![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mrccls | Structured version Visualization version GIF version |
Description: Moore closure generalizes closure in a topology. (Contributed by Stefan O'Rear, 31-Jan-2015.) |
Ref | Expression |
---|---|
mrccls.f | ⊢ 𝐹 = (mrCls‘(Clsd‘𝐽)) |
Ref | Expression |
---|---|
mrccls | ⊢ (𝐽 ∈ Top → (cls‘𝐽) = 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . 3 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
2 | 1 | clsfval 23054 | . 2 ⊢ (𝐽 ∈ Top → (cls‘𝐽) = (𝑎 ∈ 𝒫 ∪ 𝐽 ↦ ∩ {𝑏 ∈ (Clsd‘𝐽) ∣ 𝑎 ⊆ 𝑏})) |
3 | 1 | cldmre 23107 | . . 3 ⊢ (𝐽 ∈ Top → (Clsd‘𝐽) ∈ (Moore‘∪ 𝐽)) |
4 | mrccls.f | . . . 4 ⊢ 𝐹 = (mrCls‘(Clsd‘𝐽)) | |
5 | 4 | mrcfval 17666 | . . 3 ⊢ ((Clsd‘𝐽) ∈ (Moore‘∪ 𝐽) → 𝐹 = (𝑎 ∈ 𝒫 ∪ 𝐽 ↦ ∩ {𝑏 ∈ (Clsd‘𝐽) ∣ 𝑎 ⊆ 𝑏})) |
6 | 3, 5 | syl 17 | . 2 ⊢ (𝐽 ∈ Top → 𝐹 = (𝑎 ∈ 𝒫 ∪ 𝐽 ↦ ∩ {𝑏 ∈ (Clsd‘𝐽) ∣ 𝑎 ⊆ 𝑏})) |
7 | 2, 6 | eqtr4d 2783 | 1 ⊢ (𝐽 ∈ Top → (cls‘𝐽) = 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 {crab 3443 ⊆ wss 3976 𝒫 cpw 4622 ∪ cuni 4931 ∩ cint 4970 ↦ cmpt 5249 ‘cfv 6573 Moorecmre 17640 mrClscmrc 17641 Topctop 22920 Clsdccld 23045 clsccl 23047 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-mre 17644 df-mrc 17645 df-top 22921 df-cld 23048 df-cls 23050 |
This theorem is referenced by: istopclsd 42656 |
Copyright terms: Public domain | W3C validator |