MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cntzssv Structured version   Visualization version   GIF version

Theorem cntzssv 19260
Description: The centralizer is unconditionally a subset. (Contributed by Stefan O'Rear, 6-Sep-2015.)
Hypotheses
Ref Expression
cntzrcl.b 𝐵 = (Base‘𝑀)
cntzrcl.z 𝑍 = (Cntz‘𝑀)
Assertion
Ref Expression
cntzssv (𝑍𝑆) ⊆ 𝐵

Proof of Theorem cntzssv
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ss 4363 . . 3 ∅ ⊆ 𝐵
2 sseq1 3972 . . 3 ((𝑍𝑆) = ∅ → ((𝑍𝑆) ⊆ 𝐵 ↔ ∅ ⊆ 𝐵))
31, 2mpbiri 258 . 2 ((𝑍𝑆) = ∅ → (𝑍𝑆) ⊆ 𝐵)
4 n0 4316 . . 3 ((𝑍𝑆) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝑍𝑆))
5 cntzrcl.b . . . . . . 7 𝐵 = (Base‘𝑀)
6 cntzrcl.z . . . . . . 7 𝑍 = (Cntz‘𝑀)
75, 6cntzrcl 19259 . . . . . 6 (𝑥 ∈ (𝑍𝑆) → (𝑀 ∈ V ∧ 𝑆𝐵))
8 eqid 2729 . . . . . . 7 (+g𝑀) = (+g𝑀)
95, 8, 6cntzval 19253 . . . . . 6 (𝑆𝐵 → (𝑍𝑆) = {𝑥𝐵 ∣ ∀𝑦𝑆 (𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥)})
107, 9simpl2im 503 . . . . 5 (𝑥 ∈ (𝑍𝑆) → (𝑍𝑆) = {𝑥𝐵 ∣ ∀𝑦𝑆 (𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥)})
11 ssrab2 4043 . . . . 5 {𝑥𝐵 ∣ ∀𝑦𝑆 (𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥)} ⊆ 𝐵
1210, 11eqsstrdi 3991 . . . 4 (𝑥 ∈ (𝑍𝑆) → (𝑍𝑆) ⊆ 𝐵)
1312exlimiv 1930 . . 3 (∃𝑥 𝑥 ∈ (𝑍𝑆) → (𝑍𝑆) ⊆ 𝐵)
144, 13sylbi 217 . 2 ((𝑍𝑆) ≠ ∅ → (𝑍𝑆) ⊆ 𝐵)
153, 14pm2.61ine 3008 1 (𝑍𝑆) ⊆ 𝐵
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wex 1779  wcel 2109  wne 2925  wral 3044  {crab 3405  Vcvv 3447  wss 3914  c0 4296  cfv 6511  (class class class)co 7387  Basecbs 17179  +gcplusg 17220  Cntzccntz 19247
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-cntz 19249
This theorem is referenced by:  cntrss  19263  cntzsgrpcl  19266  cntz2ss  19267  cntzsubm  19270  cntzsubg  19271  cntzidss  19272  cntzmhm  19273  cntzmhm2  19274  cntzcmn  19770  cntzspan  19774  cntzsubrng  20476  cntzsubr  20515  cntzsdrg  20711
  Copyright terms: Public domain W3C validator