MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cntzssv Structured version   Visualization version   GIF version

Theorem cntzssv 19207
Description: The centralizer is unconditionally a subset. (Contributed by Stefan O'Rear, 6-Sep-2015.)
Hypotheses
Ref Expression
cntzrcl.b 𝐵 = (Base‘𝑀)
cntzrcl.z 𝑍 = (Cntz‘𝑀)
Assertion
Ref Expression
cntzssv (𝑍𝑆) ⊆ 𝐵

Proof of Theorem cntzssv
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ss 4351 . . 3 ∅ ⊆ 𝐵
2 sseq1 3961 . . 3 ((𝑍𝑆) = ∅ → ((𝑍𝑆) ⊆ 𝐵 ↔ ∅ ⊆ 𝐵))
31, 2mpbiri 258 . 2 ((𝑍𝑆) = ∅ → (𝑍𝑆) ⊆ 𝐵)
4 n0 4304 . . 3 ((𝑍𝑆) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝑍𝑆))
5 cntzrcl.b . . . . . . 7 𝐵 = (Base‘𝑀)
6 cntzrcl.z . . . . . . 7 𝑍 = (Cntz‘𝑀)
75, 6cntzrcl 19206 . . . . . 6 (𝑥 ∈ (𝑍𝑆) → (𝑀 ∈ V ∧ 𝑆𝐵))
8 eqid 2729 . . . . . . 7 (+g𝑀) = (+g𝑀)
95, 8, 6cntzval 19200 . . . . . 6 (𝑆𝐵 → (𝑍𝑆) = {𝑥𝐵 ∣ ∀𝑦𝑆 (𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥)})
107, 9simpl2im 503 . . . . 5 (𝑥 ∈ (𝑍𝑆) → (𝑍𝑆) = {𝑥𝐵 ∣ ∀𝑦𝑆 (𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥)})
11 ssrab2 4031 . . . . 5 {𝑥𝐵 ∣ ∀𝑦𝑆 (𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥)} ⊆ 𝐵
1210, 11eqsstrdi 3980 . . . 4 (𝑥 ∈ (𝑍𝑆) → (𝑍𝑆) ⊆ 𝐵)
1312exlimiv 1930 . . 3 (∃𝑥 𝑥 ∈ (𝑍𝑆) → (𝑍𝑆) ⊆ 𝐵)
144, 13sylbi 217 . 2 ((𝑍𝑆) ≠ ∅ → (𝑍𝑆) ⊆ 𝐵)
153, 14pm2.61ine 3008 1 (𝑍𝑆) ⊆ 𝐵
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wex 1779  wcel 2109  wne 2925  wral 3044  {crab 3394  Vcvv 3436  wss 3903  c0 4284  cfv 6482  (class class class)co 7349  Basecbs 17120  +gcplusg 17161  Cntzccntz 19194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-cntz 19196
This theorem is referenced by:  cntrss  19210  cntzsgrpcl  19213  cntz2ss  19214  cntzsubm  19217  cntzsubg  19218  cntzidss  19219  cntzmhm  19220  cntzmhm2  19221  cntzcmn  19719  cntzspan  19723  cntzsubrng  20452  cntzsubr  20491  cntzsdrg  20687
  Copyright terms: Public domain W3C validator