MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcprod Structured version   Visualization version   GIF version

Theorem pcprod 16929
Description: The product of the primes taken to their respective powers reconstructs the original number. (Contributed by Mario Carneiro, 12-Mar-2014.)
Hypothesis
Ref Expression
pcprod.1 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt 𝑁)), 1))
Assertion
Ref Expression
pcprod (𝑁 ∈ ℕ → (seq1( · , 𝐹)‘𝑁) = 𝑁)
Distinct variable group:   𝑛,𝑁
Allowed substitution hint:   𝐹(𝑛)

Proof of Theorem pcprod
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 pcprod.1 . . . . . 6 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt 𝑁)), 1))
2 pccl 16883 . . . . . . . . 9 ((𝑛 ∈ ℙ ∧ 𝑁 ∈ ℕ) → (𝑛 pCnt 𝑁) ∈ ℕ0)
32ancoms 458 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ) → (𝑛 pCnt 𝑁) ∈ ℕ0)
43ralrimiva 3144 . . . . . . 7 (𝑁 ∈ ℕ → ∀𝑛 ∈ ℙ (𝑛 pCnt 𝑁) ∈ ℕ0)
54adantl 481 . . . . . 6 ((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) → ∀𝑛 ∈ ℙ (𝑛 pCnt 𝑁) ∈ ℕ0)
6 simpr 484 . . . . . 6 ((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ)
7 simpl 482 . . . . . 6 ((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) → 𝑝 ∈ ℙ)
8 oveq1 7438 . . . . . 6 (𝑛 = 𝑝 → (𝑛 pCnt 𝑁) = (𝑝 pCnt 𝑁))
91, 5, 6, 7, 8pcmpt 16926 . . . . 5 ((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) → (𝑝 pCnt (seq1( · , 𝐹)‘𝑁)) = if(𝑝𝑁, (𝑝 pCnt 𝑁), 0))
10 iftrue 4537 . . . . . . 7 (𝑝𝑁 → if(𝑝𝑁, (𝑝 pCnt 𝑁), 0) = (𝑝 pCnt 𝑁))
1110adantl 481 . . . . . 6 (((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) ∧ 𝑝𝑁) → if(𝑝𝑁, (𝑝 pCnt 𝑁), 0) = (𝑝 pCnt 𝑁))
12 iffalse 4540 . . . . . . . 8 𝑝𝑁 → if(𝑝𝑁, (𝑝 pCnt 𝑁), 0) = 0)
1312adantl 481 . . . . . . 7 (((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑝𝑁) → if(𝑝𝑁, (𝑝 pCnt 𝑁), 0) = 0)
14 prmz 16709 . . . . . . . . . 10 (𝑝 ∈ ℙ → 𝑝 ∈ ℤ)
15 dvdsle 16344 . . . . . . . . . 10 ((𝑝 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑝𝑁𝑝𝑁))
1614, 15sylan 580 . . . . . . . . 9 ((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) → (𝑝𝑁𝑝𝑁))
1716con3dimp 408 . . . . . . . 8 (((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑝𝑁) → ¬ 𝑝𝑁)
18 pceq0 16905 . . . . . . . . 9 ((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) → ((𝑝 pCnt 𝑁) = 0 ↔ ¬ 𝑝𝑁))
1918adantr 480 . . . . . . . 8 (((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑝𝑁) → ((𝑝 pCnt 𝑁) = 0 ↔ ¬ 𝑝𝑁))
2017, 19mpbird 257 . . . . . . 7 (((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑝𝑁) → (𝑝 pCnt 𝑁) = 0)
2113, 20eqtr4d 2778 . . . . . 6 (((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑝𝑁) → if(𝑝𝑁, (𝑝 pCnt 𝑁), 0) = (𝑝 pCnt 𝑁))
2211, 21pm2.61dan 813 . . . . 5 ((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) → if(𝑝𝑁, (𝑝 pCnt 𝑁), 0) = (𝑝 pCnt 𝑁))
239, 22eqtrd 2775 . . . 4 ((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) → (𝑝 pCnt (seq1( · , 𝐹)‘𝑁)) = (𝑝 pCnt 𝑁))
2423ancoms 458 . . 3 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt (seq1( · , 𝐹)‘𝑁)) = (𝑝 pCnt 𝑁))
2524ralrimiva 3144 . 2 (𝑁 ∈ ℕ → ∀𝑝 ∈ ℙ (𝑝 pCnt (seq1( · , 𝐹)‘𝑁)) = (𝑝 pCnt 𝑁))
261, 4pcmptcl 16925 . . . . . 6 (𝑁 ∈ ℕ → (𝐹:ℕ⟶ℕ ∧ seq1( · , 𝐹):ℕ⟶ℕ))
2726simprd 495 . . . . 5 (𝑁 ∈ ℕ → seq1( · , 𝐹):ℕ⟶ℕ)
28 ffvelcdm 7101 . . . . 5 ((seq1( · , 𝐹):ℕ⟶ℕ ∧ 𝑁 ∈ ℕ) → (seq1( · , 𝐹)‘𝑁) ∈ ℕ)
2927, 28mpancom 688 . . . 4 (𝑁 ∈ ℕ → (seq1( · , 𝐹)‘𝑁) ∈ ℕ)
3029nnnn0d 12585 . . 3 (𝑁 ∈ ℕ → (seq1( · , 𝐹)‘𝑁) ∈ ℕ0)
31 nnnn0 12531 . . 3 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
32 pc11 16914 . . 3 (((seq1( · , 𝐹)‘𝑁) ∈ ℕ0𝑁 ∈ ℕ0) → ((seq1( · , 𝐹)‘𝑁) = 𝑁 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt (seq1( · , 𝐹)‘𝑁)) = (𝑝 pCnt 𝑁)))
3330, 31, 32syl2anc 584 . 2 (𝑁 ∈ ℕ → ((seq1( · , 𝐹)‘𝑁) = 𝑁 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt (seq1( · , 𝐹)‘𝑁)) = (𝑝 pCnt 𝑁)))
3425, 33mpbird 257 1 (𝑁 ∈ ℕ → (seq1( · , 𝐹)‘𝑁) = 𝑁)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wral 3059  ifcif 4531   class class class wbr 5148  cmpt 5231  wf 6559  cfv 6563  (class class class)co 7431  0cc0 11153  1c1 11154   · cmul 11158  cle 11294  cn 12264  0cn0 12524  cz 12611  seqcseq 14039  cexp 14099  cdvds 16287  cprime 16705   pCnt cpc 16870
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-inf 9481  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-q 12989  df-rp 13033  df-fz 13545  df-fl 13829  df-mod 13907  df-seq 14040  df-exp 14100  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-dvds 16288  df-gcd 16529  df-prm 16706  df-pc 16871
This theorem is referenced by:  pclogsum  27274
  Copyright terms: Public domain W3C validator