MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2lgslem2 Structured version   Visualization version   GIF version

Theorem 2lgslem2 26746
Description: Lemma 2 for 2lgs 26758. (Contributed by AV, 20-Jun-2021.)
Hypothesis
Ref Expression
2lgslem2.n 𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4)))
Assertion
Ref Expression
2lgslem2 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → 𝑁 ∈ ℤ)

Proof of Theorem 2lgslem2
StepHypRef Expression
1 2lgslem2.n . 2 𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4)))
2 simpl 484 . . . . 5 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → 𝑃 ∈ ℙ)
3 elsng 4601 . . . . . . 7 (𝑃 ∈ ℙ → (𝑃 ∈ {2} ↔ 𝑃 = 2))
4 z2even 16253 . . . . . . . 8 2 ∥ 2
5 breq2 5110 . . . . . . . 8 (𝑃 = 2 → (2 ∥ 𝑃 ↔ 2 ∥ 2))
64, 5mpbiri 258 . . . . . . 7 (𝑃 = 2 → 2 ∥ 𝑃)
73, 6syl6bi 253 . . . . . 6 (𝑃 ∈ ℙ → (𝑃 ∈ {2} → 2 ∥ 𝑃))
87con3dimp 410 . . . . 5 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → ¬ 𝑃 ∈ {2})
92, 8eldifd 3922 . . . 4 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → 𝑃 ∈ (ℙ ∖ {2}))
10 oddprm 16683 . . . . 5 (𝑃 ∈ (ℙ ∖ {2}) → ((𝑃 − 1) / 2) ∈ ℕ)
1110nnzd 12527 . . . 4 (𝑃 ∈ (ℙ ∖ {2}) → ((𝑃 − 1) / 2) ∈ ℤ)
129, 11syl 17 . . 3 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → ((𝑃 − 1) / 2) ∈ ℤ)
13 prmz 16552 . . . . . . 7 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
1413zred 12608 . . . . . 6 (𝑃 ∈ ℙ → 𝑃 ∈ ℝ)
15 4re 12238 . . . . . . 7 4 ∈ ℝ
1615a1i 11 . . . . . 6 (𝑃 ∈ ℙ → 4 ∈ ℝ)
17 4ne0 12262 . . . . . . 7 4 ≠ 0
1817a1i 11 . . . . . 6 (𝑃 ∈ ℙ → 4 ≠ 0)
1914, 16, 18redivcld 11984 . . . . 5 (𝑃 ∈ ℙ → (𝑃 / 4) ∈ ℝ)
2019flcld 13704 . . . 4 (𝑃 ∈ ℙ → (⌊‘(𝑃 / 4)) ∈ ℤ)
2120adantr 482 . . 3 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → (⌊‘(𝑃 / 4)) ∈ ℤ)
2212, 21zsubcld 12613 . 2 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) ∈ ℤ)
231, 22eqeltrid 2842 1 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → 𝑁 ∈ ℤ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 397   = wceq 1542  wcel 2107  wne 2944  cdif 3908  {csn 4587   class class class wbr 5106  cfv 6497  (class class class)co 7358  cr 11051  0cc0 11052  1c1 11053  cmin 11386   / cdiv 11813  2c2 12209  4c4 12211  cz 12500  cfl 13696  cdvds 16137  cprime 16548
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673  ax-cnex 11108  ax-resscn 11109  ax-1cn 11110  ax-icn 11111  ax-addcl 11112  ax-addrcl 11113  ax-mulcl 11114  ax-mulrcl 11115  ax-mulcom 11116  ax-addass 11117  ax-mulass 11118  ax-distr 11119  ax-i2m1 11120  ax-1ne0 11121  ax-1rid 11122  ax-rnegex 11123  ax-rrecex 11124  ax-cnre 11125  ax-pre-lttri 11126  ax-pre-lttrn 11127  ax-pre-ltadd 11128  ax-pre-mulgt0 11129  ax-pre-sup 11130
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3066  df-rex 3075  df-rmo 3354  df-reu 3355  df-rab 3409  df-v 3448  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3930  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-tr 5224  df-id 5532  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5589  df-we 5591  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-pred 6254  df-ord 6321  df-on 6322  df-lim 6323  df-suc 6324  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-riota 7314  df-ov 7361  df-oprab 7362  df-mpo 7363  df-om 7804  df-2nd 7923  df-frecs 8213  df-wrecs 8244  df-recs 8318  df-rdg 8357  df-1o 8413  df-2o 8414  df-er 8649  df-en 8885  df-dom 8886  df-sdom 8887  df-fin 8888  df-sup 9379  df-inf 9380  df-pnf 11192  df-mnf 11193  df-xr 11194  df-ltxr 11195  df-le 11196  df-sub 11388  df-neg 11389  df-div 11814  df-nn 12155  df-2 12217  df-3 12218  df-4 12219  df-n0 12415  df-z 12501  df-uz 12765  df-rp 12917  df-fl 13698  df-seq 13908  df-exp 13969  df-cj 14985  df-re 14986  df-im 14987  df-sqrt 15121  df-abs 15122  df-dvds 16138  df-prm 16549
This theorem is referenced by:  2lgs  26758
  Copyright terms: Public domain W3C validator