![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lcfrlem21 | Structured version Visualization version GIF version |
Description: Lemma for lcfr 41567. (Contributed by NM, 11-Mar-2015.) |
Ref | Expression |
---|---|
lcfrlem17.h | ⊢ 𝐻 = (LHyp‘𝐾) |
lcfrlem17.o | ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) |
lcfrlem17.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
lcfrlem17.v | ⊢ 𝑉 = (Base‘𝑈) |
lcfrlem17.p | ⊢ + = (+g‘𝑈) |
lcfrlem17.z | ⊢ 0 = (0g‘𝑈) |
lcfrlem17.n | ⊢ 𝑁 = (LSpan‘𝑈) |
lcfrlem17.a | ⊢ 𝐴 = (LSAtoms‘𝑈) |
lcfrlem17.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
lcfrlem17.x | ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
lcfrlem17.y | ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) |
lcfrlem17.ne | ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
Ref | Expression |
---|---|
lcfrlem21 | ⊢ (𝜑 → ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcfrlem17.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | lcfrlem17.o | . . 3 ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) | |
3 | lcfrlem17.u | . . 3 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
4 | lcfrlem17.v | . . 3 ⊢ 𝑉 = (Base‘𝑈) | |
5 | lcfrlem17.p | . . 3 ⊢ + = (+g‘𝑈) | |
6 | lcfrlem17.z | . . 3 ⊢ 0 = (0g‘𝑈) | |
7 | lcfrlem17.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑈) | |
8 | lcfrlem17.a | . . 3 ⊢ 𝐴 = (LSAtoms‘𝑈) | |
9 | lcfrlem17.k | . . . 4 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
10 | 9 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑋 ∈ ( ⊥ ‘{(𝑋 + 𝑌)})) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
11 | lcfrlem17.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) | |
12 | 11 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑋 ∈ ( ⊥ ‘{(𝑋 + 𝑌)})) → 𝑋 ∈ (𝑉 ∖ { 0 })) |
13 | lcfrlem17.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) | |
14 | 13 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑋 ∈ ( ⊥ ‘{(𝑋 + 𝑌)})) → 𝑌 ∈ (𝑉 ∖ { 0 })) |
15 | lcfrlem17.ne | . . . 4 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) | |
16 | 15 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑋 ∈ ( ⊥ ‘{(𝑋 + 𝑌)})) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
17 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑋 ∈ ( ⊥ ‘{(𝑋 + 𝑌)})) → ¬ 𝑋 ∈ ( ⊥ ‘{(𝑋 + 𝑌)})) | |
18 | 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16, 17 | lcfrlem20 41544 | . 2 ⊢ ((𝜑 ∧ ¬ 𝑋 ∈ ( ⊥ ‘{(𝑋 + 𝑌)})) → ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) ∈ 𝐴) |
19 | 1, 3, 9 | dvhlmod 41092 | . . . . . . . . 9 ⊢ (𝜑 → 𝑈 ∈ LMod) |
20 | 11 | eldifad 3974 | . . . . . . . . 9 ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
21 | 13 | eldifad 3974 | . . . . . . . . 9 ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
22 | 4, 5 | lmodcom 20922 | . . . . . . . . 9 ⊢ ((𝑈 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 + 𝑌) = (𝑌 + 𝑋)) |
23 | 19, 20, 21, 22 | syl3anc 1370 | . . . . . . . 8 ⊢ (𝜑 → (𝑋 + 𝑌) = (𝑌 + 𝑋)) |
24 | 23 | sneqd 4642 | . . . . . . 7 ⊢ (𝜑 → {(𝑋 + 𝑌)} = {(𝑌 + 𝑋)}) |
25 | 24 | fveq2d 6910 | . . . . . 6 ⊢ (𝜑 → ( ⊥ ‘{(𝑋 + 𝑌)}) = ( ⊥ ‘{(𝑌 + 𝑋)})) |
26 | 25 | eleq2d 2824 | . . . . 5 ⊢ (𝜑 → (𝑌 ∈ ( ⊥ ‘{(𝑋 + 𝑌)}) ↔ 𝑌 ∈ ( ⊥ ‘{(𝑌 + 𝑋)}))) |
27 | 26 | biimprd 248 | . . . 4 ⊢ (𝜑 → (𝑌 ∈ ( ⊥ ‘{(𝑌 + 𝑋)}) → 𝑌 ∈ ( ⊥ ‘{(𝑋 + 𝑌)}))) |
28 | 27 | con3dimp 408 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑌 ∈ ( ⊥ ‘{(𝑋 + 𝑌)})) → ¬ 𝑌 ∈ ( ⊥ ‘{(𝑌 + 𝑋)})) |
29 | prcom 4736 | . . . . . . . 8 ⊢ {𝑋, 𝑌} = {𝑌, 𝑋} | |
30 | 29 | fveq2i 6909 | . . . . . . 7 ⊢ (𝑁‘{𝑋, 𝑌}) = (𝑁‘{𝑌, 𝑋}) |
31 | 30 | a1i 11 | . . . . . 6 ⊢ (𝜑 → (𝑁‘{𝑋, 𝑌}) = (𝑁‘{𝑌, 𝑋})) |
32 | 31, 25 | ineq12d 4228 | . . . . 5 ⊢ (𝜑 → ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) = ((𝑁‘{𝑌, 𝑋}) ∩ ( ⊥ ‘{(𝑌 + 𝑋)}))) |
33 | 32 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝑌 ∈ ( ⊥ ‘{(𝑌 + 𝑋)})) → ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) = ((𝑁‘{𝑌, 𝑋}) ∩ ( ⊥ ‘{(𝑌 + 𝑋)}))) |
34 | 9 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝑌 ∈ ( ⊥ ‘{(𝑌 + 𝑋)})) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
35 | 13 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝑌 ∈ ( ⊥ ‘{(𝑌 + 𝑋)})) → 𝑌 ∈ (𝑉 ∖ { 0 })) |
36 | 11 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝑌 ∈ ( ⊥ ‘{(𝑌 + 𝑋)})) → 𝑋 ∈ (𝑉 ∖ { 0 })) |
37 | 15 | necomd 2993 | . . . . . 6 ⊢ (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑋})) |
38 | 37 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝑌 ∈ ( ⊥ ‘{(𝑌 + 𝑋)})) → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑋})) |
39 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝑌 ∈ ( ⊥ ‘{(𝑌 + 𝑋)})) → ¬ 𝑌 ∈ ( ⊥ ‘{(𝑌 + 𝑋)})) | |
40 | 1, 2, 3, 4, 5, 6, 7, 8, 34, 35, 36, 38, 39 | lcfrlem20 41544 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝑌 ∈ ( ⊥ ‘{(𝑌 + 𝑋)})) → ((𝑁‘{𝑌, 𝑋}) ∩ ( ⊥ ‘{(𝑌 + 𝑋)})) ∈ 𝐴) |
41 | 33, 40 | eqeltrd 2838 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑌 ∈ ( ⊥ ‘{(𝑌 + 𝑋)})) → ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) ∈ 𝐴) |
42 | 28, 41 | syldan 591 | . 2 ⊢ ((𝜑 ∧ ¬ 𝑌 ∈ ( ⊥ ‘{(𝑋 + 𝑌)})) → ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) ∈ 𝐴) |
43 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 15 | lcfrlem19 41543 | . 2 ⊢ (𝜑 → (¬ 𝑋 ∈ ( ⊥ ‘{(𝑋 + 𝑌)}) ∨ ¬ 𝑌 ∈ ( ⊥ ‘{(𝑋 + 𝑌)}))) |
44 | 18, 42, 43 | mpjaodan 960 | 1 ⊢ (𝜑 → ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1536 ∈ wcel 2105 ≠ wne 2937 ∖ cdif 3959 ∩ cin 3961 {csn 4630 {cpr 4632 ‘cfv 6562 (class class class)co 7430 Basecbs 17244 +gcplusg 17297 0gc0g 17485 LModclmod 20874 LSpanclspn 20986 LSAtomsclsa 38955 HLchlt 39331 LHypclh 39966 DVecHcdvh 41060 ocHcoch 41329 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 ax-riotaBAD 38934 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3377 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-uni 4912 df-int 4951 df-iun 4997 df-iin 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-om 7887 df-1st 8012 df-2nd 8013 df-tpos 8249 df-undef 8296 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-1o 8504 df-2o 8505 df-er 8743 df-map 8866 df-en 8984 df-dom 8985 df-sdom 8986 df-fin 8987 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-nn 12264 df-2 12326 df-3 12327 df-4 12328 df-5 12329 df-6 12330 df-n0 12524 df-z 12611 df-uz 12876 df-fz 13544 df-struct 17180 df-sets 17197 df-slot 17215 df-ndx 17227 df-base 17245 df-ress 17274 df-plusg 17310 df-mulr 17311 df-sca 17313 df-vsca 17314 df-0g 17487 df-mre 17630 df-mrc 17631 df-acs 17633 df-proset 18351 df-poset 18370 df-plt 18387 df-lub 18403 df-glb 18404 df-join 18405 df-meet 18406 df-p0 18482 df-p1 18483 df-lat 18489 df-clat 18556 df-mgm 18665 df-sgrp 18744 df-mnd 18760 df-submnd 18809 df-grp 18966 df-minusg 18967 df-sbg 18968 df-subg 19153 df-cntz 19347 df-oppg 19376 df-lsm 19668 df-cmn 19814 df-abl 19815 df-mgp 20152 df-rng 20170 df-ur 20199 df-ring 20252 df-oppr 20350 df-dvdsr 20373 df-unit 20374 df-invr 20404 df-dvr 20417 df-drng 20747 df-lmod 20876 df-lss 20947 df-lsp 20987 df-lvec 21119 df-lsatoms 38957 df-lshyp 38958 df-lcv 39000 df-oposet 39157 df-ol 39159 df-oml 39160 df-covers 39247 df-ats 39248 df-atl 39279 df-cvlat 39303 df-hlat 39332 df-llines 39480 df-lplanes 39481 df-lvols 39482 df-lines 39483 df-psubsp 39485 df-pmap 39486 df-padd 39778 df-lhyp 39970 df-laut 39971 df-ldil 40086 df-ltrn 40087 df-trl 40141 df-tgrp 40725 df-tendo 40737 df-edring 40739 df-dveca 40985 df-disoa 41011 df-dvech 41061 df-dib 41121 df-dic 41155 df-dih 41211 df-doch 41330 df-djh 41377 |
This theorem is referenced by: lcfrlem22 41546 lcfrlem40 41564 |
Copyright terms: Public domain | W3C validator |