Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mrccls | Structured version Visualization version GIF version |
Description: Moore closure generalizes closure in a topology. (Contributed by Stefan O'Rear, 31-Jan-2015.) |
Ref | Expression |
---|---|
mrccls.f | ⊢ 𝐹 = (mrCls‘(Clsd‘𝐽)) |
Ref | Expression |
---|---|
mrccls | ⊢ (𝐽 ∈ Top → (cls‘𝐽) = 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2737 | . . 3 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
2 | 1 | clsfval 22247 | . 2 ⊢ (𝐽 ∈ Top → (cls‘𝐽) = (𝑎 ∈ 𝒫 ∪ 𝐽 ↦ ∩ {𝑏 ∈ (Clsd‘𝐽) ∣ 𝑎 ⊆ 𝑏})) |
3 | 1 | cldmre 22300 | . . 3 ⊢ (𝐽 ∈ Top → (Clsd‘𝐽) ∈ (Moore‘∪ 𝐽)) |
4 | mrccls.f | . . . 4 ⊢ 𝐹 = (mrCls‘(Clsd‘𝐽)) | |
5 | 4 | mrcfval 17384 | . . 3 ⊢ ((Clsd‘𝐽) ∈ (Moore‘∪ 𝐽) → 𝐹 = (𝑎 ∈ 𝒫 ∪ 𝐽 ↦ ∩ {𝑏 ∈ (Clsd‘𝐽) ∣ 𝑎 ⊆ 𝑏})) |
6 | 3, 5 | syl 17 | . 2 ⊢ (𝐽 ∈ Top → 𝐹 = (𝑎 ∈ 𝒫 ∪ 𝐽 ↦ ∩ {𝑏 ∈ (Clsd‘𝐽) ∣ 𝑎 ⊆ 𝑏})) |
7 | 2, 6 | eqtr4d 2780 | 1 ⊢ (𝐽 ∈ Top → (cls‘𝐽) = 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 {crab 3404 ⊆ wss 3896 𝒫 cpw 4543 ∪ cuni 4848 ∩ cint 4890 ↦ cmpt 5168 ‘cfv 6463 Moorecmre 17358 mrClscmrc 17359 Topctop 22113 Clsdccld 22238 clsccl 22240 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5222 ax-sep 5236 ax-nul 5243 ax-pow 5301 ax-pr 5365 ax-un 7626 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-nul 4267 df-if 4470 df-pw 4545 df-sn 4570 df-pr 4572 df-op 4576 df-uni 4849 df-int 4891 df-iun 4937 df-iin 4938 df-br 5086 df-opab 5148 df-mpt 5169 df-id 5505 df-xp 5611 df-rel 5612 df-cnv 5613 df-co 5614 df-dm 5615 df-rn 5616 df-res 5617 df-ima 5618 df-iota 6415 df-fun 6465 df-fn 6466 df-f 6467 df-f1 6468 df-fo 6469 df-f1o 6470 df-fv 6471 df-mre 17362 df-mrc 17363 df-top 22114 df-cld 22241 df-cls 22243 |
This theorem is referenced by: istopclsd 40732 |
Copyright terms: Public domain | W3C validator |