Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elnn0rabdioph Structured version   Visualization version   GIF version

Theorem elnn0rabdioph 38337
Description: Diophantine set builder for nonnegativity constraints. The first builder which uses a witness variable internally; an expression is nonnegative if there is a nonnegative integer equal to it. (Contributed by Stefan O'Rear, 11-Oct-2014.)
Assertion
Ref Expression
elnn0rabdioph ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∣ 𝐴 ∈ ℕ0} ∈ (Dioph‘𝑁))
Distinct variable group:   𝑡,𝑁
Allowed substitution hint:   𝐴(𝑡)

Proof of Theorem elnn0rabdioph
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 risset 3247 . . . . 5 (𝐴 ∈ ℕ0 ↔ ∃𝑏 ∈ ℕ0 𝑏 = 𝐴)
21rabbii 3382 . . . 4 {𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∣ 𝐴 ∈ ℕ0} = {𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑏 ∈ ℕ0 𝑏 = 𝐴}
32a1i 11 . . 3 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∣ 𝐴 ∈ ℕ0} = {𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑏 ∈ ℕ0 𝑏 = 𝐴})
4 nfcv 2934 . . . 4 𝑡(ℕ0𝑚 (1...𝑁))
5 nfcv 2934 . . . 4 𝑎(ℕ0𝑚 (1...𝑁))
6 nfv 1957 . . . 4 𝑎𝑏 ∈ ℕ0 𝑏 = 𝐴
7 nfcv 2934 . . . . 5 𝑡0
8 nfcsb1v 3767 . . . . . 6 𝑡𝑎 / 𝑡𝐴
98nfeq2 2949 . . . . 5 𝑡 𝑏 = 𝑎 / 𝑡𝐴
107, 9nfrex 3188 . . . 4 𝑡𝑏 ∈ ℕ0 𝑏 = 𝑎 / 𝑡𝐴
11 csbeq1a 3760 . . . . . 6 (𝑡 = 𝑎𝐴 = 𝑎 / 𝑡𝐴)
1211eqeq2d 2788 . . . . 5 (𝑡 = 𝑎 → (𝑏 = 𝐴𝑏 = 𝑎 / 𝑡𝐴))
1312rexbidv 3237 . . . 4 (𝑡 = 𝑎 → (∃𝑏 ∈ ℕ0 𝑏 = 𝐴 ↔ ∃𝑏 ∈ ℕ0 𝑏 = 𝑎 / 𝑡𝐴))
144, 5, 6, 10, 13cbvrab 3395 . . 3 {𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑏 ∈ ℕ0 𝑏 = 𝐴} = {𝑎 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑏 ∈ ℕ0 𝑏 = 𝑎 / 𝑡𝐴}
153, 14syl6eq 2830 . 2 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∣ 𝐴 ∈ ℕ0} = {𝑎 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑏 ∈ ℕ0 𝑏 = 𝑎 / 𝑡𝐴})
16 peano2nn0 11688 . . . . 5 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
1716adantr 474 . . . 4 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → (𝑁 + 1) ∈ ℕ0)
18 ovex 6956 . . . . 5 (1...(𝑁 + 1)) ∈ V
19 nn0p1nn 11687 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ)
20 elfz1end 12692 . . . . . . 7 ((𝑁 + 1) ∈ ℕ ↔ (𝑁 + 1) ∈ (1...(𝑁 + 1)))
2119, 20sylib 210 . . . . . 6 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ (1...(𝑁 + 1)))
2221adantr 474 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → (𝑁 + 1) ∈ (1...(𝑁 + 1)))
23 mzpproj 38270 . . . . 5 (((1...(𝑁 + 1)) ∈ V ∧ (𝑁 + 1) ∈ (1...(𝑁 + 1))) → (𝑐 ∈ (ℤ ↑𝑚 (1...(𝑁 + 1))) ↦ (𝑐‘(𝑁 + 1))) ∈ (mzPoly‘(1...(𝑁 + 1))))
2418, 22, 23sylancr 581 . . . 4 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → (𝑐 ∈ (ℤ ↑𝑚 (1...(𝑁 + 1))) ↦ (𝑐‘(𝑁 + 1))) ∈ (mzPoly‘(1...(𝑁 + 1))))
25 eqid 2778 . . . . 5 (𝑁 + 1) = (𝑁 + 1)
2625rabdiophlem2 38336 . . . 4 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → (𝑐 ∈ (ℤ ↑𝑚 (1...(𝑁 + 1))) ↦ (𝑐 ↾ (1...𝑁)) / 𝑡𝐴) ∈ (mzPoly‘(1...(𝑁 + 1))))
27 eqrabdioph 38311 . . . 4 (((𝑁 + 1) ∈ ℕ0 ∧ (𝑐 ∈ (ℤ ↑𝑚 (1...(𝑁 + 1))) ↦ (𝑐‘(𝑁 + 1))) ∈ (mzPoly‘(1...(𝑁 + 1))) ∧ (𝑐 ∈ (ℤ ↑𝑚 (1...(𝑁 + 1))) ↦ (𝑐 ↾ (1...𝑁)) / 𝑡𝐴) ∈ (mzPoly‘(1...(𝑁 + 1)))) → {𝑐 ∈ (ℕ0𝑚 (1...(𝑁 + 1))) ∣ (𝑐‘(𝑁 + 1)) = (𝑐 ↾ (1...𝑁)) / 𝑡𝐴} ∈ (Dioph‘(𝑁 + 1)))
2817, 24, 26, 27syl3anc 1439 . . 3 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → {𝑐 ∈ (ℕ0𝑚 (1...(𝑁 + 1))) ∣ (𝑐‘(𝑁 + 1)) = (𝑐 ↾ (1...𝑁)) / 𝑡𝐴} ∈ (Dioph‘(𝑁 + 1)))
29 eqeq1 2782 . . . 4 (𝑏 = (𝑐‘(𝑁 + 1)) → (𝑏 = 𝑎 / 𝑡𝐴 ↔ (𝑐‘(𝑁 + 1)) = 𝑎 / 𝑡𝐴))
30 csbeq1 3754 . . . . 5 (𝑎 = (𝑐 ↾ (1...𝑁)) → 𝑎 / 𝑡𝐴 = (𝑐 ↾ (1...𝑁)) / 𝑡𝐴)
3130eqeq2d 2788 . . . 4 (𝑎 = (𝑐 ↾ (1...𝑁)) → ((𝑐‘(𝑁 + 1)) = 𝑎 / 𝑡𝐴 ↔ (𝑐‘(𝑁 + 1)) = (𝑐 ↾ (1...𝑁)) / 𝑡𝐴))
3225, 29, 31rexrabdioph 38328 . . 3 ((𝑁 ∈ ℕ0 ∧ {𝑐 ∈ (ℕ0𝑚 (1...(𝑁 + 1))) ∣ (𝑐‘(𝑁 + 1)) = (𝑐 ↾ (1...𝑁)) / 𝑡𝐴} ∈ (Dioph‘(𝑁 + 1))) → {𝑎 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑏 ∈ ℕ0 𝑏 = 𝑎 / 𝑡𝐴} ∈ (Dioph‘𝑁))
3328, 32syldan 585 . 2 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → {𝑎 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑏 ∈ ℕ0 𝑏 = 𝑎 / 𝑡𝐴} ∈ (Dioph‘𝑁))
3415, 33eqeltrd 2859 1 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∣ 𝐴 ∈ ℕ0} ∈ (Dioph‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1601  wcel 2107  wrex 3091  {crab 3094  Vcvv 3398  csb 3751  cmpt 4967  cres 5359  cfv 6137  (class class class)co 6924  𝑚 cmap 8142  1c1 10275   + caddc 10277  cn 11378  0cn0 11646  cz 11732  ...cfz 12647  mzPolycmzp 38255  Diophcdioph 38288
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5008  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228  ax-inf2 8837  ax-cnex 10330  ax-resscn 10331  ax-1cn 10332  ax-icn 10333  ax-addcl 10334  ax-addrcl 10335  ax-mulcl 10336  ax-mulrcl 10337  ax-mulcom 10338  ax-addass 10339  ax-mulass 10340  ax-distr 10341  ax-i2m1 10342  ax-1ne0 10343  ax-1rid 10344  ax-rnegex 10345  ax-rrecex 10346  ax-cnre 10347  ax-pre-lttri 10348  ax-pre-lttrn 10349  ax-pre-ltadd 10350  ax-pre-mulgt0 10351
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4674  df-int 4713  df-iun 4757  df-br 4889  df-opab 4951  df-mpt 4968  df-tr 4990  df-id 5263  df-eprel 5268  df-po 5276  df-so 5277  df-fr 5316  df-we 5318  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-pred 5935  df-ord 5981  df-on 5982  df-lim 5983  df-suc 5984  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-riota 6885  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-of 7176  df-om 7346  df-1st 7447  df-2nd 7448  df-wrecs 7691  df-recs 7753  df-rdg 7791  df-1o 7845  df-oadd 7849  df-er 8028  df-map 8144  df-en 8244  df-dom 8245  df-sdom 8246  df-fin 8247  df-card 9100  df-cda 9327  df-pnf 10415  df-mnf 10416  df-xr 10417  df-ltxr 10418  df-le 10419  df-sub 10610  df-neg 10611  df-nn 11379  df-n0 11647  df-z 11733  df-uz 11997  df-fz 12648  df-hash 13440  df-mzpcl 38256  df-mzp 38257  df-dioph 38289
This theorem is referenced by:  lerabdioph  38339
  Copyright terms: Public domain W3C validator