MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnconst Structured version   Visualization version   GIF version

Theorem cnconst 23273
Description: A constant function is continuous. (Contributed by FL, 15-Jan-2007.) (Proof shortened by Mario Carneiro, 19-Mar-2015.)
Assertion
Ref Expression
cnconst (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐵𝑌𝐹:𝑋⟶{𝐵})) → 𝐹 ∈ (𝐽 Cn 𝐾))

Proof of Theorem cnconst
StepHypRef Expression
1 fconst2g 7209 . . . 4 (𝐵𝑌 → (𝐹:𝑋⟶{𝐵} ↔ 𝐹 = (𝑋 × {𝐵})))
21adantl 480 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐵𝑌) → (𝐹:𝑋⟶{𝐵} ↔ 𝐹 = (𝑋 × {𝐵})))
3 cnconst2 23272 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) → (𝑋 × {𝐵}) ∈ (𝐽 Cn 𝐾))
433expa 1115 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐵𝑌) → (𝑋 × {𝐵}) ∈ (𝐽 Cn 𝐾))
5 eleq1 2814 . . . 4 (𝐹 = (𝑋 × {𝐵}) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝑋 × {𝐵}) ∈ (𝐽 Cn 𝐾)))
64, 5syl5ibrcom 246 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐵𝑌) → (𝐹 = (𝑋 × {𝐵}) → 𝐹 ∈ (𝐽 Cn 𝐾)))
72, 6sylbid 239 . 2 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐵𝑌) → (𝐹:𝑋⟶{𝐵} → 𝐹 ∈ (𝐽 Cn 𝐾)))
87impr 453 1 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐵𝑌𝐹:𝑋⟶{𝐵})) → 𝐹 ∈ (𝐽 Cn 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1534  wcel 2099  {csn 4623   × cxp 5670  wf 6539  cfv 6543  (class class class)co 7413  TopOnctopon 22897   Cn ccn 23213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7735
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4906  df-iun 4995  df-br 5144  df-opab 5206  df-mpt 5227  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fv 6551  df-ov 7416  df-oprab 7417  df-mpo 7418  df-1st 7992  df-2nd 7993  df-map 8846  df-topgen 17450  df-top 22881  df-topon 22898  df-cn 23216  df-cnp 23217
This theorem is referenced by:  xrge0mulc1cn  33766  cxpcncf2  45553
  Copyright terms: Public domain W3C validator