MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mrccls Structured version   Visualization version   GIF version

Theorem mrccls 23052
Description: Moore closure generalizes closure in a topology. (Contributed by Stefan O'Rear, 31-Jan-2015.)
Hypothesis
Ref Expression
mrccls.f 𝐹 = (mrCls‘(Clsd‘𝐽))
Assertion
Ref Expression
mrccls (𝐽 ∈ Top → (cls‘𝐽) = 𝐹)

Proof of Theorem mrccls
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2734 . . 3 𝐽 = 𝐽
21clsfval 22998 . 2 (𝐽 ∈ Top → (cls‘𝐽) = (𝑎 ∈ 𝒫 𝐽 {𝑏 ∈ (Clsd‘𝐽) ∣ 𝑎𝑏}))
31cldmre 23051 . . 3 (𝐽 ∈ Top → (Clsd‘𝐽) ∈ (Moore‘ 𝐽))
4 mrccls.f . . . 4 𝐹 = (mrCls‘(Clsd‘𝐽))
54mrcfval 17627 . . 3 ((Clsd‘𝐽) ∈ (Moore‘ 𝐽) → 𝐹 = (𝑎 ∈ 𝒫 𝐽 {𝑏 ∈ (Clsd‘𝐽) ∣ 𝑎𝑏}))
63, 5syl 17 . 2 (𝐽 ∈ Top → 𝐹 = (𝑎 ∈ 𝒫 𝐽 {𝑏 ∈ (Clsd‘𝐽) ∣ 𝑎𝑏}))
72, 6eqtr4d 2772 1 (𝐽 ∈ Top → (cls‘𝐽) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  {crab 3420  wss 3933  𝒫 cpw 4582   cuni 4889   cint 4928  cmpt 5207  cfv 6542  Moorecmre 17601  mrClscmrc 17602  Topctop 22866  Clsdccld 22989  clsccl 22991
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5261  ax-sep 5278  ax-nul 5288  ax-pow 5347  ax-pr 5414  ax-un 7738
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-int 4929  df-iun 4975  df-iin 4976  df-br 5126  df-opab 5188  df-mpt 5208  df-id 5560  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-mre 17605  df-mrc 17606  df-top 22867  df-cld 22992  df-cls 22994
This theorem is referenced by:  istopclsd  42656
  Copyright terms: Public domain W3C validator