Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  2lgs Structured version   Visualization version   GIF version

Theorem 2lgs 25685
 Description: The second supplement to the law of quadratic reciprocity (for the Legendre symbol extended to arbitrary primes as second argument). Two is a square modulo a prime 𝑃 iff 𝑃≡±1 (mod 8), see first case of theorem 9.5 in [ApostolNT] p. 181. This theorem justifies our definition of (𝑁 /L 2) (lgs2 25592) to some degree, by demanding that reciprocity extend to the case 𝑄 = 2. (Proposed by Mario Carneiro, 19-Jun-2015.) (Contributed by AV, 16-Jul-2021.)
Assertion
Ref Expression
2lgs (𝑃 ∈ ℙ → ((2 /L 𝑃) = 1 ↔ (𝑃 mod 8) ∈ {1, 7}))

Proof of Theorem 2lgs
Dummy variables 𝑖 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prm2orodd 15891 . 2 (𝑃 ∈ ℙ → (𝑃 = 2 ∨ ¬ 2 ∥ 𝑃))
2 2lgslem4 25684 . . . . . 6 ((2 /L 2) = 1 ↔ (2 mod 8) ∈ {1, 7})
32a1i 11 . . . . 5 (𝑃 = 2 → ((2 /L 2) = 1 ↔ (2 mod 8) ∈ {1, 7}))
4 oveq2 6984 . . . . . 6 (𝑃 = 2 → (2 /L 𝑃) = (2 /L 2))
54eqeq1d 2780 . . . . 5 (𝑃 = 2 → ((2 /L 𝑃) = 1 ↔ (2 /L 2) = 1))
6 oveq1 6983 . . . . . 6 (𝑃 = 2 → (𝑃 mod 8) = (2 mod 8))
76eleq1d 2850 . . . . 5 (𝑃 = 2 → ((𝑃 mod 8) ∈ {1, 7} ↔ (2 mod 8) ∈ {1, 7}))
83, 5, 73bitr4d 303 . . . 4 (𝑃 = 2 → ((2 /L 𝑃) = 1 ↔ (𝑃 mod 8) ∈ {1, 7}))
98a1d 25 . . 3 (𝑃 = 2 → (𝑃 ∈ ℙ → ((2 /L 𝑃) = 1 ↔ (𝑃 mod 8) ∈ {1, 7})))
10 2prm 15892 . . . . . . . . . 10 2 ∈ ℙ
11 prmnn 15874 . . . . . . . . . 10 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
12 dvdsprime 15887 . . . . . . . . . 10 ((2 ∈ ℙ ∧ 𝑃 ∈ ℕ) → (𝑃 ∥ 2 ↔ (𝑃 = 2 ∨ 𝑃 = 1)))
1310, 11, 12sylancr 578 . . . . . . . . 9 (𝑃 ∈ ℙ → (𝑃 ∥ 2 ↔ (𝑃 = 2 ∨ 𝑃 = 1)))
14 z2even 15580 . . . . . . . . . . . . 13 2 ∥ 2
15 breq2 4933 . . . . . . . . . . . . 13 (𝑃 = 2 → (2 ∥ 𝑃 ↔ 2 ∥ 2))
1614, 15mpbiri 250 . . . . . . . . . . . 12 (𝑃 = 2 → 2 ∥ 𝑃)
1716a1d 25 . . . . . . . . . . 11 (𝑃 = 2 → (𝑃 ∈ ℙ → 2 ∥ 𝑃))
18 eleq1 2853 . . . . . . . . . . . 12 (𝑃 = 1 → (𝑃 ∈ ℙ ↔ 1 ∈ ℙ))
19 1nprm 15879 . . . . . . . . . . . . 13 ¬ 1 ∈ ℙ
2019pm2.21i 117 . . . . . . . . . . . 12 (1 ∈ ℙ → 2 ∥ 𝑃)
2118, 20syl6bi 245 . . . . . . . . . . 11 (𝑃 = 1 → (𝑃 ∈ ℙ → 2 ∥ 𝑃))
2217, 21jaoi 843 . . . . . . . . . 10 ((𝑃 = 2 ∨ 𝑃 = 1) → (𝑃 ∈ ℙ → 2 ∥ 𝑃))
2322com12 32 . . . . . . . . 9 (𝑃 ∈ ℙ → ((𝑃 = 2 ∨ 𝑃 = 1) → 2 ∥ 𝑃))
2413, 23sylbid 232 . . . . . . . 8 (𝑃 ∈ ℙ → (𝑃 ∥ 2 → 2 ∥ 𝑃))
2524con3dimp 400 . . . . . . 7 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → ¬ 𝑃 ∥ 2)
26 2z 11827 . . . . . . 7 2 ∈ ℤ
2725, 26jctil 512 . . . . . 6 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → (2 ∈ ℤ ∧ ¬ 𝑃 ∥ 2))
28 2lgslem1 25672 . . . . . . 7 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → (♯‘{𝑥 ∈ ℤ ∣ ∃𝑖 ∈ (1...((𝑃 − 1) / 2))(𝑥 = (𝑖 · 2) ∧ (𝑃 / 2) < (𝑥 mod 𝑃))}) = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))))
2928eqcomd 2784 . . . . . 6 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) = (♯‘{𝑥 ∈ ℤ ∣ ∃𝑖 ∈ (1...((𝑃 − 1) / 2))(𝑥 = (𝑖 · 2) ∧ (𝑃 / 2) < (𝑥 mod 𝑃))}))
30 nnoddn2prmb 16006 . . . . . . . . . 10 (𝑃 ∈ (ℙ ∖ {2}) ↔ (𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃))
3130biimpri 220 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → 𝑃 ∈ (ℙ ∖ {2}))
32313ad2ant1 1113 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ (2 ∈ ℤ ∧ ¬ 𝑃 ∥ 2) ∧ (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) = (♯‘{𝑥 ∈ ℤ ∣ ∃𝑖 ∈ (1...((𝑃 − 1) / 2))(𝑥 = (𝑖 · 2) ∧ (𝑃 / 2) < (𝑥 mod 𝑃))})) → 𝑃 ∈ (ℙ ∖ {2}))
33 eqid 2778 . . . . . . . 8 ((𝑃 − 1) / 2) = ((𝑃 − 1) / 2)
34 eqid 2778 . . . . . . . 8 (𝑦 ∈ (1...((𝑃 − 1) / 2)) ↦ if((𝑦 · 2) < (𝑃 / 2), (𝑦 · 2), (𝑃 − (𝑦 · 2)))) = (𝑦 ∈ (1...((𝑃 − 1) / 2)) ↦ if((𝑦 · 2) < (𝑃 / 2), (𝑦 · 2), (𝑃 − (𝑦 · 2))))
35 eqid 2778 . . . . . . . 8 (⌊‘(𝑃 / 4)) = (⌊‘(𝑃 / 4))
36 eqid 2778 . . . . . . . 8 (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4)))
3732, 33, 34, 35, 36gausslemma2d 25652 . . . . . . 7 (((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ (2 ∈ ℤ ∧ ¬ 𝑃 ∥ 2) ∧ (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) = (♯‘{𝑥 ∈ ℤ ∣ ∃𝑖 ∈ (1...((𝑃 − 1) / 2))(𝑥 = (𝑖 · 2) ∧ (𝑃 / 2) < (𝑥 mod 𝑃))})) → (2 /L 𝑃) = (-1↑(((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4)))))
3837eqeq1d 2780 . . . . . 6 (((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ (2 ∈ ℤ ∧ ¬ 𝑃 ∥ 2) ∧ (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) = (♯‘{𝑥 ∈ ℤ ∣ ∃𝑖 ∈ (1...((𝑃 − 1) / 2))(𝑥 = (𝑖 · 2) ∧ (𝑃 / 2) < (𝑥 mod 𝑃))})) → ((2 /L 𝑃) = 1 ↔ (-1↑(((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4)))) = 1))
3927, 29, 38mpd3an23 1442 . . . . 5 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → ((2 /L 𝑃) = 1 ↔ (-1↑(((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4)))) = 1))
40362lgslem2 25673 . . . . . 6 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) ∈ ℤ)
41 m1exp1 15587 . . . . . 6 ((((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) ∈ ℤ → ((-1↑(((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4)))) = 1 ↔ 2 ∥ (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4)))))
4240, 41syl 17 . . . . 5 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → ((-1↑(((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4)))) = 1 ↔ 2 ∥ (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4)))))
43 2nn 11513 . . . . . . 7 2 ∈ ℕ
44 dvdsval3 15471 . . . . . . 7 ((2 ∈ ℕ ∧ (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) ∈ ℤ) → (2 ∥ (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) ↔ ((((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) mod 2) = 0))
4543, 40, 44sylancr 578 . . . . . 6 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → (2 ∥ (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) ↔ ((((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) mod 2) = 0))
46362lgslem3 25682 . . . . . . . 8 ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → ((((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) mod 2) = if((𝑃 mod 8) ∈ {1, 7}, 0, 1))
4711, 46sylan 572 . . . . . . 7 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → ((((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) mod 2) = if((𝑃 mod 8) ∈ {1, 7}, 0, 1))
4847eqeq1d 2780 . . . . . 6 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → (((((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) mod 2) = 0 ↔ if((𝑃 mod 8) ∈ {1, 7}, 0, 1) = 0))
49 ax-1 6 . . . . . . . . 9 ((𝑃 mod 8) ∈ {1, 7} → (if((𝑃 mod 8) ∈ {1, 7}, 0, 1) = 0 → (𝑃 mod 8) ∈ {1, 7}))
50 iffalse 4359 . . . . . . . . . . 11 (¬ (𝑃 mod 8) ∈ {1, 7} → if((𝑃 mod 8) ∈ {1, 7}, 0, 1) = 1)
5150eqeq1d 2780 . . . . . . . . . 10 (¬ (𝑃 mod 8) ∈ {1, 7} → (if((𝑃 mod 8) ∈ {1, 7}, 0, 1) = 0 ↔ 1 = 0))
52 ax-1ne0 10404 . . . . . . . . . . 11 1 ≠ 0
53 eqneqall 2978 . . . . . . . . . . 11 (1 = 0 → (1 ≠ 0 → (𝑃 mod 8) ∈ {1, 7}))
5452, 53mpi 20 . . . . . . . . . 10 (1 = 0 → (𝑃 mod 8) ∈ {1, 7})
5551, 54syl6bi 245 . . . . . . . . 9 (¬ (𝑃 mod 8) ∈ {1, 7} → (if((𝑃 mod 8) ∈ {1, 7}, 0, 1) = 0 → (𝑃 mod 8) ∈ {1, 7}))
5649, 55pm2.61i 177 . . . . . . . 8 (if((𝑃 mod 8) ∈ {1, 7}, 0, 1) = 0 → (𝑃 mod 8) ∈ {1, 7})
57 iftrue 4356 . . . . . . . 8 ((𝑃 mod 8) ∈ {1, 7} → if((𝑃 mod 8) ∈ {1, 7}, 0, 1) = 0)
5856, 57impbii 201 . . . . . . 7 (if((𝑃 mod 8) ∈ {1, 7}, 0, 1) = 0 ↔ (𝑃 mod 8) ∈ {1, 7})
5958a1i 11 . . . . . 6 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → (if((𝑃 mod 8) ∈ {1, 7}, 0, 1) = 0 ↔ (𝑃 mod 8) ∈ {1, 7}))
6045, 48, 593bitrd 297 . . . . 5 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → (2 ∥ (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) ↔ (𝑃 mod 8) ∈ {1, 7}))
6139, 42, 603bitrd 297 . . . 4 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → ((2 /L 𝑃) = 1 ↔ (𝑃 mod 8) ∈ {1, 7}))
6261expcom 406 . . 3 (¬ 2 ∥ 𝑃 → (𝑃 ∈ ℙ → ((2 /L 𝑃) = 1 ↔ (𝑃 mod 8) ∈ {1, 7})))
639, 62jaoi 843 . 2 ((𝑃 = 2 ∨ ¬ 2 ∥ 𝑃) → (𝑃 ∈ ℙ → ((2 /L 𝑃) = 1 ↔ (𝑃 mod 8) ∈ {1, 7})))
641, 63mpcom 38 1 (𝑃 ∈ ℙ → ((2 /L 𝑃) = 1 ↔ (𝑃 mod 8) ∈ {1, 7}))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 198   ∧ wa 387   ∨ wo 833   ∧ w3a 1068   = wceq 1507   ∈ wcel 2050   ≠ wne 2967  ∃wrex 3089  {crab 3092   ∖ cdif 3826  ifcif 4350  {csn 4441  {cpr 4443   class class class wbr 4929   ↦ cmpt 5008  ‘cfv 6188  (class class class)co 6976  0cc0 10335  1c1 10336   · cmul 10340   < clt 10474   − cmin 10670  -cneg 10671   / cdiv 11098  ℕcn 11439  2c2 11495  4c4 11497  7c7 11500  8c8 11501  ℤcz 11793  ...cfz 12708  ⌊cfl 12975   mod cmo 13052  ↑cexp 13244  ♯chash 13505   ∥ cdvds 15467  ℙcprime 15871   /L clgs 25572 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-rep 5049  ax-sep 5060  ax-nul 5067  ax-pow 5119  ax-pr 5186  ax-un 7279  ax-inf2 8898  ax-cnex 10391  ax-resscn 10392  ax-1cn 10393  ax-icn 10394  ax-addcl 10395  ax-addrcl 10396  ax-mulcl 10397  ax-mulrcl 10398  ax-mulcom 10399  ax-addass 10400  ax-mulass 10401  ax-distr 10402  ax-i2m1 10403  ax-1ne0 10404  ax-1rid 10405  ax-rnegex 10406  ax-rrecex 10407  ax-cnre 10408  ax-pre-lttri 10409  ax-pre-lttrn 10410  ax-pre-ltadd 10411  ax-pre-mulgt0 10412  ax-pre-sup 10413 This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-fal 1520  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-nel 3074  df-ral 3093  df-rex 3094  df-reu 3095  df-rmo 3096  df-rab 3097  df-v 3417  df-sbc 3682  df-csb 3787  df-dif 3832  df-un 3834  df-in 3836  df-ss 3843  df-pss 3845  df-nul 4179  df-if 4351  df-pw 4424  df-sn 4442  df-pr 4444  df-tp 4446  df-op 4448  df-uni 4713  df-int 4750  df-iun 4794  df-br 4930  df-opab 4992  df-mpt 5009  df-tr 5031  df-id 5312  df-eprel 5317  df-po 5326  df-so 5327  df-fr 5366  df-se 5367  df-we 5368  df-xp 5413  df-rel 5414  df-cnv 5415  df-co 5416  df-dm 5417  df-rn 5418  df-res 5419  df-ima 5420  df-pred 5986  df-ord 6032  df-on 6033  df-lim 6034  df-suc 6035  df-iota 6152  df-fun 6190  df-fn 6191  df-f 6192  df-f1 6193  df-fo 6194  df-f1o 6195  df-fv 6196  df-isom 6197  df-riota 6937  df-ov 6979  df-oprab 6980  df-mpo 6981  df-om 7397  df-1st 7501  df-2nd 7502  df-wrecs 7750  df-recs 7812  df-rdg 7850  df-1o 7905  df-2o 7906  df-oadd 7909  df-er 8089  df-map 8208  df-en 8307  df-dom 8308  df-sdom 8309  df-fin 8310  df-sup 8701  df-inf 8702  df-oi 8769  df-dju 9124  df-card 9162  df-pnf 10476  df-mnf 10477  df-xr 10478  df-ltxr 10479  df-le 10480  df-sub 10672  df-neg 10673  df-div 11099  df-nn 11440  df-2 11503  df-3 11504  df-4 11505  df-5 11506  df-6 11507  df-7 11508  df-8 11509  df-n0 11708  df-xnn0 11780  df-z 11794  df-uz 12059  df-q 12163  df-rp 12205  df-ioo 12558  df-ico 12560  df-fz 12709  df-fzo 12850  df-fl 12977  df-mod 13053  df-seq 13185  df-exp 13245  df-fac 13449  df-hash 13506  df-cj 14319  df-re 14320  df-im 14321  df-sqrt 14455  df-abs 14456  df-clim 14706  df-prod 15120  df-dvds 15468  df-gcd 15704  df-prm 15872  df-phi 15959  df-pc 16030  df-lgs 25573 This theorem is referenced by:  2lgsoddprm  25694  fmtnoprmfac2lem1  43102  sfprmdvdsmersenne  43142
 Copyright terms: Public domain W3C validator