| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pcprod | Structured version Visualization version GIF version | ||
| Description: The product of the primes taken to their respective powers reconstructs the original number. (Contributed by Mario Carneiro, 12-Mar-2014.) |
| Ref | Expression |
|---|---|
| pcprod.1 | ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt 𝑁)), 1)) |
| Ref | Expression |
|---|---|
| pcprod | ⊢ (𝑁 ∈ ℕ → (seq1( · , 𝐹)‘𝑁) = 𝑁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pcprod.1 | . . . . . 6 ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt 𝑁)), 1)) | |
| 2 | pccl 16827 | . . . . . . . . 9 ⊢ ((𝑛 ∈ ℙ ∧ 𝑁 ∈ ℕ) → (𝑛 pCnt 𝑁) ∈ ℕ0) | |
| 3 | 2 | ancoms 458 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ) → (𝑛 pCnt 𝑁) ∈ ℕ0) |
| 4 | 3 | ralrimiva 3126 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → ∀𝑛 ∈ ℙ (𝑛 pCnt 𝑁) ∈ ℕ0) |
| 5 | 4 | adantl 481 | . . . . . 6 ⊢ ((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) → ∀𝑛 ∈ ℙ (𝑛 pCnt 𝑁) ∈ ℕ0) |
| 6 | simpr 484 | . . . . . 6 ⊢ ((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ) | |
| 7 | simpl 482 | . . . . . 6 ⊢ ((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) → 𝑝 ∈ ℙ) | |
| 8 | oveq1 7397 | . . . . . 6 ⊢ (𝑛 = 𝑝 → (𝑛 pCnt 𝑁) = (𝑝 pCnt 𝑁)) | |
| 9 | 1, 5, 6, 7, 8 | pcmpt 16870 | . . . . 5 ⊢ ((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) → (𝑝 pCnt (seq1( · , 𝐹)‘𝑁)) = if(𝑝 ≤ 𝑁, (𝑝 pCnt 𝑁), 0)) |
| 10 | iftrue 4497 | . . . . . . 7 ⊢ (𝑝 ≤ 𝑁 → if(𝑝 ≤ 𝑁, (𝑝 pCnt 𝑁), 0) = (𝑝 pCnt 𝑁)) | |
| 11 | 10 | adantl 481 | . . . . . 6 ⊢ (((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) ∧ 𝑝 ≤ 𝑁) → if(𝑝 ≤ 𝑁, (𝑝 pCnt 𝑁), 0) = (𝑝 pCnt 𝑁)) |
| 12 | iffalse 4500 | . . . . . . . 8 ⊢ (¬ 𝑝 ≤ 𝑁 → if(𝑝 ≤ 𝑁, (𝑝 pCnt 𝑁), 0) = 0) | |
| 13 | 12 | adantl 481 | . . . . . . 7 ⊢ (((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑝 ≤ 𝑁) → if(𝑝 ≤ 𝑁, (𝑝 pCnt 𝑁), 0) = 0) |
| 14 | prmz 16652 | . . . . . . . . . 10 ⊢ (𝑝 ∈ ℙ → 𝑝 ∈ ℤ) | |
| 15 | dvdsle 16287 | . . . . . . . . . 10 ⊢ ((𝑝 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑝 ∥ 𝑁 → 𝑝 ≤ 𝑁)) | |
| 16 | 14, 15 | sylan 580 | . . . . . . . . 9 ⊢ ((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) → (𝑝 ∥ 𝑁 → 𝑝 ≤ 𝑁)) |
| 17 | 16 | con3dimp 408 | . . . . . . . 8 ⊢ (((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑝 ≤ 𝑁) → ¬ 𝑝 ∥ 𝑁) |
| 18 | pceq0 16849 | . . . . . . . . 9 ⊢ ((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) → ((𝑝 pCnt 𝑁) = 0 ↔ ¬ 𝑝 ∥ 𝑁)) | |
| 19 | 18 | adantr 480 | . . . . . . . 8 ⊢ (((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑝 ≤ 𝑁) → ((𝑝 pCnt 𝑁) = 0 ↔ ¬ 𝑝 ∥ 𝑁)) |
| 20 | 17, 19 | mpbird 257 | . . . . . . 7 ⊢ (((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑝 ≤ 𝑁) → (𝑝 pCnt 𝑁) = 0) |
| 21 | 13, 20 | eqtr4d 2768 | . . . . . 6 ⊢ (((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑝 ≤ 𝑁) → if(𝑝 ≤ 𝑁, (𝑝 pCnt 𝑁), 0) = (𝑝 pCnt 𝑁)) |
| 22 | 11, 21 | pm2.61dan 812 | . . . . 5 ⊢ ((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) → if(𝑝 ≤ 𝑁, (𝑝 pCnt 𝑁), 0) = (𝑝 pCnt 𝑁)) |
| 23 | 9, 22 | eqtrd 2765 | . . . 4 ⊢ ((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) → (𝑝 pCnt (seq1( · , 𝐹)‘𝑁)) = (𝑝 pCnt 𝑁)) |
| 24 | 23 | ancoms 458 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt (seq1( · , 𝐹)‘𝑁)) = (𝑝 pCnt 𝑁)) |
| 25 | 24 | ralrimiva 3126 | . 2 ⊢ (𝑁 ∈ ℕ → ∀𝑝 ∈ ℙ (𝑝 pCnt (seq1( · , 𝐹)‘𝑁)) = (𝑝 pCnt 𝑁)) |
| 26 | 1, 4 | pcmptcl 16869 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → (𝐹:ℕ⟶ℕ ∧ seq1( · , 𝐹):ℕ⟶ℕ)) |
| 27 | 26 | simprd 495 | . . . . 5 ⊢ (𝑁 ∈ ℕ → seq1( · , 𝐹):ℕ⟶ℕ) |
| 28 | ffvelcdm 7056 | . . . . 5 ⊢ ((seq1( · , 𝐹):ℕ⟶ℕ ∧ 𝑁 ∈ ℕ) → (seq1( · , 𝐹)‘𝑁) ∈ ℕ) | |
| 29 | 27, 28 | mpancom 688 | . . . 4 ⊢ (𝑁 ∈ ℕ → (seq1( · , 𝐹)‘𝑁) ∈ ℕ) |
| 30 | 29 | nnnn0d 12510 | . . 3 ⊢ (𝑁 ∈ ℕ → (seq1( · , 𝐹)‘𝑁) ∈ ℕ0) |
| 31 | nnnn0 12456 | . . 3 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0) | |
| 32 | pc11 16858 | . . 3 ⊢ (((seq1( · , 𝐹)‘𝑁) ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → ((seq1( · , 𝐹)‘𝑁) = 𝑁 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt (seq1( · , 𝐹)‘𝑁)) = (𝑝 pCnt 𝑁))) | |
| 33 | 30, 31, 32 | syl2anc 584 | . 2 ⊢ (𝑁 ∈ ℕ → ((seq1( · , 𝐹)‘𝑁) = 𝑁 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt (seq1( · , 𝐹)‘𝑁)) = (𝑝 pCnt 𝑁))) |
| 34 | 25, 33 | mpbird 257 | 1 ⊢ (𝑁 ∈ ℕ → (seq1( · , 𝐹)‘𝑁) = 𝑁) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ifcif 4491 class class class wbr 5110 ↦ cmpt 5191 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 0cc0 11075 1c1 11076 · cmul 11080 ≤ cle 11216 ℕcn 12193 ℕ0cn0 12449 ℤcz 12536 seqcseq 13973 ↑cexp 14033 ∥ cdvds 16229 ℙcprime 16648 pCnt cpc 16814 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-sup 9400 df-inf 9401 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-n0 12450 df-z 12537 df-uz 12801 df-q 12915 df-rp 12959 df-fz 13476 df-fl 13761 df-mod 13839 df-seq 13974 df-exp 14034 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-dvds 16230 df-gcd 16472 df-prm 16649 df-pc 16815 |
| This theorem is referenced by: pclogsum 27133 |
| Copyright terms: Public domain | W3C validator |