Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  2lgslem2 Structured version   Visualization version   GIF version

Theorem 2lgslem2 25979
 Description: Lemma 2 for 2lgs 25991. (Contributed by AV, 20-Jun-2021.)
Hypothesis
Ref Expression
2lgslem2.n 𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4)))
Assertion
Ref Expression
2lgslem2 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → 𝑁 ∈ ℤ)

Proof of Theorem 2lgslem2
StepHypRef Expression
1 2lgslem2.n . 2 𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4)))
2 simpl 486 . . . . 5 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → 𝑃 ∈ ℙ)
3 elsng 4539 . . . . . . 7 (𝑃 ∈ ℙ → (𝑃 ∈ {2} ↔ 𝑃 = 2))
4 z2even 15711 . . . . . . . 8 2 ∥ 2
5 breq2 5034 . . . . . . . 8 (𝑃 = 2 → (2 ∥ 𝑃 ↔ 2 ∥ 2))
64, 5mpbiri 261 . . . . . . 7 (𝑃 = 2 → 2 ∥ 𝑃)
73, 6syl6bi 256 . . . . . 6 (𝑃 ∈ ℙ → (𝑃 ∈ {2} → 2 ∥ 𝑃))
87con3dimp 412 . . . . 5 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → ¬ 𝑃 ∈ {2})
92, 8eldifd 3892 . . . 4 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → 𝑃 ∈ (ℙ ∖ {2}))
10 oddprm 16137 . . . . 5 (𝑃 ∈ (ℙ ∖ {2}) → ((𝑃 − 1) / 2) ∈ ℕ)
1110nnzd 12074 . . . 4 (𝑃 ∈ (ℙ ∖ {2}) → ((𝑃 − 1) / 2) ∈ ℤ)
129, 11syl 17 . . 3 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → ((𝑃 − 1) / 2) ∈ ℤ)
13 prmz 16009 . . . . . . 7 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
1413zred 12075 . . . . . 6 (𝑃 ∈ ℙ → 𝑃 ∈ ℝ)
15 4re 11709 . . . . . . 7 4 ∈ ℝ
1615a1i 11 . . . . . 6 (𝑃 ∈ ℙ → 4 ∈ ℝ)
17 4ne0 11733 . . . . . . 7 4 ≠ 0
1817a1i 11 . . . . . 6 (𝑃 ∈ ℙ → 4 ≠ 0)
1914, 16, 18redivcld 11457 . . . . 5 (𝑃 ∈ ℙ → (𝑃 / 4) ∈ ℝ)
2019flcld 13163 . . . 4 (𝑃 ∈ ℙ → (⌊‘(𝑃 / 4)) ∈ ℤ)
2120adantr 484 . . 3 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → (⌊‘(𝑃 / 4)) ∈ ℤ)
2212, 21zsubcld 12080 . 2 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) ∈ ℤ)
231, 22eqeltrid 2894 1 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → 𝑁 ∈ ℤ)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2111   ≠ wne 2987   ∖ cdif 3878  {csn 4525   class class class wbr 5030  ‘cfv 6324  (class class class)co 7135  ℝcr 10525  0cc0 10526  1c1 10527   − cmin 10859   / cdiv 11286  2c2 11680  4c4 11682  ℤcz 11969  ⌊cfl 13155   ∥ cdvds 15599  ℙcprime 16005 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-inf 8891  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-fl 13157  df-seq 13365  df-exp 13426  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-dvds 15600  df-prm 16006 This theorem is referenced by:  2lgs  25991
 Copyright terms: Public domain W3C validator