Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elnn0rabdioph Structured version   Visualization version   GIF version

Theorem elnn0rabdioph 41541
Description: Diophantine set builder for nonnegativity constraints. The first builder which uses a witness variable internally; an expression is nonnegative if there is a nonnegative integer equal to it. (Contributed by Stefan O'Rear, 11-Oct-2014.)
Assertion
Ref Expression
elnn0rabdioph ((𝑁 ∈ β„•0 ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPolyβ€˜(1...𝑁))) β†’ {𝑑 ∈ (β„•0 ↑m (1...𝑁)) ∣ 𝐴 ∈ β„•0} ∈ (Diophβ€˜π‘))
Distinct variable group:   𝑑,𝑁
Allowed substitution hint:   𝐴(𝑑)

Proof of Theorem elnn0rabdioph
Dummy variables π‘Ž 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 risset 3231 . . . . 5 (𝐴 ∈ β„•0 ↔ βˆƒπ‘ ∈ β„•0 𝑏 = 𝐴)
21rabbii 3439 . . . 4 {𝑑 ∈ (β„•0 ↑m (1...𝑁)) ∣ 𝐴 ∈ β„•0} = {𝑑 ∈ (β„•0 ↑m (1...𝑁)) ∣ βˆƒπ‘ ∈ β„•0 𝑏 = 𝐴}
32a1i 11 . . 3 ((𝑁 ∈ β„•0 ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPolyβ€˜(1...𝑁))) β†’ {𝑑 ∈ (β„•0 ↑m (1...𝑁)) ∣ 𝐴 ∈ β„•0} = {𝑑 ∈ (β„•0 ↑m (1...𝑁)) ∣ βˆƒπ‘ ∈ β„•0 𝑏 = 𝐴})
4 nfcv 2904 . . . 4 Ⅎ𝑑(β„•0 ↑m (1...𝑁))
5 nfcv 2904 . . . 4 β„²π‘Ž(β„•0 ↑m (1...𝑁))
6 nfv 1918 . . . 4 β„²π‘Žβˆƒπ‘ ∈ β„•0 𝑏 = 𝐴
7 nfcv 2904 . . . . 5 Ⅎ𝑑ℕ0
8 nfcsb1v 3919 . . . . . 6 β„²π‘‘β¦‹π‘Ž / π‘‘β¦Œπ΄
98nfeq2 2921 . . . . 5 Ⅎ𝑑 𝑏 = β¦‹π‘Ž / π‘‘β¦Œπ΄
107, 9nfrexw 3311 . . . 4 β„²π‘‘βˆƒπ‘ ∈ β„•0 𝑏 = β¦‹π‘Ž / π‘‘β¦Œπ΄
11 csbeq1a 3908 . . . . . 6 (𝑑 = π‘Ž β†’ 𝐴 = β¦‹π‘Ž / π‘‘β¦Œπ΄)
1211eqeq2d 2744 . . . . 5 (𝑑 = π‘Ž β†’ (𝑏 = 𝐴 ↔ 𝑏 = β¦‹π‘Ž / π‘‘β¦Œπ΄))
1312rexbidv 3179 . . . 4 (𝑑 = π‘Ž β†’ (βˆƒπ‘ ∈ β„•0 𝑏 = 𝐴 ↔ βˆƒπ‘ ∈ β„•0 𝑏 = β¦‹π‘Ž / π‘‘β¦Œπ΄))
144, 5, 6, 10, 13cbvrabw 3468 . . 3 {𝑑 ∈ (β„•0 ↑m (1...𝑁)) ∣ βˆƒπ‘ ∈ β„•0 𝑏 = 𝐴} = {π‘Ž ∈ (β„•0 ↑m (1...𝑁)) ∣ βˆƒπ‘ ∈ β„•0 𝑏 = β¦‹π‘Ž / π‘‘β¦Œπ΄}
153, 14eqtrdi 2789 . 2 ((𝑁 ∈ β„•0 ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPolyβ€˜(1...𝑁))) β†’ {𝑑 ∈ (β„•0 ↑m (1...𝑁)) ∣ 𝐴 ∈ β„•0} = {π‘Ž ∈ (β„•0 ↑m (1...𝑁)) ∣ βˆƒπ‘ ∈ β„•0 𝑏 = β¦‹π‘Ž / π‘‘β¦Œπ΄})
16 peano2nn0 12512 . . . . 5 (𝑁 ∈ β„•0 β†’ (𝑁 + 1) ∈ β„•0)
1716adantr 482 . . . 4 ((𝑁 ∈ β„•0 ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPolyβ€˜(1...𝑁))) β†’ (𝑁 + 1) ∈ β„•0)
18 ovex 7442 . . . . 5 (1...(𝑁 + 1)) ∈ V
19 nn0p1nn 12511 . . . . . . 7 (𝑁 ∈ β„•0 β†’ (𝑁 + 1) ∈ β„•)
20 elfz1end 13531 . . . . . . 7 ((𝑁 + 1) ∈ β„• ↔ (𝑁 + 1) ∈ (1...(𝑁 + 1)))
2119, 20sylib 217 . . . . . 6 (𝑁 ∈ β„•0 β†’ (𝑁 + 1) ∈ (1...(𝑁 + 1)))
2221adantr 482 . . . . 5 ((𝑁 ∈ β„•0 ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPolyβ€˜(1...𝑁))) β†’ (𝑁 + 1) ∈ (1...(𝑁 + 1)))
23 mzpproj 41475 . . . . 5 (((1...(𝑁 + 1)) ∈ V ∧ (𝑁 + 1) ∈ (1...(𝑁 + 1))) β†’ (𝑐 ∈ (β„€ ↑m (1...(𝑁 + 1))) ↦ (π‘β€˜(𝑁 + 1))) ∈ (mzPolyβ€˜(1...(𝑁 + 1))))
2418, 22, 23sylancr 588 . . . 4 ((𝑁 ∈ β„•0 ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPolyβ€˜(1...𝑁))) β†’ (𝑐 ∈ (β„€ ↑m (1...(𝑁 + 1))) ↦ (π‘β€˜(𝑁 + 1))) ∈ (mzPolyβ€˜(1...(𝑁 + 1))))
25 eqid 2733 . . . . 5 (𝑁 + 1) = (𝑁 + 1)
2625rabdiophlem2 41540 . . . 4 ((𝑁 ∈ β„•0 ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPolyβ€˜(1...𝑁))) β†’ (𝑐 ∈ (β„€ ↑m (1...(𝑁 + 1))) ↦ ⦋(𝑐 β†Ύ (1...𝑁)) / π‘‘β¦Œπ΄) ∈ (mzPolyβ€˜(1...(𝑁 + 1))))
27 eqrabdioph 41515 . . . 4 (((𝑁 + 1) ∈ β„•0 ∧ (𝑐 ∈ (β„€ ↑m (1...(𝑁 + 1))) ↦ (π‘β€˜(𝑁 + 1))) ∈ (mzPolyβ€˜(1...(𝑁 + 1))) ∧ (𝑐 ∈ (β„€ ↑m (1...(𝑁 + 1))) ↦ ⦋(𝑐 β†Ύ (1...𝑁)) / π‘‘β¦Œπ΄) ∈ (mzPolyβ€˜(1...(𝑁 + 1)))) β†’ {𝑐 ∈ (β„•0 ↑m (1...(𝑁 + 1))) ∣ (π‘β€˜(𝑁 + 1)) = ⦋(𝑐 β†Ύ (1...𝑁)) / π‘‘β¦Œπ΄} ∈ (Diophβ€˜(𝑁 + 1)))
2817, 24, 26, 27syl3anc 1372 . . 3 ((𝑁 ∈ β„•0 ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPolyβ€˜(1...𝑁))) β†’ {𝑐 ∈ (β„•0 ↑m (1...(𝑁 + 1))) ∣ (π‘β€˜(𝑁 + 1)) = ⦋(𝑐 β†Ύ (1...𝑁)) / π‘‘β¦Œπ΄} ∈ (Diophβ€˜(𝑁 + 1)))
29 eqeq1 2737 . . . 4 (𝑏 = (π‘β€˜(𝑁 + 1)) β†’ (𝑏 = β¦‹π‘Ž / π‘‘β¦Œπ΄ ↔ (π‘β€˜(𝑁 + 1)) = β¦‹π‘Ž / π‘‘β¦Œπ΄))
30 csbeq1 3897 . . . . 5 (π‘Ž = (𝑐 β†Ύ (1...𝑁)) β†’ β¦‹π‘Ž / π‘‘β¦Œπ΄ = ⦋(𝑐 β†Ύ (1...𝑁)) / π‘‘β¦Œπ΄)
3130eqeq2d 2744 . . . 4 (π‘Ž = (𝑐 β†Ύ (1...𝑁)) β†’ ((π‘β€˜(𝑁 + 1)) = β¦‹π‘Ž / π‘‘β¦Œπ΄ ↔ (π‘β€˜(𝑁 + 1)) = ⦋(𝑐 β†Ύ (1...𝑁)) / π‘‘β¦Œπ΄))
3225, 29, 31rexrabdioph 41532 . . 3 ((𝑁 ∈ β„•0 ∧ {𝑐 ∈ (β„•0 ↑m (1...(𝑁 + 1))) ∣ (π‘β€˜(𝑁 + 1)) = ⦋(𝑐 β†Ύ (1...𝑁)) / π‘‘β¦Œπ΄} ∈ (Diophβ€˜(𝑁 + 1))) β†’ {π‘Ž ∈ (β„•0 ↑m (1...𝑁)) ∣ βˆƒπ‘ ∈ β„•0 𝑏 = β¦‹π‘Ž / π‘‘β¦Œπ΄} ∈ (Diophβ€˜π‘))
3328, 32syldan 592 . 2 ((𝑁 ∈ β„•0 ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPolyβ€˜(1...𝑁))) β†’ {π‘Ž ∈ (β„•0 ↑m (1...𝑁)) ∣ βˆƒπ‘ ∈ β„•0 𝑏 = β¦‹π‘Ž / π‘‘β¦Œπ΄} ∈ (Diophβ€˜π‘))
3415, 33eqeltrd 2834 1 ((𝑁 ∈ β„•0 ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPolyβ€˜(1...𝑁))) β†’ {𝑑 ∈ (β„•0 ↑m (1...𝑁)) ∣ 𝐴 ∈ β„•0} ∈ (Diophβ€˜π‘))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 397   = wceq 1542   ∈ wcel 2107  βˆƒwrex 3071  {crab 3433  Vcvv 3475  β¦‹csb 3894   ↦ cmpt 5232   β†Ύ cres 5679  β€˜cfv 6544  (class class class)co 7409   ↑m cmap 8820  1c1 11111   + caddc 11113  β„•cn 12212  β„•0cn0 12472  β„€cz 12558  ...cfz 13484  mzPolycmzp 41460  Diophcdioph 41493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-inf2 9636  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-of 7670  df-om 7856  df-1st 7975  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-oadd 8470  df-er 8703  df-map 8822  df-en 8940  df-dom 8941  df-sdom 8942  df-fin 8943  df-dju 9896  df-card 9934  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-nn 12213  df-n0 12473  df-z 12559  df-uz 12823  df-fz 13485  df-hash 14291  df-mzpcl 41461  df-mzp 41462  df-dioph 41494
This theorem is referenced by:  lerabdioph  41543
  Copyright terms: Public domain W3C validator