Step | Hyp | Ref
| Expression |
1 | | hdmap10.h |
. . 3
β’ π» = (LHypβπΎ) |
2 | | hdmap10.u |
. . 3
β’ π = ((DVecHβπΎ)βπ) |
3 | | hdmap10.v |
. . 3
β’ π = (Baseβπ) |
4 | | hdmap10.n |
. . 3
β’ π = (LSpanβπ) |
5 | | hdmap10.k |
. . 3
β’ (π β (πΎ β HL β§ π β π»)) |
6 | | eqid 2732 |
. . . . 5
β’
(BaseβπΎ) =
(BaseβπΎ) |
7 | | eqid 2732 |
. . . . 5
β’
((LTrnβπΎ)βπ) = ((LTrnβπΎ)βπ) |
8 | | hdmap10.o |
. . . . 5
β’ 0 =
(0gβπ) |
9 | | hdmap10.e |
. . . . 5
β’ πΈ = β¨( I βΎ
(BaseβπΎ)), ( I
βΎ ((LTrnβπΎ)βπ))β© |
10 | 1, 6, 7, 2, 3, 8, 9, 5 | dvheveccl 39971 |
. . . 4
β’ (π β πΈ β (π β { 0 })) |
11 | 10 | eldifad 3959 |
. . 3
β’ (π β πΈ β π) |
12 | | hdmap10lem.t |
. . . 4
β’ (π β π β (π β { 0 })) |
13 | 12 | eldifad 3959 |
. . 3
β’ (π β π β π) |
14 | 1, 2, 3, 4, 5, 11,
13 | dvh3dim 40305 |
. 2
β’ (π β βπ₯ β π Β¬ π₯ β (πβ{πΈ, π})) |
15 | | hdmap10.c |
. . . . . . 7
β’ πΆ = ((LCDualβπΎ)βπ) |
16 | | hdmap10.d |
. . . . . . 7
β’ π· = (BaseβπΆ) |
17 | | hdmap10.j |
. . . . . . 7
β’ π½ = ((HVMapβπΎ)βπ) |
18 | | hdmap10.i |
. . . . . . 7
β’ πΌ = ((HDMap1βπΎ)βπ) |
19 | | hdmap10.s |
. . . . . . 7
β’ π = ((HDMapβπΎ)βπ) |
20 | 5 | 3ad2ant1 1133 |
. . . . . . 7
β’ ((π β§ π₯ β π β§ Β¬ π₯ β (πβ{πΈ, π})) β (πΎ β HL β§ π β π»)) |
21 | 13 | 3ad2ant1 1133 |
. . . . . . 7
β’ ((π β§ π₯ β π β§ Β¬ π₯ β (πβ{πΈ, π})) β π β π) |
22 | | simp2 1137 |
. . . . . . 7
β’ ((π β§ π₯ β π β§ Β¬ π₯ β (πβ{πΈ, π})) β π₯ β π) |
23 | | eqid 2732 |
. . . . . . . . . . . 12
β’
(LSubSpβπ) =
(LSubSpβπ) |
24 | 1, 2, 5 | dvhlmod 39969 |
. . . . . . . . . . . 12
β’ (π β π β LMod) |
25 | 3, 23, 4, 24, 11, 13 | lspprcl 20581 |
. . . . . . . . . . . 12
β’ (π β (πβ{πΈ, π}) β (LSubSpβπ)) |
26 | 3, 4, 24, 11, 13 | lspprid1 20600 |
. . . . . . . . . . . 12
β’ (π β πΈ β (πβ{πΈ, π})) |
27 | 23, 4, 24, 25, 26 | lspsnel5a 20599 |
. . . . . . . . . . 11
β’ (π β (πβ{πΈ}) β (πβ{πΈ, π})) |
28 | 3, 4, 24, 11, 13 | lspprid2 20601 |
. . . . . . . . . . . 12
β’ (π β π β (πβ{πΈ, π})) |
29 | 23, 4, 24, 25, 28 | lspsnel5a 20599 |
. . . . . . . . . . 11
β’ (π β (πβ{π}) β (πβ{πΈ, π})) |
30 | 27, 29 | unssd 4185 |
. . . . . . . . . 10
β’ (π β ((πβ{πΈ}) βͺ (πβ{π})) β (πβ{πΈ, π})) |
31 | 30 | sseld 3980 |
. . . . . . . . 9
β’ (π β (π₯ β ((πβ{πΈ}) βͺ (πβ{π})) β π₯ β (πβ{πΈ, π}))) |
32 | 31 | con3dimp 409 |
. . . . . . . 8
β’ ((π β§ Β¬ π₯ β (πβ{πΈ, π})) β Β¬ π₯ β ((πβ{πΈ}) βͺ (πβ{π}))) |
33 | 32 | 3adant2 1131 |
. . . . . . 7
β’ ((π β§ π₯ β π β§ Β¬ π₯ β (πβ{πΈ, π})) β Β¬ π₯ β ((πβ{πΈ}) βͺ (πβ{π}))) |
34 | 1, 9, 2, 3, 4, 15,
16, 17, 18, 19, 20, 21, 22, 33 | hdmapval2 40691 |
. . . . . 6
β’ ((π β§ π₯ β π β§ Β¬ π₯ β (πβ{πΈ, π})) β (πβπ) = (πΌββ¨π₯, (πΌββ¨πΈ, (π½βπΈ), π₯β©), πβ©)) |
35 | 34 | eqcomd 2738 |
. . . . 5
β’ ((π β§ π₯ β π β§ Β¬ π₯ β (πβ{πΈ, π})) β (πΌββ¨π₯, (πΌββ¨πΈ, (π½βπΈ), π₯β©), πβ©) = (πβπ)) |
36 | | eqid 2732 |
. . . . . 6
β’
(-gβπ) = (-gβπ) |
37 | | eqid 2732 |
. . . . . 6
β’
(-gβπΆ) = (-gβπΆ) |
38 | | hdmap10.l |
. . . . . 6
β’ πΏ = (LSpanβπΆ) |
39 | | hdmap10.m |
. . . . . 6
β’ π = ((mapdβπΎ)βπ) |
40 | 24 | 3ad2ant1 1133 |
. . . . . . 7
β’ ((π β§ π₯ β π β§ Β¬ π₯ β (πβ{πΈ, π})) β π β LMod) |
41 | 25 | 3ad2ant1 1133 |
. . . . . . 7
β’ ((π β§ π₯ β π β§ Β¬ π₯ β (πβ{πΈ, π})) β (πβ{πΈ, π}) β (LSubSpβπ)) |
42 | | simp3 1138 |
. . . . . . 7
β’ ((π β§ π₯ β π β§ Β¬ π₯ β (πβ{πΈ, π})) β Β¬ π₯ β (πβ{πΈ, π})) |
43 | 8, 23, 40, 41, 22, 42 | lssneln0 20555 |
. . . . . 6
β’ ((π β§ π₯ β π β§ Β¬ π₯ β (πβ{πΈ, π})) β π₯ β (π β { 0 })) |
44 | | eqid 2732 |
. . . . . . . . . 10
β’
(0gβπΆ) = (0gβπΆ) |
45 | 1, 2, 3, 8, 15, 16, 44, 17, 5, 10 | hvmapcl2 40625 |
. . . . . . . . 9
β’ (π β (π½βπΈ) β (π· β {(0gβπΆ)})) |
46 | 45 | eldifad 3959 |
. . . . . . . 8
β’ (π β (π½βπΈ) β π·) |
47 | 46 | 3ad2ant1 1133 |
. . . . . . 7
β’ ((π β§ π₯ β π β§ Β¬ π₯ β (πβ{πΈ, π})) β (π½βπΈ) β π·) |
48 | 1, 2, 3, 8, 4, 15,
38, 39, 17, 5, 10 | mapdhvmap 40628 |
. . . . . . . 8
β’ (π β (πβ(πβ{πΈ})) = (πΏβ{(π½βπΈ)})) |
49 | 48 | 3ad2ant1 1133 |
. . . . . . 7
β’ ((π β§ π₯ β π β§ Β¬ π₯ β (πβ{πΈ, π})) β (πβ(πβ{πΈ})) = (πΏβ{(π½βπΈ)})) |
50 | 1, 2, 5 | dvhlvec 39968 |
. . . . . . . . . . 11
β’ (π β π β LVec) |
51 | 50 | 3ad2ant1 1133 |
. . . . . . . . . 10
β’ ((π β§ π₯ β π β§ Β¬ π₯ β (πβ{πΈ, π})) β π β LVec) |
52 | 11 | 3ad2ant1 1133 |
. . . . . . . . . 10
β’ ((π β§ π₯ β π β§ Β¬ π₯ β (πβ{πΈ, π})) β πΈ β π) |
53 | 3, 4, 51, 22, 52, 21, 42 | lspindpi 20737 |
. . . . . . . . 9
β’ ((π β§ π₯ β π β§ Β¬ π₯ β (πβ{πΈ, π})) β ((πβ{π₯}) β (πβ{πΈ}) β§ (πβ{π₯}) β (πβ{π}))) |
54 | 53 | simpld 495 |
. . . . . . . 8
β’ ((π β§ π₯ β π β§ Β¬ π₯ β (πβ{πΈ, π})) β (πβ{π₯}) β (πβ{πΈ})) |
55 | 54 | necomd 2996 |
. . . . . . 7
β’ ((π β§ π₯ β π β§ Β¬ π₯ β (πβ{πΈ, π})) β (πβ{πΈ}) β (πβ{π₯})) |
56 | 10 | 3ad2ant1 1133 |
. . . . . . 7
β’ ((π β§ π₯ β π β§ Β¬ π₯ β (πβ{πΈ, π})) β πΈ β (π β { 0 })) |
57 | 1, 2, 3, 8, 4, 15,
16, 38, 39, 18, 20, 47, 49, 55, 56, 22 | hdmap1cl 40663 |
. . . . . 6
β’ ((π β§ π₯ β π β§ Β¬ π₯ β (πβ{πΈ, π})) β (πΌββ¨πΈ, (π½βπΈ), π₯β©) β π·) |
58 | 12 | 3ad2ant1 1133 |
. . . . . 6
β’ ((π β§ π₯ β π β§ Β¬ π₯ β (πβ{πΈ, π})) β π β (π β { 0 })) |
59 | 1, 2, 3, 15, 16, 19, 5, 13 | hdmapcl 40689 |
. . . . . . 7
β’ (π β (πβπ) β π·) |
60 | 59 | 3ad2ant1 1133 |
. . . . . 6
β’ ((π β§ π₯ β π β§ Β¬ π₯ β (πβ{πΈ, π})) β (πβπ) β π·) |
61 | 53 | simprd 496 |
. . . . . 6
β’ ((π β§ π₯ β π β§ Β¬ π₯ β (πβ{πΈ, π})) β (πβ{π₯}) β (πβ{π})) |
62 | | eqid 2732 |
. . . . . . . 8
β’ (πΌββ¨πΈ, (π½βπΈ), π₯β©) = (πΌββ¨πΈ, (π½βπΈ), π₯β©) |
63 | 1, 2, 3, 36, 8, 4,
15, 16, 37, 38, 39, 18, 20, 56, 47, 43, 57, 55, 49 | hdmap1eq 40660 |
. . . . . . . 8
β’ ((π β§ π₯ β π β§ Β¬ π₯ β (πβ{πΈ, π})) β ((πΌββ¨πΈ, (π½βπΈ), π₯β©) = (πΌββ¨πΈ, (π½βπΈ), π₯β©) β ((πβ(πβ{π₯})) = (πΏβ{(πΌββ¨πΈ, (π½βπΈ), π₯β©)}) β§ (πβ(πβ{(πΈ(-gβπ)π₯)})) = (πΏβ{((π½βπΈ)(-gβπΆ)(πΌββ¨πΈ, (π½βπΈ), π₯β©))})))) |
64 | 62, 63 | mpbii 232 |
. . . . . . 7
β’ ((π β§ π₯ β π β§ Β¬ π₯ β (πβ{πΈ, π})) β ((πβ(πβ{π₯})) = (πΏβ{(πΌββ¨πΈ, (π½βπΈ), π₯β©)}) β§ (πβ(πβ{(πΈ(-gβπ)π₯)})) = (πΏβ{((π½βπΈ)(-gβπΆ)(πΌββ¨πΈ, (π½βπΈ), π₯β©))}))) |
65 | 64 | simpld 495 |
. . . . . 6
β’ ((π β§ π₯ β π β§ Β¬ π₯ β (πβ{πΈ, π})) β (πβ(πβ{π₯})) = (πΏβ{(πΌββ¨πΈ, (π½βπΈ), π₯β©)})) |
66 | 1, 2, 3, 36, 8, 4,
15, 16, 37, 38, 39, 18, 20, 43, 57, 58, 60, 61, 65 | hdmap1eq 40660 |
. . . . 5
β’ ((π β§ π₯ β π β§ Β¬ π₯ β (πβ{πΈ, π})) β ((πΌββ¨π₯, (πΌββ¨πΈ, (π½βπΈ), π₯β©), πβ©) = (πβπ) β ((πβ(πβ{π})) = (πΏβ{(πβπ)}) β§ (πβ(πβ{(π₯(-gβπ)π)})) = (πΏβ{((πΌββ¨πΈ, (π½βπΈ), π₯β©)(-gβπΆ)(πβπ))})))) |
67 | 35, 66 | mpbid 231 |
. . . 4
β’ ((π β§ π₯ β π β§ Β¬ π₯ β (πβ{πΈ, π})) β ((πβ(πβ{π})) = (πΏβ{(πβπ)}) β§ (πβ(πβ{(π₯(-gβπ)π)})) = (πΏβ{((πΌββ¨πΈ, (π½βπΈ), π₯β©)(-gβπΆ)(πβπ))}))) |
68 | 67 | simpld 495 |
. . 3
β’ ((π β§ π₯ β π β§ Β¬ π₯ β (πβ{πΈ, π})) β (πβ(πβ{π})) = (πΏβ{(πβπ)})) |
69 | 68 | rexlimdv3a 3159 |
. 2
β’ (π β (βπ₯ β π Β¬ π₯ β (πβ{πΈ, π}) β (πβ(πβ{π})) = (πΏβ{(πβπ)}))) |
70 | 14, 69 | mpd 15 |
1
β’ (π β (πβ(πβ{π})) = (πΏβ{(πβπ)})) |