![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cntzssv | Structured version Visualization version GIF version |
Description: The centralizer is unconditionally a subset. (Contributed by Stefan O'Rear, 6-Sep-2015.) |
Ref | Expression |
---|---|
cntzrcl.b | ⊢ 𝐵 = (Base‘𝑀) |
cntzrcl.z | ⊢ 𝑍 = (Cntz‘𝑀) |
Ref | Expression |
---|---|
cntzssv | ⊢ (𝑍‘𝑆) ⊆ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ss 4398 | . . 3 ⊢ ∅ ⊆ 𝐵 | |
2 | sseq1 4002 | . . 3 ⊢ ((𝑍‘𝑆) = ∅ → ((𝑍‘𝑆) ⊆ 𝐵 ↔ ∅ ⊆ 𝐵)) | |
3 | 1, 2 | mpbiri 257 | . 2 ⊢ ((𝑍‘𝑆) = ∅ → (𝑍‘𝑆) ⊆ 𝐵) |
4 | n0 4346 | . . 3 ⊢ ((𝑍‘𝑆) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝑍‘𝑆)) | |
5 | cntzrcl.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑀) | |
6 | cntzrcl.z | . . . . . . 7 ⊢ 𝑍 = (Cntz‘𝑀) | |
7 | 5, 6 | cntzrcl 19290 | . . . . . 6 ⊢ (𝑥 ∈ (𝑍‘𝑆) → (𝑀 ∈ V ∧ 𝑆 ⊆ 𝐵)) |
8 | eqid 2725 | . . . . . . 7 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
9 | 5, 8, 6 | cntzval 19284 | . . . . . 6 ⊢ (𝑆 ⊆ 𝐵 → (𝑍‘𝑆) = {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝑀)𝑦) = (𝑦(+g‘𝑀)𝑥)}) |
10 | 7, 9 | simpl2im 502 | . . . . 5 ⊢ (𝑥 ∈ (𝑍‘𝑆) → (𝑍‘𝑆) = {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝑀)𝑦) = (𝑦(+g‘𝑀)𝑥)}) |
11 | ssrab2 4073 | . . . . 5 ⊢ {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝑀)𝑦) = (𝑦(+g‘𝑀)𝑥)} ⊆ 𝐵 | |
12 | 10, 11 | eqsstrdi 4031 | . . . 4 ⊢ (𝑥 ∈ (𝑍‘𝑆) → (𝑍‘𝑆) ⊆ 𝐵) |
13 | 12 | exlimiv 1925 | . . 3 ⊢ (∃𝑥 𝑥 ∈ (𝑍‘𝑆) → (𝑍‘𝑆) ⊆ 𝐵) |
14 | 4, 13 | sylbi 216 | . 2 ⊢ ((𝑍‘𝑆) ≠ ∅ → (𝑍‘𝑆) ⊆ 𝐵) |
15 | 3, 14 | pm2.61ine 3014 | 1 ⊢ (𝑍‘𝑆) ⊆ 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 ∃wex 1773 ∈ wcel 2098 ≠ wne 2929 ∀wral 3050 {crab 3418 Vcvv 3461 ⊆ wss 3944 ∅c0 4322 ‘cfv 6549 (class class class)co 7419 Basecbs 17183 +gcplusg 17236 Cntzccntz 19278 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-ov 7422 df-cntz 19280 |
This theorem is referenced by: cntrss 19294 cntzsgrpcl 19297 cntz2ss 19298 cntzsubm 19301 cntzsubg 19302 cntzidss 19303 cntzmhm 19304 cntzmhm2 19305 cntzcmn 19807 cntzspan 19811 cntzsubrng 20516 cntzsubr 20557 cntzsdrg 20702 |
Copyright terms: Public domain | W3C validator |