Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cntzssv | Structured version Visualization version GIF version |
Description: The centralizer is unconditionally a subset. (Contributed by Stefan O'Rear, 6-Sep-2015.) |
Ref | Expression |
---|---|
cntzrcl.b | ⊢ 𝐵 = (Base‘𝑀) |
cntzrcl.z | ⊢ 𝑍 = (Cntz‘𝑀) |
Ref | Expression |
---|---|
cntzssv | ⊢ (𝑍‘𝑆) ⊆ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ss 4311 | . . 3 ⊢ ∅ ⊆ 𝐵 | |
2 | sseq1 3926 | . . 3 ⊢ ((𝑍‘𝑆) = ∅ → ((𝑍‘𝑆) ⊆ 𝐵 ↔ ∅ ⊆ 𝐵)) | |
3 | 1, 2 | mpbiri 261 | . 2 ⊢ ((𝑍‘𝑆) = ∅ → (𝑍‘𝑆) ⊆ 𝐵) |
4 | n0 4261 | . . 3 ⊢ ((𝑍‘𝑆) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝑍‘𝑆)) | |
5 | cntzrcl.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑀) | |
6 | cntzrcl.z | . . . . . . 7 ⊢ 𝑍 = (Cntz‘𝑀) | |
7 | 5, 6 | cntzrcl 18721 | . . . . . 6 ⊢ (𝑥 ∈ (𝑍‘𝑆) → (𝑀 ∈ V ∧ 𝑆 ⊆ 𝐵)) |
8 | eqid 2737 | . . . . . . 7 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
9 | 5, 8, 6 | cntzval 18715 | . . . . . 6 ⊢ (𝑆 ⊆ 𝐵 → (𝑍‘𝑆) = {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝑀)𝑦) = (𝑦(+g‘𝑀)𝑥)}) |
10 | 7, 9 | simpl2im 507 | . . . . 5 ⊢ (𝑥 ∈ (𝑍‘𝑆) → (𝑍‘𝑆) = {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝑀)𝑦) = (𝑦(+g‘𝑀)𝑥)}) |
11 | ssrab2 3993 | . . . . 5 ⊢ {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝑀)𝑦) = (𝑦(+g‘𝑀)𝑥)} ⊆ 𝐵 | |
12 | 10, 11 | eqsstrdi 3955 | . . . 4 ⊢ (𝑥 ∈ (𝑍‘𝑆) → (𝑍‘𝑆) ⊆ 𝐵) |
13 | 12 | exlimiv 1938 | . . 3 ⊢ (∃𝑥 𝑥 ∈ (𝑍‘𝑆) → (𝑍‘𝑆) ⊆ 𝐵) |
14 | 4, 13 | sylbi 220 | . 2 ⊢ ((𝑍‘𝑆) ≠ ∅ → (𝑍‘𝑆) ⊆ 𝐵) |
15 | 3, 14 | pm2.61ine 3025 | 1 ⊢ (𝑍‘𝑆) ⊆ 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1543 ∃wex 1787 ∈ wcel 2110 ≠ wne 2940 ∀wral 3061 {crab 3065 Vcvv 3408 ⊆ wss 3866 ∅c0 4237 ‘cfv 6380 (class class class)co 7213 Basecbs 16760 +gcplusg 16802 Cntzccntz 18709 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-ov 7216 df-cntz 18711 |
This theorem is referenced by: cntrss 18724 cntz2ss 18727 cntzsubm 18730 cntzsubg 18731 cntzidss 18732 cntzmhm 18733 cntzmhm2 18734 cntzcmn 19225 cntzspan 19229 cntzsubr 19833 cntzsdrg 19846 |
Copyright terms: Public domain | W3C validator |