Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cntzssv | Structured version Visualization version GIF version |
Description: The centralizer is unconditionally a subset. (Contributed by Stefan O'Rear, 6-Sep-2015.) |
Ref | Expression |
---|---|
cntzrcl.b | ⊢ 𝐵 = (Base‘𝑀) |
cntzrcl.z | ⊢ 𝑍 = (Cntz‘𝑀) |
Ref | Expression |
---|---|
cntzssv | ⊢ (𝑍‘𝑆) ⊆ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ss 4327 | . . 3 ⊢ ∅ ⊆ 𝐵 | |
2 | sseq1 3942 | . . 3 ⊢ ((𝑍‘𝑆) = ∅ → ((𝑍‘𝑆) ⊆ 𝐵 ↔ ∅ ⊆ 𝐵)) | |
3 | 1, 2 | mpbiri 257 | . 2 ⊢ ((𝑍‘𝑆) = ∅ → (𝑍‘𝑆) ⊆ 𝐵) |
4 | n0 4277 | . . 3 ⊢ ((𝑍‘𝑆) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝑍‘𝑆)) | |
5 | cntzrcl.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑀) | |
6 | cntzrcl.z | . . . . . . 7 ⊢ 𝑍 = (Cntz‘𝑀) | |
7 | 5, 6 | cntzrcl 18848 | . . . . . 6 ⊢ (𝑥 ∈ (𝑍‘𝑆) → (𝑀 ∈ V ∧ 𝑆 ⊆ 𝐵)) |
8 | eqid 2738 | . . . . . . 7 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
9 | 5, 8, 6 | cntzval 18842 | . . . . . 6 ⊢ (𝑆 ⊆ 𝐵 → (𝑍‘𝑆) = {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝑀)𝑦) = (𝑦(+g‘𝑀)𝑥)}) |
10 | 7, 9 | simpl2im 503 | . . . . 5 ⊢ (𝑥 ∈ (𝑍‘𝑆) → (𝑍‘𝑆) = {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝑀)𝑦) = (𝑦(+g‘𝑀)𝑥)}) |
11 | ssrab2 4009 | . . . . 5 ⊢ {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝑀)𝑦) = (𝑦(+g‘𝑀)𝑥)} ⊆ 𝐵 | |
12 | 10, 11 | eqsstrdi 3971 | . . . 4 ⊢ (𝑥 ∈ (𝑍‘𝑆) → (𝑍‘𝑆) ⊆ 𝐵) |
13 | 12 | exlimiv 1934 | . . 3 ⊢ (∃𝑥 𝑥 ∈ (𝑍‘𝑆) → (𝑍‘𝑆) ⊆ 𝐵) |
14 | 4, 13 | sylbi 216 | . 2 ⊢ ((𝑍‘𝑆) ≠ ∅ → (𝑍‘𝑆) ⊆ 𝐵) |
15 | 3, 14 | pm2.61ine 3027 | 1 ⊢ (𝑍‘𝑆) ⊆ 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∃wex 1783 ∈ wcel 2108 ≠ wne 2942 ∀wral 3063 {crab 3067 Vcvv 3422 ⊆ wss 3883 ∅c0 4253 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 +gcplusg 16888 Cntzccntz 18836 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-cntz 18838 |
This theorem is referenced by: cntrss 18851 cntz2ss 18854 cntzsubm 18857 cntzsubg 18858 cntzidss 18859 cntzmhm 18860 cntzmhm2 18861 cntzcmn 19356 cntzspan 19360 cntzsubr 19972 cntzsdrg 19985 |
Copyright terms: Public domain | W3C validator |