MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcprod Structured version   Visualization version   GIF version

Theorem pcprod 16219
Description: The product of the primes taken to their respective powers reconstructs the original number. (Contributed by Mario Carneiro, 12-Mar-2014.)
Hypothesis
Ref Expression
pcprod.1 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt 𝑁)), 1))
Assertion
Ref Expression
pcprod (𝑁 ∈ ℕ → (seq1( · , 𝐹)‘𝑁) = 𝑁)
Distinct variable group:   𝑛,𝑁
Allowed substitution hint:   𝐹(𝑛)

Proof of Theorem pcprod
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 pcprod.1 . . . . . 6 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt 𝑁)), 1))
2 pccl 16174 . . . . . . . . 9 ((𝑛 ∈ ℙ ∧ 𝑁 ∈ ℕ) → (𝑛 pCnt 𝑁) ∈ ℕ0)
32ancoms 459 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ) → (𝑛 pCnt 𝑁) ∈ ℕ0)
43ralrimiva 3179 . . . . . . 7 (𝑁 ∈ ℕ → ∀𝑛 ∈ ℙ (𝑛 pCnt 𝑁) ∈ ℕ0)
54adantl 482 . . . . . 6 ((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) → ∀𝑛 ∈ ℙ (𝑛 pCnt 𝑁) ∈ ℕ0)
6 simpr 485 . . . . . 6 ((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ)
7 simpl 483 . . . . . 6 ((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) → 𝑝 ∈ ℙ)
8 oveq1 7152 . . . . . 6 (𝑛 = 𝑝 → (𝑛 pCnt 𝑁) = (𝑝 pCnt 𝑁))
91, 5, 6, 7, 8pcmpt 16216 . . . . 5 ((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) → (𝑝 pCnt (seq1( · , 𝐹)‘𝑁)) = if(𝑝𝑁, (𝑝 pCnt 𝑁), 0))
10 iftrue 4469 . . . . . . 7 (𝑝𝑁 → if(𝑝𝑁, (𝑝 pCnt 𝑁), 0) = (𝑝 pCnt 𝑁))
1110adantl 482 . . . . . 6 (((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) ∧ 𝑝𝑁) → if(𝑝𝑁, (𝑝 pCnt 𝑁), 0) = (𝑝 pCnt 𝑁))
12 iffalse 4472 . . . . . . . 8 𝑝𝑁 → if(𝑝𝑁, (𝑝 pCnt 𝑁), 0) = 0)
1312adantl 482 . . . . . . 7 (((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑝𝑁) → if(𝑝𝑁, (𝑝 pCnt 𝑁), 0) = 0)
14 prmz 16007 . . . . . . . . . 10 (𝑝 ∈ ℙ → 𝑝 ∈ ℤ)
15 dvdsle 15648 . . . . . . . . . 10 ((𝑝 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑝𝑁𝑝𝑁))
1614, 15sylan 580 . . . . . . . . 9 ((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) → (𝑝𝑁𝑝𝑁))
1716con3dimp 409 . . . . . . . 8 (((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑝𝑁) → ¬ 𝑝𝑁)
18 pceq0 16195 . . . . . . . . 9 ((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) → ((𝑝 pCnt 𝑁) = 0 ↔ ¬ 𝑝𝑁))
1918adantr 481 . . . . . . . 8 (((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑝𝑁) → ((𝑝 pCnt 𝑁) = 0 ↔ ¬ 𝑝𝑁))
2017, 19mpbird 258 . . . . . . 7 (((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑝𝑁) → (𝑝 pCnt 𝑁) = 0)
2113, 20eqtr4d 2856 . . . . . 6 (((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑝𝑁) → if(𝑝𝑁, (𝑝 pCnt 𝑁), 0) = (𝑝 pCnt 𝑁))
2211, 21pm2.61dan 809 . . . . 5 ((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) → if(𝑝𝑁, (𝑝 pCnt 𝑁), 0) = (𝑝 pCnt 𝑁))
239, 22eqtrd 2853 . . . 4 ((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) → (𝑝 pCnt (seq1( · , 𝐹)‘𝑁)) = (𝑝 pCnt 𝑁))
2423ancoms 459 . . 3 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt (seq1( · , 𝐹)‘𝑁)) = (𝑝 pCnt 𝑁))
2524ralrimiva 3179 . 2 (𝑁 ∈ ℕ → ∀𝑝 ∈ ℙ (𝑝 pCnt (seq1( · , 𝐹)‘𝑁)) = (𝑝 pCnt 𝑁))
261, 4pcmptcl 16215 . . . . . 6 (𝑁 ∈ ℕ → (𝐹:ℕ⟶ℕ ∧ seq1( · , 𝐹):ℕ⟶ℕ))
2726simprd 496 . . . . 5 (𝑁 ∈ ℕ → seq1( · , 𝐹):ℕ⟶ℕ)
28 ffvelrn 6841 . . . . 5 ((seq1( · , 𝐹):ℕ⟶ℕ ∧ 𝑁 ∈ ℕ) → (seq1( · , 𝐹)‘𝑁) ∈ ℕ)
2927, 28mpancom 684 . . . 4 (𝑁 ∈ ℕ → (seq1( · , 𝐹)‘𝑁) ∈ ℕ)
3029nnnn0d 11943 . . 3 (𝑁 ∈ ℕ → (seq1( · , 𝐹)‘𝑁) ∈ ℕ0)
31 nnnn0 11892 . . 3 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
32 pc11 16204 . . 3 (((seq1( · , 𝐹)‘𝑁) ∈ ℕ0𝑁 ∈ ℕ0) → ((seq1( · , 𝐹)‘𝑁) = 𝑁 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt (seq1( · , 𝐹)‘𝑁)) = (𝑝 pCnt 𝑁)))
3330, 31, 32syl2anc 584 . 2 (𝑁 ∈ ℕ → ((seq1( · , 𝐹)‘𝑁) = 𝑁 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt (seq1( · , 𝐹)‘𝑁)) = (𝑝 pCnt 𝑁)))
3425, 33mpbird 258 1 (𝑁 ∈ ℕ → (seq1( · , 𝐹)‘𝑁) = 𝑁)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396   = wceq 1528  wcel 2105  wral 3135  ifcif 4463   class class class wbr 5057  cmpt 5137  wf 6344  cfv 6348  (class class class)co 7145  0cc0 10525  1c1 10526   · cmul 10530  cle 10664  cn 11626  0cn0 11885  cz 11969  seqcseq 13357  cexp 13417  cdvds 15595  cprime 16003   pCnt cpc 16161
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-fal 1541  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-2o 8092  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-sup 8894  df-inf 8895  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-q 12337  df-rp 12378  df-fz 12881  df-fl 13150  df-mod 13226  df-seq 13358  df-exp 13418  df-cj 14446  df-re 14447  df-im 14448  df-sqrt 14582  df-abs 14583  df-dvds 15596  df-gcd 15832  df-prm 16004  df-pc 16162
This theorem is referenced by:  pclogsum  25718
  Copyright terms: Public domain W3C validator