MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2lgs Structured version   Visualization version   GIF version

Theorem 2lgs 27345
Description: The second supplement to the law of quadratic reciprocity (for the Legendre symbol extended to arbitrary primes as second argument). Two is a square modulo a prime 𝑃 iff 𝑃≡±1 (mod 8), see first case of theorem 9.5 in [ApostolNT] p. 181. This theorem justifies our definition of (𝑁 /L 2) (lgs2 27252) to some degree, by demanding that reciprocity extend to the case 𝑄 = 2. (Proposed by Mario Carneiro, 19-Jun-2015.) (Contributed by AV, 16-Jul-2021.)
Assertion
Ref Expression
2lgs (𝑃 ∈ ℙ → ((2 /L 𝑃) = 1 ↔ (𝑃 mod 8) ∈ {1, 7}))

Proof of Theorem 2lgs
Dummy variables 𝑖 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prm2orodd 16602 . 2 (𝑃 ∈ ℙ → (𝑃 = 2 ∨ ¬ 2 ∥ 𝑃))
2 2lgslem4 27344 . . . . . 6 ((2 /L 2) = 1 ↔ (2 mod 8) ∈ {1, 7})
32a1i 11 . . . . 5 (𝑃 = 2 → ((2 /L 2) = 1 ↔ (2 mod 8) ∈ {1, 7}))
4 oveq2 7354 . . . . . 6 (𝑃 = 2 → (2 /L 𝑃) = (2 /L 2))
54eqeq1d 2733 . . . . 5 (𝑃 = 2 → ((2 /L 𝑃) = 1 ↔ (2 /L 2) = 1))
6 oveq1 7353 . . . . . 6 (𝑃 = 2 → (𝑃 mod 8) = (2 mod 8))
76eleq1d 2816 . . . . 5 (𝑃 = 2 → ((𝑃 mod 8) ∈ {1, 7} ↔ (2 mod 8) ∈ {1, 7}))
83, 5, 73bitr4d 311 . . . 4 (𝑃 = 2 → ((2 /L 𝑃) = 1 ↔ (𝑃 mod 8) ∈ {1, 7}))
98a1d 25 . . 3 (𝑃 = 2 → (𝑃 ∈ ℙ → ((2 /L 𝑃) = 1 ↔ (𝑃 mod 8) ∈ {1, 7})))
10 2prm 16603 . . . . . . . . . 10 2 ∈ ℙ
11 prmnn 16585 . . . . . . . . . 10 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
12 dvdsprime 16598 . . . . . . . . . 10 ((2 ∈ ℙ ∧ 𝑃 ∈ ℕ) → (𝑃 ∥ 2 ↔ (𝑃 = 2 ∨ 𝑃 = 1)))
1310, 11, 12sylancr 587 . . . . . . . . 9 (𝑃 ∈ ℙ → (𝑃 ∥ 2 ↔ (𝑃 = 2 ∨ 𝑃 = 1)))
14 z2even 16281 . . . . . . . . . . . . 13 2 ∥ 2
15 breq2 5093 . . . . . . . . . . . . 13 (𝑃 = 2 → (2 ∥ 𝑃 ↔ 2 ∥ 2))
1614, 15mpbiri 258 . . . . . . . . . . . 12 (𝑃 = 2 → 2 ∥ 𝑃)
1716a1d 25 . . . . . . . . . . 11 (𝑃 = 2 → (𝑃 ∈ ℙ → 2 ∥ 𝑃))
18 eleq1 2819 . . . . . . . . . . . 12 (𝑃 = 1 → (𝑃 ∈ ℙ ↔ 1 ∈ ℙ))
19 1nprm 16590 . . . . . . . . . . . . 13 ¬ 1 ∈ ℙ
2019pm2.21i 119 . . . . . . . . . . . 12 (1 ∈ ℙ → 2 ∥ 𝑃)
2118, 20biimtrdi 253 . . . . . . . . . . 11 (𝑃 = 1 → (𝑃 ∈ ℙ → 2 ∥ 𝑃))
2217, 21jaoi 857 . . . . . . . . . 10 ((𝑃 = 2 ∨ 𝑃 = 1) → (𝑃 ∈ ℙ → 2 ∥ 𝑃))
2322com12 32 . . . . . . . . 9 (𝑃 ∈ ℙ → ((𝑃 = 2 ∨ 𝑃 = 1) → 2 ∥ 𝑃))
2413, 23sylbid 240 . . . . . . . 8 (𝑃 ∈ ℙ → (𝑃 ∥ 2 → 2 ∥ 𝑃))
2524con3dimp 408 . . . . . . 7 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → ¬ 𝑃 ∥ 2)
26 2z 12504 . . . . . . 7 2 ∈ ℤ
2725, 26jctil 519 . . . . . 6 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → (2 ∈ ℤ ∧ ¬ 𝑃 ∥ 2))
28 2lgslem1 27332 . . . . . . 7 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → (♯‘{𝑥 ∈ ℤ ∣ ∃𝑖 ∈ (1...((𝑃 − 1) / 2))(𝑥 = (𝑖 · 2) ∧ (𝑃 / 2) < (𝑥 mod 𝑃))}) = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))))
2928eqcomd 2737 . . . . . 6 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) = (♯‘{𝑥 ∈ ℤ ∣ ∃𝑖 ∈ (1...((𝑃 − 1) / 2))(𝑥 = (𝑖 · 2) ∧ (𝑃 / 2) < (𝑥 mod 𝑃))}))
30 nnoddn2prmb 16725 . . . . . . . . . 10 (𝑃 ∈ (ℙ ∖ {2}) ↔ (𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃))
3130biimpri 228 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → 𝑃 ∈ (ℙ ∖ {2}))
32313ad2ant1 1133 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ (2 ∈ ℤ ∧ ¬ 𝑃 ∥ 2) ∧ (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) = (♯‘{𝑥 ∈ ℤ ∣ ∃𝑖 ∈ (1...((𝑃 − 1) / 2))(𝑥 = (𝑖 · 2) ∧ (𝑃 / 2) < (𝑥 mod 𝑃))})) → 𝑃 ∈ (ℙ ∖ {2}))
33 eqid 2731 . . . . . . . 8 ((𝑃 − 1) / 2) = ((𝑃 − 1) / 2)
34 eqid 2731 . . . . . . . 8 (𝑦 ∈ (1...((𝑃 − 1) / 2)) ↦ if((𝑦 · 2) < (𝑃 / 2), (𝑦 · 2), (𝑃 − (𝑦 · 2)))) = (𝑦 ∈ (1...((𝑃 − 1) / 2)) ↦ if((𝑦 · 2) < (𝑃 / 2), (𝑦 · 2), (𝑃 − (𝑦 · 2))))
35 eqid 2731 . . . . . . . 8 (⌊‘(𝑃 / 4)) = (⌊‘(𝑃 / 4))
36 eqid 2731 . . . . . . . 8 (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4)))
3732, 33, 34, 35, 36gausslemma2d 27312 . . . . . . 7 (((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ (2 ∈ ℤ ∧ ¬ 𝑃 ∥ 2) ∧ (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) = (♯‘{𝑥 ∈ ℤ ∣ ∃𝑖 ∈ (1...((𝑃 − 1) / 2))(𝑥 = (𝑖 · 2) ∧ (𝑃 / 2) < (𝑥 mod 𝑃))})) → (2 /L 𝑃) = (-1↑(((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4)))))
3837eqeq1d 2733 . . . . . 6 (((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ (2 ∈ ℤ ∧ ¬ 𝑃 ∥ 2) ∧ (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) = (♯‘{𝑥 ∈ ℤ ∣ ∃𝑖 ∈ (1...((𝑃 − 1) / 2))(𝑥 = (𝑖 · 2) ∧ (𝑃 / 2) < (𝑥 mod 𝑃))})) → ((2 /L 𝑃) = 1 ↔ (-1↑(((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4)))) = 1))
3927, 29, 38mpd3an23 1465 . . . . 5 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → ((2 /L 𝑃) = 1 ↔ (-1↑(((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4)))) = 1))
40362lgslem2 27333 . . . . . 6 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) ∈ ℤ)
41 m1exp1 16287 . . . . . 6 ((((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) ∈ ℤ → ((-1↑(((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4)))) = 1 ↔ 2 ∥ (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4)))))
4240, 41syl 17 . . . . 5 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → ((-1↑(((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4)))) = 1 ↔ 2 ∥ (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4)))))
43 2nn 12198 . . . . . . 7 2 ∈ ℕ
44 dvdsval3 16167 . . . . . . 7 ((2 ∈ ℕ ∧ (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) ∈ ℤ) → (2 ∥ (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) ↔ ((((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) mod 2) = 0))
4543, 40, 44sylancr 587 . . . . . 6 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → (2 ∥ (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) ↔ ((((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) mod 2) = 0))
46362lgslem3 27342 . . . . . . . 8 ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → ((((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) mod 2) = if((𝑃 mod 8) ∈ {1, 7}, 0, 1))
4711, 46sylan 580 . . . . . . 7 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → ((((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) mod 2) = if((𝑃 mod 8) ∈ {1, 7}, 0, 1))
4847eqeq1d 2733 . . . . . 6 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → (((((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) mod 2) = 0 ↔ if((𝑃 mod 8) ∈ {1, 7}, 0, 1) = 0))
49 ax-1 6 . . . . . . . . 9 ((𝑃 mod 8) ∈ {1, 7} → (if((𝑃 mod 8) ∈ {1, 7}, 0, 1) = 0 → (𝑃 mod 8) ∈ {1, 7}))
50 iffalse 4481 . . . . . . . . . . 11 (¬ (𝑃 mod 8) ∈ {1, 7} → if((𝑃 mod 8) ∈ {1, 7}, 0, 1) = 1)
5150eqeq1d 2733 . . . . . . . . . 10 (¬ (𝑃 mod 8) ∈ {1, 7} → (if((𝑃 mod 8) ∈ {1, 7}, 0, 1) = 0 ↔ 1 = 0))
52 ax-1ne0 11075 . . . . . . . . . . 11 1 ≠ 0
53 eqneqall 2939 . . . . . . . . . . 11 (1 = 0 → (1 ≠ 0 → (𝑃 mod 8) ∈ {1, 7}))
5452, 53mpi 20 . . . . . . . . . 10 (1 = 0 → (𝑃 mod 8) ∈ {1, 7})
5551, 54biimtrdi 253 . . . . . . . . 9 (¬ (𝑃 mod 8) ∈ {1, 7} → (if((𝑃 mod 8) ∈ {1, 7}, 0, 1) = 0 → (𝑃 mod 8) ∈ {1, 7}))
5649, 55pm2.61i 182 . . . . . . . 8 (if((𝑃 mod 8) ∈ {1, 7}, 0, 1) = 0 → (𝑃 mod 8) ∈ {1, 7})
57 iftrue 4478 . . . . . . . 8 ((𝑃 mod 8) ∈ {1, 7} → if((𝑃 mod 8) ∈ {1, 7}, 0, 1) = 0)
5856, 57impbii 209 . . . . . . 7 (if((𝑃 mod 8) ∈ {1, 7}, 0, 1) = 0 ↔ (𝑃 mod 8) ∈ {1, 7})
5958a1i 11 . . . . . 6 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → (if((𝑃 mod 8) ∈ {1, 7}, 0, 1) = 0 ↔ (𝑃 mod 8) ∈ {1, 7}))
6045, 48, 593bitrd 305 . . . . 5 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → (2 ∥ (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) ↔ (𝑃 mod 8) ∈ {1, 7}))
6139, 42, 603bitrd 305 . . . 4 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → ((2 /L 𝑃) = 1 ↔ (𝑃 mod 8) ∈ {1, 7}))
6261expcom 413 . . 3 (¬ 2 ∥ 𝑃 → (𝑃 ∈ ℙ → ((2 /L 𝑃) = 1 ↔ (𝑃 mod 8) ∈ {1, 7})))
639, 62jaoi 857 . 2 ((𝑃 = 2 ∨ ¬ 2 ∥ 𝑃) → (𝑃 ∈ ℙ → ((2 /L 𝑃) = 1 ↔ (𝑃 mod 8) ∈ {1, 7})))
641, 63mpcom 38 1 (𝑃 ∈ ℙ → ((2 /L 𝑃) = 1 ↔ (𝑃 mod 8) ∈ {1, 7}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wrex 3056  {crab 3395  cdif 3894  ifcif 4472  {csn 4573  {cpr 4575   class class class wbr 5089  cmpt 5170  cfv 6481  (class class class)co 7346  0cc0 11006  1c1 11007   · cmul 11011   < clt 11146  cmin 11344  -cneg 11345   / cdiv 11774  cn 12125  2c2 12180  4c4 12182  7c7 12185  8c8 12186  cz 12468  ...cfz 13407  cfl 13694   mod cmo 13773  cexp 13968  chash 14237  cdvds 16163  cprime 16582   /L clgs 27232
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-oadd 8389  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-inf 9327  df-oi 9396  df-dju 9794  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-n0 12382  df-xnn0 12455  df-z 12469  df-uz 12733  df-q 12847  df-rp 12891  df-ioo 13249  df-ico 13251  df-fz 13408  df-fzo 13555  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-fac 14181  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-prod 15811  df-dvds 16164  df-gcd 16406  df-prm 16583  df-phi 16677  df-pc 16749  df-lgs 27233
This theorem is referenced by:  2lgsoddprm  27354  fmtnoprmfac2lem1  47665  sfprmdvdsmersenne  47702
  Copyright terms: Public domain W3C validator