MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcprod Structured version   Visualization version   GIF version

Theorem pcprod 16866
Description: The product of the primes taken to their respective powers reconstructs the original number. (Contributed by Mario Carneiro, 12-Mar-2014.)
Hypothesis
Ref Expression
pcprod.1 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt 𝑁)), 1))
Assertion
Ref Expression
pcprod (𝑁 ∈ ℕ → (seq1( · , 𝐹)‘𝑁) = 𝑁)
Distinct variable group:   𝑛,𝑁
Allowed substitution hint:   𝐹(𝑛)

Proof of Theorem pcprod
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 pcprod.1 . . . . . 6 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt 𝑁)), 1))
2 pccl 16820 . . . . . . . . 9 ((𝑛 ∈ ℙ ∧ 𝑁 ∈ ℕ) → (𝑛 pCnt 𝑁) ∈ ℕ0)
32ancoms 458 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ) → (𝑛 pCnt 𝑁) ∈ ℕ0)
43ralrimiva 3125 . . . . . . 7 (𝑁 ∈ ℕ → ∀𝑛 ∈ ℙ (𝑛 pCnt 𝑁) ∈ ℕ0)
54adantl 481 . . . . . 6 ((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) → ∀𝑛 ∈ ℙ (𝑛 pCnt 𝑁) ∈ ℕ0)
6 simpr 484 . . . . . 6 ((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ)
7 simpl 482 . . . . . 6 ((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) → 𝑝 ∈ ℙ)
8 oveq1 7394 . . . . . 6 (𝑛 = 𝑝 → (𝑛 pCnt 𝑁) = (𝑝 pCnt 𝑁))
91, 5, 6, 7, 8pcmpt 16863 . . . . 5 ((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) → (𝑝 pCnt (seq1( · , 𝐹)‘𝑁)) = if(𝑝𝑁, (𝑝 pCnt 𝑁), 0))
10 iftrue 4494 . . . . . . 7 (𝑝𝑁 → if(𝑝𝑁, (𝑝 pCnt 𝑁), 0) = (𝑝 pCnt 𝑁))
1110adantl 481 . . . . . 6 (((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) ∧ 𝑝𝑁) → if(𝑝𝑁, (𝑝 pCnt 𝑁), 0) = (𝑝 pCnt 𝑁))
12 iffalse 4497 . . . . . . . 8 𝑝𝑁 → if(𝑝𝑁, (𝑝 pCnt 𝑁), 0) = 0)
1312adantl 481 . . . . . . 7 (((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑝𝑁) → if(𝑝𝑁, (𝑝 pCnt 𝑁), 0) = 0)
14 prmz 16645 . . . . . . . . . 10 (𝑝 ∈ ℙ → 𝑝 ∈ ℤ)
15 dvdsle 16280 . . . . . . . . . 10 ((𝑝 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑝𝑁𝑝𝑁))
1614, 15sylan 580 . . . . . . . . 9 ((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) → (𝑝𝑁𝑝𝑁))
1716con3dimp 408 . . . . . . . 8 (((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑝𝑁) → ¬ 𝑝𝑁)
18 pceq0 16842 . . . . . . . . 9 ((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) → ((𝑝 pCnt 𝑁) = 0 ↔ ¬ 𝑝𝑁))
1918adantr 480 . . . . . . . 8 (((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑝𝑁) → ((𝑝 pCnt 𝑁) = 0 ↔ ¬ 𝑝𝑁))
2017, 19mpbird 257 . . . . . . 7 (((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑝𝑁) → (𝑝 pCnt 𝑁) = 0)
2113, 20eqtr4d 2767 . . . . . 6 (((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑝𝑁) → if(𝑝𝑁, (𝑝 pCnt 𝑁), 0) = (𝑝 pCnt 𝑁))
2211, 21pm2.61dan 812 . . . . 5 ((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) → if(𝑝𝑁, (𝑝 pCnt 𝑁), 0) = (𝑝 pCnt 𝑁))
239, 22eqtrd 2764 . . . 4 ((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) → (𝑝 pCnt (seq1( · , 𝐹)‘𝑁)) = (𝑝 pCnt 𝑁))
2423ancoms 458 . . 3 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt (seq1( · , 𝐹)‘𝑁)) = (𝑝 pCnt 𝑁))
2524ralrimiva 3125 . 2 (𝑁 ∈ ℕ → ∀𝑝 ∈ ℙ (𝑝 pCnt (seq1( · , 𝐹)‘𝑁)) = (𝑝 pCnt 𝑁))
261, 4pcmptcl 16862 . . . . . 6 (𝑁 ∈ ℕ → (𝐹:ℕ⟶ℕ ∧ seq1( · , 𝐹):ℕ⟶ℕ))
2726simprd 495 . . . . 5 (𝑁 ∈ ℕ → seq1( · , 𝐹):ℕ⟶ℕ)
28 ffvelcdm 7053 . . . . 5 ((seq1( · , 𝐹):ℕ⟶ℕ ∧ 𝑁 ∈ ℕ) → (seq1( · , 𝐹)‘𝑁) ∈ ℕ)
2927, 28mpancom 688 . . . 4 (𝑁 ∈ ℕ → (seq1( · , 𝐹)‘𝑁) ∈ ℕ)
3029nnnn0d 12503 . . 3 (𝑁 ∈ ℕ → (seq1( · , 𝐹)‘𝑁) ∈ ℕ0)
31 nnnn0 12449 . . 3 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
32 pc11 16851 . . 3 (((seq1( · , 𝐹)‘𝑁) ∈ ℕ0𝑁 ∈ ℕ0) → ((seq1( · , 𝐹)‘𝑁) = 𝑁 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt (seq1( · , 𝐹)‘𝑁)) = (𝑝 pCnt 𝑁)))
3330, 31, 32syl2anc 584 . 2 (𝑁 ∈ ℕ → ((seq1( · , 𝐹)‘𝑁) = 𝑁 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt (seq1( · , 𝐹)‘𝑁)) = (𝑝 pCnt 𝑁)))
3425, 33mpbird 257 1 (𝑁 ∈ ℕ → (seq1( · , 𝐹)‘𝑁) = 𝑁)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  ifcif 4488   class class class wbr 5107  cmpt 5188  wf 6507  cfv 6511  (class class class)co 7387  0cc0 11068  1c1 11069   · cmul 11073  cle 11209  cn 12186  0cn0 12442  cz 12529  seqcseq 13966  cexp 14026  cdvds 16222  cprime 16641   pCnt cpc 16807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-q 12908  df-rp 12952  df-fz 13469  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-dvds 16223  df-gcd 16465  df-prm 16642  df-pc 16808
This theorem is referenced by:  pclogsum  27126
  Copyright terms: Public domain W3C validator