![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cntzssv | Structured version Visualization version GIF version |
Description: The centralizer is unconditionally a subset. (Contributed by Stefan O'Rear, 6-Sep-2015.) |
Ref | Expression |
---|---|
cntzrcl.b | ⊢ 𝐵 = (Base‘𝑀) |
cntzrcl.z | ⊢ 𝑍 = (Cntz‘𝑀) |
Ref | Expression |
---|---|
cntzssv | ⊢ (𝑍‘𝑆) ⊆ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ss 4406 | . . 3 ⊢ ∅ ⊆ 𝐵 | |
2 | sseq1 4021 | . . 3 ⊢ ((𝑍‘𝑆) = ∅ → ((𝑍‘𝑆) ⊆ 𝐵 ↔ ∅ ⊆ 𝐵)) | |
3 | 1, 2 | mpbiri 258 | . 2 ⊢ ((𝑍‘𝑆) = ∅ → (𝑍‘𝑆) ⊆ 𝐵) |
4 | n0 4359 | . . 3 ⊢ ((𝑍‘𝑆) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝑍‘𝑆)) | |
5 | cntzrcl.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑀) | |
6 | cntzrcl.z | . . . . . . 7 ⊢ 𝑍 = (Cntz‘𝑀) | |
7 | 5, 6 | cntzrcl 19358 | . . . . . 6 ⊢ (𝑥 ∈ (𝑍‘𝑆) → (𝑀 ∈ V ∧ 𝑆 ⊆ 𝐵)) |
8 | eqid 2735 | . . . . . . 7 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
9 | 5, 8, 6 | cntzval 19352 | . . . . . 6 ⊢ (𝑆 ⊆ 𝐵 → (𝑍‘𝑆) = {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝑀)𝑦) = (𝑦(+g‘𝑀)𝑥)}) |
10 | 7, 9 | simpl2im 503 | . . . . 5 ⊢ (𝑥 ∈ (𝑍‘𝑆) → (𝑍‘𝑆) = {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝑀)𝑦) = (𝑦(+g‘𝑀)𝑥)}) |
11 | ssrab2 4090 | . . . . 5 ⊢ {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝑀)𝑦) = (𝑦(+g‘𝑀)𝑥)} ⊆ 𝐵 | |
12 | 10, 11 | eqsstrdi 4050 | . . . 4 ⊢ (𝑥 ∈ (𝑍‘𝑆) → (𝑍‘𝑆) ⊆ 𝐵) |
13 | 12 | exlimiv 1928 | . . 3 ⊢ (∃𝑥 𝑥 ∈ (𝑍‘𝑆) → (𝑍‘𝑆) ⊆ 𝐵) |
14 | 4, 13 | sylbi 217 | . 2 ⊢ ((𝑍‘𝑆) ≠ ∅ → (𝑍‘𝑆) ⊆ 𝐵) |
15 | 3, 14 | pm2.61ine 3023 | 1 ⊢ (𝑍‘𝑆) ⊆ 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∃wex 1776 ∈ wcel 2106 ≠ wne 2938 ∀wral 3059 {crab 3433 Vcvv 3478 ⊆ wss 3963 ∅c0 4339 ‘cfv 6563 (class class class)co 7431 Basecbs 17245 +gcplusg 17298 Cntzccntz 19346 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-cntz 19348 |
This theorem is referenced by: cntrss 19362 cntzsgrpcl 19365 cntz2ss 19366 cntzsubm 19369 cntzsubg 19370 cntzidss 19371 cntzmhm 19372 cntzmhm2 19373 cntzcmn 19873 cntzspan 19877 cntzsubrng 20584 cntzsubr 20623 cntzsdrg 20820 |
Copyright terms: Public domain | W3C validator |