MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2lgs Structured version   Visualization version   GIF version

Theorem 2lgs 26460
Description: The second supplement to the law of quadratic reciprocity (for the Legendre symbol extended to arbitrary primes as second argument). Two is a square modulo a prime 𝑃 iff 𝑃≡±1 (mod 8), see first case of theorem 9.5 in [ApostolNT] p. 181. This theorem justifies our definition of (𝑁 /L 2) (lgs2 26367) to some degree, by demanding that reciprocity extend to the case 𝑄 = 2. (Proposed by Mario Carneiro, 19-Jun-2015.) (Contributed by AV, 16-Jul-2021.)
Assertion
Ref Expression
2lgs (𝑃 ∈ ℙ → ((2 /L 𝑃) = 1 ↔ (𝑃 mod 8) ∈ {1, 7}))

Proof of Theorem 2lgs
Dummy variables 𝑖 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prm2orodd 16324 . 2 (𝑃 ∈ ℙ → (𝑃 = 2 ∨ ¬ 2 ∥ 𝑃))
2 2lgslem4 26459 . . . . . 6 ((2 /L 2) = 1 ↔ (2 mod 8) ∈ {1, 7})
32a1i 11 . . . . 5 (𝑃 = 2 → ((2 /L 2) = 1 ↔ (2 mod 8) ∈ {1, 7}))
4 oveq2 7263 . . . . . 6 (𝑃 = 2 → (2 /L 𝑃) = (2 /L 2))
54eqeq1d 2740 . . . . 5 (𝑃 = 2 → ((2 /L 𝑃) = 1 ↔ (2 /L 2) = 1))
6 oveq1 7262 . . . . . 6 (𝑃 = 2 → (𝑃 mod 8) = (2 mod 8))
76eleq1d 2823 . . . . 5 (𝑃 = 2 → ((𝑃 mod 8) ∈ {1, 7} ↔ (2 mod 8) ∈ {1, 7}))
83, 5, 73bitr4d 310 . . . 4 (𝑃 = 2 → ((2 /L 𝑃) = 1 ↔ (𝑃 mod 8) ∈ {1, 7}))
98a1d 25 . . 3 (𝑃 = 2 → (𝑃 ∈ ℙ → ((2 /L 𝑃) = 1 ↔ (𝑃 mod 8) ∈ {1, 7})))
10 2prm 16325 . . . . . . . . . 10 2 ∈ ℙ
11 prmnn 16307 . . . . . . . . . 10 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
12 dvdsprime 16320 . . . . . . . . . 10 ((2 ∈ ℙ ∧ 𝑃 ∈ ℕ) → (𝑃 ∥ 2 ↔ (𝑃 = 2 ∨ 𝑃 = 1)))
1310, 11, 12sylancr 586 . . . . . . . . 9 (𝑃 ∈ ℙ → (𝑃 ∥ 2 ↔ (𝑃 = 2 ∨ 𝑃 = 1)))
14 z2even 16007 . . . . . . . . . . . . 13 2 ∥ 2
15 breq2 5074 . . . . . . . . . . . . 13 (𝑃 = 2 → (2 ∥ 𝑃 ↔ 2 ∥ 2))
1614, 15mpbiri 257 . . . . . . . . . . . 12 (𝑃 = 2 → 2 ∥ 𝑃)
1716a1d 25 . . . . . . . . . . 11 (𝑃 = 2 → (𝑃 ∈ ℙ → 2 ∥ 𝑃))
18 eleq1 2826 . . . . . . . . . . . 12 (𝑃 = 1 → (𝑃 ∈ ℙ ↔ 1 ∈ ℙ))
19 1nprm 16312 . . . . . . . . . . . . 13 ¬ 1 ∈ ℙ
2019pm2.21i 119 . . . . . . . . . . . 12 (1 ∈ ℙ → 2 ∥ 𝑃)
2118, 20syl6bi 252 . . . . . . . . . . 11 (𝑃 = 1 → (𝑃 ∈ ℙ → 2 ∥ 𝑃))
2217, 21jaoi 853 . . . . . . . . . 10 ((𝑃 = 2 ∨ 𝑃 = 1) → (𝑃 ∈ ℙ → 2 ∥ 𝑃))
2322com12 32 . . . . . . . . 9 (𝑃 ∈ ℙ → ((𝑃 = 2 ∨ 𝑃 = 1) → 2 ∥ 𝑃))
2413, 23sylbid 239 . . . . . . . 8 (𝑃 ∈ ℙ → (𝑃 ∥ 2 → 2 ∥ 𝑃))
2524con3dimp 408 . . . . . . 7 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → ¬ 𝑃 ∥ 2)
26 2z 12282 . . . . . . 7 2 ∈ ℤ
2725, 26jctil 519 . . . . . 6 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → (2 ∈ ℤ ∧ ¬ 𝑃 ∥ 2))
28 2lgslem1 26447 . . . . . . 7 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → (♯‘{𝑥 ∈ ℤ ∣ ∃𝑖 ∈ (1...((𝑃 − 1) / 2))(𝑥 = (𝑖 · 2) ∧ (𝑃 / 2) < (𝑥 mod 𝑃))}) = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))))
2928eqcomd 2744 . . . . . 6 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) = (♯‘{𝑥 ∈ ℤ ∣ ∃𝑖 ∈ (1...((𝑃 − 1) / 2))(𝑥 = (𝑖 · 2) ∧ (𝑃 / 2) < (𝑥 mod 𝑃))}))
30 nnoddn2prmb 16442 . . . . . . . . . 10 (𝑃 ∈ (ℙ ∖ {2}) ↔ (𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃))
3130biimpri 227 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → 𝑃 ∈ (ℙ ∖ {2}))
32313ad2ant1 1131 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ (2 ∈ ℤ ∧ ¬ 𝑃 ∥ 2) ∧ (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) = (♯‘{𝑥 ∈ ℤ ∣ ∃𝑖 ∈ (1...((𝑃 − 1) / 2))(𝑥 = (𝑖 · 2) ∧ (𝑃 / 2) < (𝑥 mod 𝑃))})) → 𝑃 ∈ (ℙ ∖ {2}))
33 eqid 2738 . . . . . . . 8 ((𝑃 − 1) / 2) = ((𝑃 − 1) / 2)
34 eqid 2738 . . . . . . . 8 (𝑦 ∈ (1...((𝑃 − 1) / 2)) ↦ if((𝑦 · 2) < (𝑃 / 2), (𝑦 · 2), (𝑃 − (𝑦 · 2)))) = (𝑦 ∈ (1...((𝑃 − 1) / 2)) ↦ if((𝑦 · 2) < (𝑃 / 2), (𝑦 · 2), (𝑃 − (𝑦 · 2))))
35 eqid 2738 . . . . . . . 8 (⌊‘(𝑃 / 4)) = (⌊‘(𝑃 / 4))
36 eqid 2738 . . . . . . . 8 (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4)))
3732, 33, 34, 35, 36gausslemma2d 26427 . . . . . . 7 (((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ (2 ∈ ℤ ∧ ¬ 𝑃 ∥ 2) ∧ (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) = (♯‘{𝑥 ∈ ℤ ∣ ∃𝑖 ∈ (1...((𝑃 − 1) / 2))(𝑥 = (𝑖 · 2) ∧ (𝑃 / 2) < (𝑥 mod 𝑃))})) → (2 /L 𝑃) = (-1↑(((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4)))))
3837eqeq1d 2740 . . . . . 6 (((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ (2 ∈ ℤ ∧ ¬ 𝑃 ∥ 2) ∧ (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) = (♯‘{𝑥 ∈ ℤ ∣ ∃𝑖 ∈ (1...((𝑃 − 1) / 2))(𝑥 = (𝑖 · 2) ∧ (𝑃 / 2) < (𝑥 mod 𝑃))})) → ((2 /L 𝑃) = 1 ↔ (-1↑(((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4)))) = 1))
3927, 29, 38mpd3an23 1461 . . . . 5 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → ((2 /L 𝑃) = 1 ↔ (-1↑(((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4)))) = 1))
40362lgslem2 26448 . . . . . 6 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) ∈ ℤ)
41 m1exp1 16013 . . . . . 6 ((((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) ∈ ℤ → ((-1↑(((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4)))) = 1 ↔ 2 ∥ (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4)))))
4240, 41syl 17 . . . . 5 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → ((-1↑(((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4)))) = 1 ↔ 2 ∥ (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4)))))
43 2nn 11976 . . . . . . 7 2 ∈ ℕ
44 dvdsval3 15895 . . . . . . 7 ((2 ∈ ℕ ∧ (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) ∈ ℤ) → (2 ∥ (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) ↔ ((((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) mod 2) = 0))
4543, 40, 44sylancr 586 . . . . . 6 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → (2 ∥ (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) ↔ ((((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) mod 2) = 0))
46362lgslem3 26457 . . . . . . . 8 ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → ((((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) mod 2) = if((𝑃 mod 8) ∈ {1, 7}, 0, 1))
4711, 46sylan 579 . . . . . . 7 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → ((((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) mod 2) = if((𝑃 mod 8) ∈ {1, 7}, 0, 1))
4847eqeq1d 2740 . . . . . 6 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → (((((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) mod 2) = 0 ↔ if((𝑃 mod 8) ∈ {1, 7}, 0, 1) = 0))
49 ax-1 6 . . . . . . . . 9 ((𝑃 mod 8) ∈ {1, 7} → (if((𝑃 mod 8) ∈ {1, 7}, 0, 1) = 0 → (𝑃 mod 8) ∈ {1, 7}))
50 iffalse 4465 . . . . . . . . . . 11 (¬ (𝑃 mod 8) ∈ {1, 7} → if((𝑃 mod 8) ∈ {1, 7}, 0, 1) = 1)
5150eqeq1d 2740 . . . . . . . . . 10 (¬ (𝑃 mod 8) ∈ {1, 7} → (if((𝑃 mod 8) ∈ {1, 7}, 0, 1) = 0 ↔ 1 = 0))
52 ax-1ne0 10871 . . . . . . . . . . 11 1 ≠ 0
53 eqneqall 2953 . . . . . . . . . . 11 (1 = 0 → (1 ≠ 0 → (𝑃 mod 8) ∈ {1, 7}))
5452, 53mpi 20 . . . . . . . . . 10 (1 = 0 → (𝑃 mod 8) ∈ {1, 7})
5551, 54syl6bi 252 . . . . . . . . 9 (¬ (𝑃 mod 8) ∈ {1, 7} → (if((𝑃 mod 8) ∈ {1, 7}, 0, 1) = 0 → (𝑃 mod 8) ∈ {1, 7}))
5649, 55pm2.61i 182 . . . . . . . 8 (if((𝑃 mod 8) ∈ {1, 7}, 0, 1) = 0 → (𝑃 mod 8) ∈ {1, 7})
57 iftrue 4462 . . . . . . . 8 ((𝑃 mod 8) ∈ {1, 7} → if((𝑃 mod 8) ∈ {1, 7}, 0, 1) = 0)
5856, 57impbii 208 . . . . . . 7 (if((𝑃 mod 8) ∈ {1, 7}, 0, 1) = 0 ↔ (𝑃 mod 8) ∈ {1, 7})
5958a1i 11 . . . . . 6 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → (if((𝑃 mod 8) ∈ {1, 7}, 0, 1) = 0 ↔ (𝑃 mod 8) ∈ {1, 7}))
6045, 48, 593bitrd 304 . . . . 5 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → (2 ∥ (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) ↔ (𝑃 mod 8) ∈ {1, 7}))
6139, 42, 603bitrd 304 . . . 4 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → ((2 /L 𝑃) = 1 ↔ (𝑃 mod 8) ∈ {1, 7}))
6261expcom 413 . . 3 (¬ 2 ∥ 𝑃 → (𝑃 ∈ ℙ → ((2 /L 𝑃) = 1 ↔ (𝑃 mod 8) ∈ {1, 7})))
639, 62jaoi 853 . 2 ((𝑃 = 2 ∨ ¬ 2 ∥ 𝑃) → (𝑃 ∈ ℙ → ((2 /L 𝑃) = 1 ↔ (𝑃 mod 8) ∈ {1, 7})))
641, 63mpcom 38 1 (𝑃 ∈ ℙ → ((2 /L 𝑃) = 1 ↔ (𝑃 mod 8) ∈ {1, 7}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wrex 3064  {crab 3067  cdif 3880  ifcif 4456  {csn 4558  {cpr 4560   class class class wbr 5070  cmpt 5153  cfv 6418  (class class class)co 7255  0cc0 10802  1c1 10803   · cmul 10807   < clt 10940  cmin 11135  -cneg 11136   / cdiv 11562  cn 11903  2c2 11958  4c4 11960  7c7 11963  8c8 11964  cz 12249  ...cfz 13168  cfl 13438   mod cmo 13517  cexp 13710  chash 13972  cdvds 15891  cprime 16304   /L clgs 26347
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-oadd 8271  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-oi 9199  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-n0 12164  df-xnn0 12236  df-z 12250  df-uz 12512  df-q 12618  df-rp 12660  df-ioo 13012  df-ico 13014  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-fac 13916  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-prod 15544  df-dvds 15892  df-gcd 16130  df-prm 16305  df-phi 16395  df-pc 16466  df-lgs 26348
This theorem is referenced by:  2lgsoddprm  26469  fmtnoprmfac2lem1  44906  sfprmdvdsmersenne  44943
  Copyright terms: Public domain W3C validator