Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pcprod | Structured version Visualization version GIF version |
Description: The product of the primes taken to their respective powers reconstructs the original number. (Contributed by Mario Carneiro, 12-Mar-2014.) |
Ref | Expression |
---|---|
pcprod.1 | ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt 𝑁)), 1)) |
Ref | Expression |
---|---|
pcprod | ⊢ (𝑁 ∈ ℕ → (seq1( · , 𝐹)‘𝑁) = 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pcprod.1 | . . . . . 6 ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt 𝑁)), 1)) | |
2 | pccl 16531 | . . . . . . . . 9 ⊢ ((𝑛 ∈ ℙ ∧ 𝑁 ∈ ℕ) → (𝑛 pCnt 𝑁) ∈ ℕ0) | |
3 | 2 | ancoms 458 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ) → (𝑛 pCnt 𝑁) ∈ ℕ0) |
4 | 3 | ralrimiva 3109 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → ∀𝑛 ∈ ℙ (𝑛 pCnt 𝑁) ∈ ℕ0) |
5 | 4 | adantl 481 | . . . . . 6 ⊢ ((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) → ∀𝑛 ∈ ℙ (𝑛 pCnt 𝑁) ∈ ℕ0) |
6 | simpr 484 | . . . . . 6 ⊢ ((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ) | |
7 | simpl 482 | . . . . . 6 ⊢ ((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) → 𝑝 ∈ ℙ) | |
8 | oveq1 7275 | . . . . . 6 ⊢ (𝑛 = 𝑝 → (𝑛 pCnt 𝑁) = (𝑝 pCnt 𝑁)) | |
9 | 1, 5, 6, 7, 8 | pcmpt 16574 | . . . . 5 ⊢ ((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) → (𝑝 pCnt (seq1( · , 𝐹)‘𝑁)) = if(𝑝 ≤ 𝑁, (𝑝 pCnt 𝑁), 0)) |
10 | iftrue 4470 | . . . . . . 7 ⊢ (𝑝 ≤ 𝑁 → if(𝑝 ≤ 𝑁, (𝑝 pCnt 𝑁), 0) = (𝑝 pCnt 𝑁)) | |
11 | 10 | adantl 481 | . . . . . 6 ⊢ (((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) ∧ 𝑝 ≤ 𝑁) → if(𝑝 ≤ 𝑁, (𝑝 pCnt 𝑁), 0) = (𝑝 pCnt 𝑁)) |
12 | iffalse 4473 | . . . . . . . 8 ⊢ (¬ 𝑝 ≤ 𝑁 → if(𝑝 ≤ 𝑁, (𝑝 pCnt 𝑁), 0) = 0) | |
13 | 12 | adantl 481 | . . . . . . 7 ⊢ (((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑝 ≤ 𝑁) → if(𝑝 ≤ 𝑁, (𝑝 pCnt 𝑁), 0) = 0) |
14 | prmz 16361 | . . . . . . . . . 10 ⊢ (𝑝 ∈ ℙ → 𝑝 ∈ ℤ) | |
15 | dvdsle 16000 | . . . . . . . . . 10 ⊢ ((𝑝 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑝 ∥ 𝑁 → 𝑝 ≤ 𝑁)) | |
16 | 14, 15 | sylan 579 | . . . . . . . . 9 ⊢ ((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) → (𝑝 ∥ 𝑁 → 𝑝 ≤ 𝑁)) |
17 | 16 | con3dimp 408 | . . . . . . . 8 ⊢ (((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑝 ≤ 𝑁) → ¬ 𝑝 ∥ 𝑁) |
18 | pceq0 16553 | . . . . . . . . 9 ⊢ ((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) → ((𝑝 pCnt 𝑁) = 0 ↔ ¬ 𝑝 ∥ 𝑁)) | |
19 | 18 | adantr 480 | . . . . . . . 8 ⊢ (((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑝 ≤ 𝑁) → ((𝑝 pCnt 𝑁) = 0 ↔ ¬ 𝑝 ∥ 𝑁)) |
20 | 17, 19 | mpbird 256 | . . . . . . 7 ⊢ (((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑝 ≤ 𝑁) → (𝑝 pCnt 𝑁) = 0) |
21 | 13, 20 | eqtr4d 2782 | . . . . . 6 ⊢ (((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑝 ≤ 𝑁) → if(𝑝 ≤ 𝑁, (𝑝 pCnt 𝑁), 0) = (𝑝 pCnt 𝑁)) |
22 | 11, 21 | pm2.61dan 809 | . . . . 5 ⊢ ((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) → if(𝑝 ≤ 𝑁, (𝑝 pCnt 𝑁), 0) = (𝑝 pCnt 𝑁)) |
23 | 9, 22 | eqtrd 2779 | . . . 4 ⊢ ((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) → (𝑝 pCnt (seq1( · , 𝐹)‘𝑁)) = (𝑝 pCnt 𝑁)) |
24 | 23 | ancoms 458 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt (seq1( · , 𝐹)‘𝑁)) = (𝑝 pCnt 𝑁)) |
25 | 24 | ralrimiva 3109 | . 2 ⊢ (𝑁 ∈ ℕ → ∀𝑝 ∈ ℙ (𝑝 pCnt (seq1( · , 𝐹)‘𝑁)) = (𝑝 pCnt 𝑁)) |
26 | 1, 4 | pcmptcl 16573 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → (𝐹:ℕ⟶ℕ ∧ seq1( · , 𝐹):ℕ⟶ℕ)) |
27 | 26 | simprd 495 | . . . . 5 ⊢ (𝑁 ∈ ℕ → seq1( · , 𝐹):ℕ⟶ℕ) |
28 | ffvelrn 6953 | . . . . 5 ⊢ ((seq1( · , 𝐹):ℕ⟶ℕ ∧ 𝑁 ∈ ℕ) → (seq1( · , 𝐹)‘𝑁) ∈ ℕ) | |
29 | 27, 28 | mpancom 684 | . . . 4 ⊢ (𝑁 ∈ ℕ → (seq1( · , 𝐹)‘𝑁) ∈ ℕ) |
30 | 29 | nnnn0d 12276 | . . 3 ⊢ (𝑁 ∈ ℕ → (seq1( · , 𝐹)‘𝑁) ∈ ℕ0) |
31 | nnnn0 12223 | . . 3 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0) | |
32 | pc11 16562 | . . 3 ⊢ (((seq1( · , 𝐹)‘𝑁) ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → ((seq1( · , 𝐹)‘𝑁) = 𝑁 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt (seq1( · , 𝐹)‘𝑁)) = (𝑝 pCnt 𝑁))) | |
33 | 30, 31, 32 | syl2anc 583 | . 2 ⊢ (𝑁 ∈ ℕ → ((seq1( · , 𝐹)‘𝑁) = 𝑁 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt (seq1( · , 𝐹)‘𝑁)) = (𝑝 pCnt 𝑁))) |
34 | 25, 33 | mpbird 256 | 1 ⊢ (𝑁 ∈ ℕ → (seq1( · , 𝐹)‘𝑁) = 𝑁) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1541 ∈ wcel 2109 ∀wral 3065 ifcif 4464 class class class wbr 5078 ↦ cmpt 5161 ⟶wf 6426 ‘cfv 6430 (class class class)co 7268 0cc0 10855 1c1 10856 · cmul 10860 ≤ cle 10994 ℕcn 11956 ℕ0cn0 12216 ℤcz 12302 seqcseq 13702 ↑cexp 13763 ∥ cdvds 15944 ℙcprime 16357 pCnt cpc 16518 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 ax-pre-sup 10933 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-1st 7817 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-1o 8281 df-2o 8282 df-er 8472 df-en 8708 df-dom 8709 df-sdom 8710 df-fin 8711 df-sup 9162 df-inf 9163 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-div 11616 df-nn 11957 df-2 12019 df-3 12020 df-n0 12217 df-z 12303 df-uz 12565 df-q 12671 df-rp 12713 df-fz 13222 df-fl 13493 df-mod 13571 df-seq 13703 df-exp 13764 df-cj 14791 df-re 14792 df-im 14793 df-sqrt 14927 df-abs 14928 df-dvds 15945 df-gcd 16183 df-prm 16358 df-pc 16519 |
This theorem is referenced by: pclogsum 26344 |
Copyright terms: Public domain | W3C validator |