| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | hdmap10.h | . . 3
⊢ 𝐻 = (LHyp‘𝐾) | 
| 2 |  | hdmap10.u | . . 3
⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | 
| 3 |  | hdmap10.v | . . 3
⊢ 𝑉 = (Base‘𝑈) | 
| 4 |  | hdmap10.n | . . 3
⊢ 𝑁 = (LSpan‘𝑈) | 
| 5 |  | hdmap10.k | . . 3
⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | 
| 6 |  | eqid 2736 | . . . . 5
⊢
(Base‘𝐾) =
(Base‘𝐾) | 
| 7 |  | eqid 2736 | . . . . 5
⊢
((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊) | 
| 8 |  | hdmap10.o | . . . . 5
⊢  0 =
(0g‘𝑈) | 
| 9 |  | hdmap10.e | . . . . 5
⊢ 𝐸 = 〈( I ↾
(Base‘𝐾)), ( I
↾ ((LTrn‘𝐾)‘𝑊))〉 | 
| 10 | 1, 6, 7, 2, 3, 8, 9, 5 | dvheveccl 41115 | . . . 4
⊢ (𝜑 → 𝐸 ∈ (𝑉 ∖ { 0 })) | 
| 11 | 10 | eldifad 3962 | . . 3
⊢ (𝜑 → 𝐸 ∈ 𝑉) | 
| 12 |  | hdmap10lem.t | . . . 4
⊢ (𝜑 → 𝑇 ∈ (𝑉 ∖ { 0 })) | 
| 13 | 12 | eldifad 3962 | . . 3
⊢ (𝜑 → 𝑇 ∈ 𝑉) | 
| 14 | 1, 2, 3, 4, 5, 11,
13 | dvh3dim 41449 | . 2
⊢ (𝜑 → ∃𝑥 ∈ 𝑉 ¬ 𝑥 ∈ (𝑁‘{𝐸, 𝑇})) | 
| 15 |  | hdmap10.c | . . . . . . 7
⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | 
| 16 |  | hdmap10.d | . . . . . . 7
⊢ 𝐷 = (Base‘𝐶) | 
| 17 |  | hdmap10.j | . . . . . . 7
⊢ 𝐽 = ((HVMap‘𝐾)‘𝑊) | 
| 18 |  | hdmap10.i | . . . . . . 7
⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) | 
| 19 |  | hdmap10.s | . . . . . . 7
⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) | 
| 20 | 5 | 3ad2ant1 1133 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ (𝑁‘{𝐸, 𝑇})) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | 
| 21 | 13 | 3ad2ant1 1133 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ (𝑁‘{𝐸, 𝑇})) → 𝑇 ∈ 𝑉) | 
| 22 |  | simp2 1137 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ (𝑁‘{𝐸, 𝑇})) → 𝑥 ∈ 𝑉) | 
| 23 |  | eqid 2736 | . . . . . . . . . . . 12
⊢
(LSubSp‘𝑈) =
(LSubSp‘𝑈) | 
| 24 | 1, 2, 5 | dvhlmod 41113 | . . . . . . . . . . . 12
⊢ (𝜑 → 𝑈 ∈ LMod) | 
| 25 | 3, 23, 4, 24, 11, 13 | lspprcl 20977 | . . . . . . . . . . . 12
⊢ (𝜑 → (𝑁‘{𝐸, 𝑇}) ∈ (LSubSp‘𝑈)) | 
| 26 | 3, 4, 24, 11, 13 | lspprid1 20996 | . . . . . . . . . . . 12
⊢ (𝜑 → 𝐸 ∈ (𝑁‘{𝐸, 𝑇})) | 
| 27 | 23, 4, 24, 25, 26 | ellspsn5 20995 | . . . . . . . . . . 11
⊢ (𝜑 → (𝑁‘{𝐸}) ⊆ (𝑁‘{𝐸, 𝑇})) | 
| 28 | 3, 4, 24, 11, 13 | lspprid2 20997 | . . . . . . . . . . . 12
⊢ (𝜑 → 𝑇 ∈ (𝑁‘{𝐸, 𝑇})) | 
| 29 | 23, 4, 24, 25, 28 | ellspsn5 20995 | . . . . . . . . . . 11
⊢ (𝜑 → (𝑁‘{𝑇}) ⊆ (𝑁‘{𝐸, 𝑇})) | 
| 30 | 27, 29 | unssd 4191 | . . . . . . . . . 10
⊢ (𝜑 → ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑇})) ⊆ (𝑁‘{𝐸, 𝑇})) | 
| 31 | 30 | sseld 3981 | . . . . . . . . 9
⊢ (𝜑 → (𝑥 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑇})) → 𝑥 ∈ (𝑁‘{𝐸, 𝑇}))) | 
| 32 | 31 | con3dimp 408 | . . . . . . . 8
⊢ ((𝜑 ∧ ¬ 𝑥 ∈ (𝑁‘{𝐸, 𝑇})) → ¬ 𝑥 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑇}))) | 
| 33 | 32 | 3adant2 1131 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ (𝑁‘{𝐸, 𝑇})) → ¬ 𝑥 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑇}))) | 
| 34 | 1, 9, 2, 3, 4, 15,
16, 17, 18, 19, 20, 21, 22, 33 | hdmapval2 41835 | . . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ (𝑁‘{𝐸, 𝑇})) → (𝑆‘𝑇) = (𝐼‘〈𝑥, (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑥〉), 𝑇〉)) | 
| 35 | 34 | eqcomd 2742 | . . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ (𝑁‘{𝐸, 𝑇})) → (𝐼‘〈𝑥, (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑥〉), 𝑇〉) = (𝑆‘𝑇)) | 
| 36 |  | eqid 2736 | . . . . . 6
⊢
(-g‘𝑈) = (-g‘𝑈) | 
| 37 |  | eqid 2736 | . . . . . 6
⊢
(-g‘𝐶) = (-g‘𝐶) | 
| 38 |  | hdmap10.l | . . . . . 6
⊢ 𝐿 = (LSpan‘𝐶) | 
| 39 |  | hdmap10.m | . . . . . 6
⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) | 
| 40 | 24 | 3ad2ant1 1133 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ (𝑁‘{𝐸, 𝑇})) → 𝑈 ∈ LMod) | 
| 41 | 25 | 3ad2ant1 1133 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ (𝑁‘{𝐸, 𝑇})) → (𝑁‘{𝐸, 𝑇}) ∈ (LSubSp‘𝑈)) | 
| 42 |  | simp3 1138 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ (𝑁‘{𝐸, 𝑇})) → ¬ 𝑥 ∈ (𝑁‘{𝐸, 𝑇})) | 
| 43 | 8, 23, 40, 41, 22, 42 | lssneln0 20952 | . . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ (𝑁‘{𝐸, 𝑇})) → 𝑥 ∈ (𝑉 ∖ { 0 })) | 
| 44 |  | eqid 2736 | . . . . . . . . . 10
⊢
(0g‘𝐶) = (0g‘𝐶) | 
| 45 | 1, 2, 3, 8, 15, 16, 44, 17, 5, 10 | hvmapcl2 41769 | . . . . . . . . 9
⊢ (𝜑 → (𝐽‘𝐸) ∈ (𝐷 ∖ {(0g‘𝐶)})) | 
| 46 | 45 | eldifad 3962 | . . . . . . . 8
⊢ (𝜑 → (𝐽‘𝐸) ∈ 𝐷) | 
| 47 | 46 | 3ad2ant1 1133 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ (𝑁‘{𝐸, 𝑇})) → (𝐽‘𝐸) ∈ 𝐷) | 
| 48 | 1, 2, 3, 8, 4, 15,
38, 39, 17, 5, 10 | mapdhvmap 41772 | . . . . . . . 8
⊢ (𝜑 → (𝑀‘(𝑁‘{𝐸})) = (𝐿‘{(𝐽‘𝐸)})) | 
| 49 | 48 | 3ad2ant1 1133 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ (𝑁‘{𝐸, 𝑇})) → (𝑀‘(𝑁‘{𝐸})) = (𝐿‘{(𝐽‘𝐸)})) | 
| 50 | 1, 2, 5 | dvhlvec 41112 | . . . . . . . . . . 11
⊢ (𝜑 → 𝑈 ∈ LVec) | 
| 51 | 50 | 3ad2ant1 1133 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ (𝑁‘{𝐸, 𝑇})) → 𝑈 ∈ LVec) | 
| 52 | 11 | 3ad2ant1 1133 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ (𝑁‘{𝐸, 𝑇})) → 𝐸 ∈ 𝑉) | 
| 53 | 3, 4, 51, 22, 52, 21, 42 | lspindpi 21135 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ (𝑁‘{𝐸, 𝑇})) → ((𝑁‘{𝑥}) ≠ (𝑁‘{𝐸}) ∧ (𝑁‘{𝑥}) ≠ (𝑁‘{𝑇}))) | 
| 54 | 53 | simpld 494 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ (𝑁‘{𝐸, 𝑇})) → (𝑁‘{𝑥}) ≠ (𝑁‘{𝐸})) | 
| 55 | 54 | necomd 2995 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ (𝑁‘{𝐸, 𝑇})) → (𝑁‘{𝐸}) ≠ (𝑁‘{𝑥})) | 
| 56 | 10 | 3ad2ant1 1133 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ (𝑁‘{𝐸, 𝑇})) → 𝐸 ∈ (𝑉 ∖ { 0 })) | 
| 57 | 1, 2, 3, 8, 4, 15,
16, 38, 39, 18, 20, 47, 49, 55, 56, 22 | hdmap1cl 41807 | . . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ (𝑁‘{𝐸, 𝑇})) → (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑥〉) ∈ 𝐷) | 
| 58 | 12 | 3ad2ant1 1133 | . . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ (𝑁‘{𝐸, 𝑇})) → 𝑇 ∈ (𝑉 ∖ { 0 })) | 
| 59 | 1, 2, 3, 15, 16, 19, 5, 13 | hdmapcl 41833 | . . . . . . 7
⊢ (𝜑 → (𝑆‘𝑇) ∈ 𝐷) | 
| 60 | 59 | 3ad2ant1 1133 | . . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ (𝑁‘{𝐸, 𝑇})) → (𝑆‘𝑇) ∈ 𝐷) | 
| 61 | 53 | simprd 495 | . . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ (𝑁‘{𝐸, 𝑇})) → (𝑁‘{𝑥}) ≠ (𝑁‘{𝑇})) | 
| 62 |  | eqid 2736 | . . . . . . . 8
⊢ (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑥〉) = (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑥〉) | 
| 63 | 1, 2, 3, 36, 8, 4,
15, 16, 37, 38, 39, 18, 20, 56, 47, 43, 57, 55, 49 | hdmap1eq 41804 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ (𝑁‘{𝐸, 𝑇})) → ((𝐼‘〈𝐸, (𝐽‘𝐸), 𝑥〉) = (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑥〉) ↔ ((𝑀‘(𝑁‘{𝑥})) = (𝐿‘{(𝐼‘〈𝐸, (𝐽‘𝐸), 𝑥〉)}) ∧ (𝑀‘(𝑁‘{(𝐸(-g‘𝑈)𝑥)})) = (𝐿‘{((𝐽‘𝐸)(-g‘𝐶)(𝐼‘〈𝐸, (𝐽‘𝐸), 𝑥〉))})))) | 
| 64 | 62, 63 | mpbii 233 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ (𝑁‘{𝐸, 𝑇})) → ((𝑀‘(𝑁‘{𝑥})) = (𝐿‘{(𝐼‘〈𝐸, (𝐽‘𝐸), 𝑥〉)}) ∧ (𝑀‘(𝑁‘{(𝐸(-g‘𝑈)𝑥)})) = (𝐿‘{((𝐽‘𝐸)(-g‘𝐶)(𝐼‘〈𝐸, (𝐽‘𝐸), 𝑥〉))}))) | 
| 65 | 64 | simpld 494 | . . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ (𝑁‘{𝐸, 𝑇})) → (𝑀‘(𝑁‘{𝑥})) = (𝐿‘{(𝐼‘〈𝐸, (𝐽‘𝐸), 𝑥〉)})) | 
| 66 | 1, 2, 3, 36, 8, 4,
15, 16, 37, 38, 39, 18, 20, 43, 57, 58, 60, 61, 65 | hdmap1eq 41804 | . . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ (𝑁‘{𝐸, 𝑇})) → ((𝐼‘〈𝑥, (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑥〉), 𝑇〉) = (𝑆‘𝑇) ↔ ((𝑀‘(𝑁‘{𝑇})) = (𝐿‘{(𝑆‘𝑇)}) ∧ (𝑀‘(𝑁‘{(𝑥(-g‘𝑈)𝑇)})) = (𝐿‘{((𝐼‘〈𝐸, (𝐽‘𝐸), 𝑥〉)(-g‘𝐶)(𝑆‘𝑇))})))) | 
| 67 | 35, 66 | mpbid 232 | . . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ (𝑁‘{𝐸, 𝑇})) → ((𝑀‘(𝑁‘{𝑇})) = (𝐿‘{(𝑆‘𝑇)}) ∧ (𝑀‘(𝑁‘{(𝑥(-g‘𝑈)𝑇)})) = (𝐿‘{((𝐼‘〈𝐸, (𝐽‘𝐸), 𝑥〉)(-g‘𝐶)(𝑆‘𝑇))}))) | 
| 68 | 67 | simpld 494 | . . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ (𝑁‘{𝐸, 𝑇})) → (𝑀‘(𝑁‘{𝑇})) = (𝐿‘{(𝑆‘𝑇)})) | 
| 69 | 68 | rexlimdv3a 3158 | . 2
⊢ (𝜑 → (∃𝑥 ∈ 𝑉 ¬ 𝑥 ∈ (𝑁‘{𝐸, 𝑇}) → (𝑀‘(𝑁‘{𝑇})) = (𝐿‘{(𝑆‘𝑇)}))) | 
| 70 | 14, 69 | mpd 15 | 1
⊢ (𝜑 → (𝑀‘(𝑁‘{𝑇})) = (𝐿‘{(𝑆‘𝑇)})) |