| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mrccls | Structured version Visualization version GIF version | ||
| Description: Moore closure generalizes closure in a topology. (Contributed by Stefan O'Rear, 31-Jan-2015.) |
| Ref | Expression |
|---|---|
| mrccls.f | ⊢ 𝐹 = (mrCls‘(Clsd‘𝐽)) |
| Ref | Expression |
|---|---|
| mrccls | ⊢ (𝐽 ∈ Top → (cls‘𝐽) = 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2734 | . . 3 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 2 | 1 | clsfval 22998 | . 2 ⊢ (𝐽 ∈ Top → (cls‘𝐽) = (𝑎 ∈ 𝒫 ∪ 𝐽 ↦ ∩ {𝑏 ∈ (Clsd‘𝐽) ∣ 𝑎 ⊆ 𝑏})) |
| 3 | 1 | cldmre 23051 | . . 3 ⊢ (𝐽 ∈ Top → (Clsd‘𝐽) ∈ (Moore‘∪ 𝐽)) |
| 4 | mrccls.f | . . . 4 ⊢ 𝐹 = (mrCls‘(Clsd‘𝐽)) | |
| 5 | 4 | mrcfval 17627 | . . 3 ⊢ ((Clsd‘𝐽) ∈ (Moore‘∪ 𝐽) → 𝐹 = (𝑎 ∈ 𝒫 ∪ 𝐽 ↦ ∩ {𝑏 ∈ (Clsd‘𝐽) ∣ 𝑎 ⊆ 𝑏})) |
| 6 | 3, 5 | syl 17 | . 2 ⊢ (𝐽 ∈ Top → 𝐹 = (𝑎 ∈ 𝒫 ∪ 𝐽 ↦ ∩ {𝑏 ∈ (Clsd‘𝐽) ∣ 𝑎 ⊆ 𝑏})) |
| 7 | 2, 6 | eqtr4d 2772 | 1 ⊢ (𝐽 ∈ Top → (cls‘𝐽) = 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 {crab 3420 ⊆ wss 3933 𝒫 cpw 4582 ∪ cuni 4889 ∩ cint 4928 ↦ cmpt 5207 ‘cfv 6542 Moorecmre 17601 mrClscmrc 17602 Topctop 22866 Clsdccld 22989 clsccl 22991 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5261 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-int 4929 df-iun 4975 df-iin 4976 df-br 5126 df-opab 5188 df-mpt 5208 df-id 5560 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-mre 17605 df-mrc 17606 df-top 22867 df-cld 22992 df-cls 22994 |
| This theorem is referenced by: istopclsd 42656 |
| Copyright terms: Public domain | W3C validator |