MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnconst Structured version   Visualization version   GIF version

Theorem cnconst 23222
Description: A constant function is continuous. (Contributed by FL, 15-Jan-2007.) (Proof shortened by Mario Carneiro, 19-Mar-2015.)
Assertion
Ref Expression
cnconst (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐵𝑌𝐹:𝑋⟶{𝐵})) → 𝐹 ∈ (𝐽 Cn 𝐾))

Proof of Theorem cnconst
StepHypRef Expression
1 fconst2g 7195 . . . 4 (𝐵𝑌 → (𝐹:𝑋⟶{𝐵} ↔ 𝐹 = (𝑋 × {𝐵})))
21adantl 481 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐵𝑌) → (𝐹:𝑋⟶{𝐵} ↔ 𝐹 = (𝑋 × {𝐵})))
3 cnconst2 23221 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) → (𝑋 × {𝐵}) ∈ (𝐽 Cn 𝐾))
433expa 1118 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐵𝑌) → (𝑋 × {𝐵}) ∈ (𝐽 Cn 𝐾))
5 eleq1 2822 . . . 4 (𝐹 = (𝑋 × {𝐵}) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝑋 × {𝐵}) ∈ (𝐽 Cn 𝐾)))
64, 5syl5ibrcom 247 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐵𝑌) → (𝐹 = (𝑋 × {𝐵}) → 𝐹 ∈ (𝐽 Cn 𝐾)))
72, 6sylbid 240 . 2 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐵𝑌) → (𝐹:𝑋⟶{𝐵} → 𝐹 ∈ (𝐽 Cn 𝐾)))
87impr 454 1 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐵𝑌𝐹:𝑋⟶{𝐵})) → 𝐹 ∈ (𝐽 Cn 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  {csn 4601   × cxp 5652  wf 6527  cfv 6531  (class class class)co 7405  TopOnctopon 22848   Cn ccn 23162
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7988  df-2nd 7989  df-map 8842  df-topgen 17457  df-top 22832  df-topon 22849  df-cn 23165  df-cnp 23166
This theorem is referenced by:  xrge0mulc1cn  33972  cxpcncf2  45928
  Copyright terms: Public domain W3C validator