MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mrccls Structured version   Visualization version   GIF version

Theorem mrccls 22964
Description: Moore closure generalizes closure in a topology. (Contributed by Stefan O'Rear, 31-Jan-2015.)
Hypothesis
Ref Expression
mrccls.f 𝐹 = (mrCls‘(Clsd‘𝐽))
Assertion
Ref Expression
mrccls (𝐽 ∈ Top → (cls‘𝐽) = 𝐹)

Proof of Theorem mrccls
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . 3 𝐽 = 𝐽
21clsfval 22910 . 2 (𝐽 ∈ Top → (cls‘𝐽) = (𝑎 ∈ 𝒫 𝐽 {𝑏 ∈ (Clsd‘𝐽) ∣ 𝑎𝑏}))
31cldmre 22963 . . 3 (𝐽 ∈ Top → (Clsd‘𝐽) ∈ (Moore‘ 𝐽))
4 mrccls.f . . . 4 𝐹 = (mrCls‘(Clsd‘𝐽))
54mrcfval 17514 . . 3 ((Clsd‘𝐽) ∈ (Moore‘ 𝐽) → 𝐹 = (𝑎 ∈ 𝒫 𝐽 {𝑏 ∈ (Clsd‘𝐽) ∣ 𝑎𝑏}))
63, 5syl 17 . 2 (𝐽 ∈ Top → 𝐹 = (𝑎 ∈ 𝒫 𝐽 {𝑏 ∈ (Clsd‘𝐽) ∣ 𝑎𝑏}))
72, 6eqtr4d 2767 1 (𝐽 ∈ Top → (cls‘𝐽) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  {crab 3394  wss 3903  𝒫 cpw 4551   cuni 4858   cint 4896  cmpt 5173  cfv 6482  Moorecmre 17484  mrClscmrc 17485  Topctop 22778  Clsdccld 22901  clsccl 22903
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-mre 17488  df-mrc 17489  df-top 22779  df-cld 22904  df-cls 22906
This theorem is referenced by:  istopclsd  42693
  Copyright terms: Public domain W3C validator