898 | . . . . 5 ⊢ Ⅎ𝑥 < | |
9 | nfcv 2898 | . . . . . 6 ⊢ Ⅎ𝑥𝑦 | |
10 | 2, 9 | nffv 6901 | . . . . 5 ⊢ Ⅎ𝑥(𝐹‘𝑦) |
11 | 7, 8, 10 | nfbr 5189 | . . . 4 ⊢ Ⅎ𝑥 𝐴 < (𝐹‘𝑦) |
12 | fveq2 6891 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝐹‘𝑥) = (𝐹‘𝑦)) | |
13 | 12 | breq2d 5154 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝐴 < (𝐹‘𝑥) ↔ 𝐴 < (𝐹‘𝑦))) |
14 | 4, 5, 6, 11, 13 | cbvrabw 3462 | . . 3 ⊢ {𝑥 ∈ 𝐷 ∣ 𝐴 < (𝐹‘𝑥)} = {𝑦 ∈ 𝐷 ∣ 𝐴 < (𝐹‘𝑦)} |
15 | 14 | a1i 11 | . 2 ⊢ (𝜑 → {𝑥 ∈ 𝐷 ∣ 𝐴 < (𝐹‘𝑥)} = {𝑦 ∈ 𝐷 ∣ 𝐴 < (𝐹‘𝑦)}) |
16 | smfpreimagtf.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
17 | smfpreimagtf.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) | |
18 | smfpreimagtf.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
19 | 16, 17, 1, 18 | smfpreimagt 46063 | . 2 ⊢ (𝜑 → {𝑦 ∈ 𝐷 ∣ 𝐴 < (𝐹‘𝑦)} ∈ (𝑆 ↾t 𝐷)) |
20 | 15, 19 | eqeltrd 2828 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐷 ∣ 𝐴 < (𝐹‘𝑥)} ∈ (𝑆 ↾t 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 Ⅎwnfc 2878 {crab 3427 class class class wbr 5142 dom cdm 5672 ‘cfv 6542 (class class class)co 7414 ℝcr 11123 < clt 11264 ↾t crest 17387 SAlgcsalg 45609 SMblFncsmblfn 45996 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7732 ax-inf2 9650 ax-cc 10444 ax-ac2 10472 ax-cnex 11180 ax-resscn 11181 ax-1cn 11182 ax-icn 11183 ax-addcl 11184 ax-addrcl 11185 ax-mulcl 11186 ax-mulrcl 11187 ax-mulcom 11188 ax-addass 11189 ax-mulass 11190 ax-distr 11191 ax-i2m1 11192 ax-1ne0 11193 ax-1rid 11194 ax-rnegex 11195 ax-rrecex 11196 ax-cnre 11197 ax-pre-lttri 11198 ax-pre-lttrn 11199 ax-pre-ltadd 11200 ax-pre-mulgt0 11201 ax-pre-sup 11202 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-iin 4994 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-se 5628 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7863 df-1st 7985 df-2nd 7986 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-er 8716 df-map 8836 df-pm 8837 df-en 8954 df-dom 8955 df-sdom 8956 df-fin 8957 df-sup 9451 df-inf 9452 df-card 9948 df-acn 9951 df-ac 10125 df-pnf 11266 df-mnf 11267 df-xr 11268 df-ltxr 11269 df-le 11270 df-sub 11462 df-neg 11463 df-div 11888 df-nn 12229 df-n0 12489 df-z 12575 df-uz 12839 df-q 12949 df-rp 12993 df-ioo 13346 df-ico 13348 df-fl 13775 df-rest 17389 df-salg 45610 df-smblfn 45997 |
This theorem is referenced by: smfpimgtxr 46081 smfpimgtmpt 46082 |
Copyright terms: Public domain | W3C validator |