Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elnn0rabdioph Structured version   Visualization version   GIF version

Theorem elnn0rabdioph 40605
Description: Diophantine set builder for nonnegativity constraints. The first builder which uses a witness variable internally; an expression is nonnegative if there is a nonnegative integer equal to it. (Contributed by Stefan O'Rear, 11-Oct-2014.)
Assertion
Ref Expression
elnn0rabdioph ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0m (1...𝑁)) ∣ 𝐴 ∈ ℕ0} ∈ (Dioph‘𝑁))
Distinct variable group:   𝑡,𝑁
Allowed substitution hint:   𝐴(𝑡)

Proof of Theorem elnn0rabdioph
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 risset 3195 . . . . 5 (𝐴 ∈ ℕ0 ↔ ∃𝑏 ∈ ℕ0 𝑏 = 𝐴)
21rabbii 3405 . . . 4 {𝑡 ∈ (ℕ0m (1...𝑁)) ∣ 𝐴 ∈ ℕ0} = {𝑡 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑏 ∈ ℕ0 𝑏 = 𝐴}
32a1i 11 . . 3 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0m (1...𝑁)) ∣ 𝐴 ∈ ℕ0} = {𝑡 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑏 ∈ ℕ0 𝑏 = 𝐴})
4 nfcv 2908 . . . 4 𝑡(ℕ0m (1...𝑁))
5 nfcv 2908 . . . 4 𝑎(ℕ0m (1...𝑁))
6 nfv 1920 . . . 4 𝑎𝑏 ∈ ℕ0 𝑏 = 𝐴
7 nfcv 2908 . . . . 5 𝑡0
8 nfcsb1v 3861 . . . . . 6 𝑡𝑎 / 𝑡𝐴
98nfeq2 2925 . . . . 5 𝑡 𝑏 = 𝑎 / 𝑡𝐴
107, 9nfrex 3239 . . . 4 𝑡𝑏 ∈ ℕ0 𝑏 = 𝑎 / 𝑡𝐴
11 csbeq1a 3850 . . . . . 6 (𝑡 = 𝑎𝐴 = 𝑎 / 𝑡𝐴)
1211eqeq2d 2750 . . . . 5 (𝑡 = 𝑎 → (𝑏 = 𝐴𝑏 = 𝑎 / 𝑡𝐴))
1312rexbidv 3227 . . . 4 (𝑡 = 𝑎 → (∃𝑏 ∈ ℕ0 𝑏 = 𝐴 ↔ ∃𝑏 ∈ ℕ0 𝑏 = 𝑎 / 𝑡𝐴))
144, 5, 6, 10, 13cbvrabw 3422 . . 3 {𝑡 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑏 ∈ ℕ0 𝑏 = 𝐴} = {𝑎 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑏 ∈ ℕ0 𝑏 = 𝑎 / 𝑡𝐴}
153, 14eqtrdi 2795 . 2 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0m (1...𝑁)) ∣ 𝐴 ∈ ℕ0} = {𝑎 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑏 ∈ ℕ0 𝑏 = 𝑎 / 𝑡𝐴})
16 peano2nn0 12256 . . . . 5 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
1716adantr 480 . . . 4 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → (𝑁 + 1) ∈ ℕ0)
18 ovex 7301 . . . . 5 (1...(𝑁 + 1)) ∈ V
19 nn0p1nn 12255 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ)
20 elfz1end 13268 . . . . . . 7 ((𝑁 + 1) ∈ ℕ ↔ (𝑁 + 1) ∈ (1...(𝑁 + 1)))
2119, 20sylib 217 . . . . . 6 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ (1...(𝑁 + 1)))
2221adantr 480 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → (𝑁 + 1) ∈ (1...(𝑁 + 1)))
23 mzpproj 40539 . . . . 5 (((1...(𝑁 + 1)) ∈ V ∧ (𝑁 + 1) ∈ (1...(𝑁 + 1))) → (𝑐 ∈ (ℤ ↑m (1...(𝑁 + 1))) ↦ (𝑐‘(𝑁 + 1))) ∈ (mzPoly‘(1...(𝑁 + 1))))
2418, 22, 23sylancr 586 . . . 4 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → (𝑐 ∈ (ℤ ↑m (1...(𝑁 + 1))) ↦ (𝑐‘(𝑁 + 1))) ∈ (mzPoly‘(1...(𝑁 + 1))))
25 eqid 2739 . . . . 5 (𝑁 + 1) = (𝑁 + 1)
2625rabdiophlem2 40604 . . . 4 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → (𝑐 ∈ (ℤ ↑m (1...(𝑁 + 1))) ↦ (𝑐 ↾ (1...𝑁)) / 𝑡𝐴) ∈ (mzPoly‘(1...(𝑁 + 1))))
27 eqrabdioph 40579 . . . 4 (((𝑁 + 1) ∈ ℕ0 ∧ (𝑐 ∈ (ℤ ↑m (1...(𝑁 + 1))) ↦ (𝑐‘(𝑁 + 1))) ∈ (mzPoly‘(1...(𝑁 + 1))) ∧ (𝑐 ∈ (ℤ ↑m (1...(𝑁 + 1))) ↦ (𝑐 ↾ (1...𝑁)) / 𝑡𝐴) ∈ (mzPoly‘(1...(𝑁 + 1)))) → {𝑐 ∈ (ℕ0m (1...(𝑁 + 1))) ∣ (𝑐‘(𝑁 + 1)) = (𝑐 ↾ (1...𝑁)) / 𝑡𝐴} ∈ (Dioph‘(𝑁 + 1)))
2817, 24, 26, 27syl3anc 1369 . . 3 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → {𝑐 ∈ (ℕ0m (1...(𝑁 + 1))) ∣ (𝑐‘(𝑁 + 1)) = (𝑐 ↾ (1...𝑁)) / 𝑡𝐴} ∈ (Dioph‘(𝑁 + 1)))
29 eqeq1 2743 . . . 4 (𝑏 = (𝑐‘(𝑁 + 1)) → (𝑏 = 𝑎 / 𝑡𝐴 ↔ (𝑐‘(𝑁 + 1)) = 𝑎 / 𝑡𝐴))
30 csbeq1 3839 . . . . 5 (𝑎 = (𝑐 ↾ (1...𝑁)) → 𝑎 / 𝑡𝐴 = (𝑐 ↾ (1...𝑁)) / 𝑡𝐴)
3130eqeq2d 2750 . . . 4 (𝑎 = (𝑐 ↾ (1...𝑁)) → ((𝑐‘(𝑁 + 1)) = 𝑎 / 𝑡𝐴 ↔ (𝑐‘(𝑁 + 1)) = (𝑐 ↾ (1...𝑁)) / 𝑡𝐴))
3225, 29, 31rexrabdioph 40596 . . 3 ((𝑁 ∈ ℕ0 ∧ {𝑐 ∈ (ℕ0m (1...(𝑁 + 1))) ∣ (𝑐‘(𝑁 + 1)) = (𝑐 ↾ (1...𝑁)) / 𝑡𝐴} ∈ (Dioph‘(𝑁 + 1))) → {𝑎 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑏 ∈ ℕ0 𝑏 = 𝑎 / 𝑡𝐴} ∈ (Dioph‘𝑁))
3328, 32syldan 590 . 2 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → {𝑎 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑏 ∈ ℕ0 𝑏 = 𝑎 / 𝑡𝐴} ∈ (Dioph‘𝑁))
3415, 33eqeltrd 2840 1 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0m (1...𝑁)) ∣ 𝐴 ∈ ℕ0} ∈ (Dioph‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2109  wrex 3066  {crab 3069  Vcvv 3430  csb 3836  cmpt 5161  cres 5590  cfv 6430  (class class class)co 7268  m cmap 8589  1c1 10856   + caddc 10858  cn 11956  0cn0 12216  cz 12302  ...cfz 13221  mzPolycmzp 40524  Diophcdioph 40557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-inf2 9360  ax-cnex 10911  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-pre-mulgt0 10932
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-int 4885  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-of 7524  df-om 7701  df-1st 7817  df-2nd 7818  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-1o 8281  df-oadd 8285  df-er 8472  df-map 8591  df-en 8708  df-dom 8709  df-sdom 8710  df-fin 8711  df-dju 9643  df-card 9681  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191  df-nn 11957  df-n0 12217  df-z 12303  df-uz 12565  df-fz 13222  df-hash 14026  df-mzpcl 40525  df-mzp 40526  df-dioph 40558
This theorem is referenced by:  lerabdioph  40607
  Copyright terms: Public domain W3C validator