MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mrccls Structured version   Visualization version   GIF version

Theorem mrccls 23103
Description: Moore closure generalizes closure in a topology. (Contributed by Stefan O'Rear, 31-Jan-2015.)
Hypothesis
Ref Expression
mrccls.f 𝐹 = (mrCls‘(Clsd‘𝐽))
Assertion
Ref Expression
mrccls (𝐽 ∈ Top → (cls‘𝐽) = 𝐹)

Proof of Theorem mrccls
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2735 . . 3 𝐽 = 𝐽
21clsfval 23049 . 2 (𝐽 ∈ Top → (cls‘𝐽) = (𝑎 ∈ 𝒫 𝐽 {𝑏 ∈ (Clsd‘𝐽) ∣ 𝑎𝑏}))
31cldmre 23102 . . 3 (𝐽 ∈ Top → (Clsd‘𝐽) ∈ (Moore‘ 𝐽))
4 mrccls.f . . . 4 𝐹 = (mrCls‘(Clsd‘𝐽))
54mrcfval 17653 . . 3 ((Clsd‘𝐽) ∈ (Moore‘ 𝐽) → 𝐹 = (𝑎 ∈ 𝒫 𝐽 {𝑏 ∈ (Clsd‘𝐽) ∣ 𝑎𝑏}))
63, 5syl 17 . 2 (𝐽 ∈ Top → 𝐹 = (𝑎 ∈ 𝒫 𝐽 {𝑏 ∈ (Clsd‘𝐽) ∣ 𝑎𝑏}))
72, 6eqtr4d 2778 1 (𝐽 ∈ Top → (cls‘𝐽) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2106  {crab 3433  wss 3963  𝒫 cpw 4605   cuni 4912   cint 4951  cmpt 5231  cfv 6563  Moorecmre 17627  mrClscmrc 17628  Topctop 22915  Clsdccld 23040  clsccl 23042
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-mre 17631  df-mrc 17632  df-top 22916  df-cld 23043  df-cls 23045
This theorem is referenced by:  istopclsd  42688
  Copyright terms: Public domain W3C validator