![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnconst | Structured version Visualization version GIF version |
Description: A constant function is continuous. (Contributed by FL, 15-Jan-2007.) (Proof shortened by Mario Carneiro, 19-Mar-2015.) |
Ref | Expression |
---|---|
cnconst | ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐵 ∈ 𝑌 ∧ 𝐹:𝑋⟶{𝐵})) → 𝐹 ∈ (𝐽 Cn 𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fconst2g 7223 | . . . 4 ⊢ (𝐵 ∈ 𝑌 → (𝐹:𝑋⟶{𝐵} ↔ 𝐹 = (𝑋 × {𝐵}))) | |
2 | 1 | adantl 481 | . . 3 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐵 ∈ 𝑌) → (𝐹:𝑋⟶{𝐵} ↔ 𝐹 = (𝑋 × {𝐵}))) |
3 | cnconst2 23307 | . . . . 5 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵 ∈ 𝑌) → (𝑋 × {𝐵}) ∈ (𝐽 Cn 𝐾)) | |
4 | 3 | 3expa 1117 | . . . 4 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐵 ∈ 𝑌) → (𝑋 × {𝐵}) ∈ (𝐽 Cn 𝐾)) |
5 | eleq1 2827 | . . . 4 ⊢ (𝐹 = (𝑋 × {𝐵}) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝑋 × {𝐵}) ∈ (𝐽 Cn 𝐾))) | |
6 | 4, 5 | syl5ibrcom 247 | . . 3 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐵 ∈ 𝑌) → (𝐹 = (𝑋 × {𝐵}) → 𝐹 ∈ (𝐽 Cn 𝐾))) |
7 | 2, 6 | sylbid 240 | . 2 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐵 ∈ 𝑌) → (𝐹:𝑋⟶{𝐵} → 𝐹 ∈ (𝐽 Cn 𝐾))) |
8 | 7 | impr 454 | 1 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐵 ∈ 𝑌 ∧ 𝐹:𝑋⟶{𝐵})) → 𝐹 ∈ (𝐽 Cn 𝐾)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 {csn 4631 × cxp 5687 ⟶wf 6559 ‘cfv 6563 (class class class)co 7431 TopOnctopon 22932 Cn ccn 23248 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1st 8013 df-2nd 8014 df-map 8867 df-topgen 17490 df-top 22916 df-topon 22933 df-cn 23251 df-cnp 23252 |
This theorem is referenced by: xrge0mulc1cn 33902 cxpcncf2 45855 |
Copyright terms: Public domain | W3C validator |