| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cntzssv | Structured version Visualization version GIF version | ||
| Description: The centralizer is unconditionally a subset. (Contributed by Stefan O'Rear, 6-Sep-2015.) |
| Ref | Expression |
|---|---|
| cntzrcl.b | ⊢ 𝐵 = (Base‘𝑀) |
| cntzrcl.z | ⊢ 𝑍 = (Cntz‘𝑀) |
| Ref | Expression |
|---|---|
| cntzssv | ⊢ (𝑍‘𝑆) ⊆ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ss 4375 | . . 3 ⊢ ∅ ⊆ 𝐵 | |
| 2 | sseq1 3984 | . . 3 ⊢ ((𝑍‘𝑆) = ∅ → ((𝑍‘𝑆) ⊆ 𝐵 ↔ ∅ ⊆ 𝐵)) | |
| 3 | 1, 2 | mpbiri 258 | . 2 ⊢ ((𝑍‘𝑆) = ∅ → (𝑍‘𝑆) ⊆ 𝐵) |
| 4 | n0 4328 | . . 3 ⊢ ((𝑍‘𝑆) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝑍‘𝑆)) | |
| 5 | cntzrcl.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑀) | |
| 6 | cntzrcl.z | . . . . . . 7 ⊢ 𝑍 = (Cntz‘𝑀) | |
| 7 | 5, 6 | cntzrcl 19310 | . . . . . 6 ⊢ (𝑥 ∈ (𝑍‘𝑆) → (𝑀 ∈ V ∧ 𝑆 ⊆ 𝐵)) |
| 8 | eqid 2735 | . . . . . . 7 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
| 9 | 5, 8, 6 | cntzval 19304 | . . . . . 6 ⊢ (𝑆 ⊆ 𝐵 → (𝑍‘𝑆) = {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝑀)𝑦) = (𝑦(+g‘𝑀)𝑥)}) |
| 10 | 7, 9 | simpl2im 503 | . . . . 5 ⊢ (𝑥 ∈ (𝑍‘𝑆) → (𝑍‘𝑆) = {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝑀)𝑦) = (𝑦(+g‘𝑀)𝑥)}) |
| 11 | ssrab2 4055 | . . . . 5 ⊢ {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝑀)𝑦) = (𝑦(+g‘𝑀)𝑥)} ⊆ 𝐵 | |
| 12 | 10, 11 | eqsstrdi 4003 | . . . 4 ⊢ (𝑥 ∈ (𝑍‘𝑆) → (𝑍‘𝑆) ⊆ 𝐵) |
| 13 | 12 | exlimiv 1930 | . . 3 ⊢ (∃𝑥 𝑥 ∈ (𝑍‘𝑆) → (𝑍‘𝑆) ⊆ 𝐵) |
| 14 | 4, 13 | sylbi 217 | . 2 ⊢ ((𝑍‘𝑆) ≠ ∅ → (𝑍‘𝑆) ⊆ 𝐵) |
| 15 | 3, 14 | pm2.61ine 3015 | 1 ⊢ (𝑍‘𝑆) ⊆ 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∃wex 1779 ∈ wcel 2108 ≠ wne 2932 ∀wral 3051 {crab 3415 Vcvv 3459 ⊆ wss 3926 ∅c0 4308 ‘cfv 6531 (class class class)co 7405 Basecbs 17228 +gcplusg 17271 Cntzccntz 19298 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-cntz 19300 |
| This theorem is referenced by: cntrss 19314 cntzsgrpcl 19317 cntz2ss 19318 cntzsubm 19321 cntzsubg 19322 cntzidss 19323 cntzmhm 19324 cntzmhm2 19325 cntzcmn 19821 cntzspan 19825 cntzsubrng 20527 cntzsubr 20566 cntzsdrg 20762 |
| Copyright terms: Public domain | W3C validator |