Step | Hyp | Ref
| Expression |
1 | | hdmap10.h |
. . 3
⊢ 𝐻 = (LHyp‘𝐾) |
2 | | hdmap10.u |
. . 3
⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
3 | | hdmap10.v |
. . 3
⊢ 𝑉 = (Base‘𝑈) |
4 | | hdmap10.n |
. . 3
⊢ 𝑁 = (LSpan‘𝑈) |
5 | | hdmap10.k |
. . 3
⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
6 | | eqid 2739 |
. . . . 5
⊢
(Base‘𝐾) =
(Base‘𝐾) |
7 | | eqid 2739 |
. . . . 5
⊢
((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊) |
8 | | hdmap10.o |
. . . . 5
⊢ 0 =
(0g‘𝑈) |
9 | | hdmap10.e |
. . . . 5
⊢ 𝐸 = 〈( I ↾
(Base‘𝐾)), ( I
↾ ((LTrn‘𝐾)‘𝑊))〉 |
10 | 1, 6, 7, 2, 3, 8, 9, 5 | dvheveccl 39105 |
. . . 4
⊢ (𝜑 → 𝐸 ∈ (𝑉 ∖ { 0 })) |
11 | 10 | eldifad 3903 |
. . 3
⊢ (𝜑 → 𝐸 ∈ 𝑉) |
12 | | hdmap10lem.t |
. . . 4
⊢ (𝜑 → 𝑇 ∈ (𝑉 ∖ { 0 })) |
13 | 12 | eldifad 3903 |
. . 3
⊢ (𝜑 → 𝑇 ∈ 𝑉) |
14 | 1, 2, 3, 4, 5, 11,
13 | dvh3dim 39439 |
. 2
⊢ (𝜑 → ∃𝑥 ∈ 𝑉 ¬ 𝑥 ∈ (𝑁‘{𝐸, 𝑇})) |
15 | | hdmap10.c |
. . . . . . 7
⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
16 | | hdmap10.d |
. . . . . . 7
⊢ 𝐷 = (Base‘𝐶) |
17 | | hdmap10.j |
. . . . . . 7
⊢ 𝐽 = ((HVMap‘𝐾)‘𝑊) |
18 | | hdmap10.i |
. . . . . . 7
⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) |
19 | | hdmap10.s |
. . . . . . 7
⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) |
20 | 5 | 3ad2ant1 1131 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ (𝑁‘{𝐸, 𝑇})) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
21 | 13 | 3ad2ant1 1131 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ (𝑁‘{𝐸, 𝑇})) → 𝑇 ∈ 𝑉) |
22 | | simp2 1135 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ (𝑁‘{𝐸, 𝑇})) → 𝑥 ∈ 𝑉) |
23 | | eqid 2739 |
. . . . . . . . . . . 12
⊢
(LSubSp‘𝑈) =
(LSubSp‘𝑈) |
24 | 1, 2, 5 | dvhlmod 39103 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑈 ∈ LMod) |
25 | 3, 23, 4, 24, 11, 13 | lspprcl 20221 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑁‘{𝐸, 𝑇}) ∈ (LSubSp‘𝑈)) |
26 | 3, 4, 24, 11, 13 | lspprid1 20240 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐸 ∈ (𝑁‘{𝐸, 𝑇})) |
27 | 23, 4, 24, 25, 26 | lspsnel5a 20239 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑁‘{𝐸}) ⊆ (𝑁‘{𝐸, 𝑇})) |
28 | 3, 4, 24, 11, 13 | lspprid2 20241 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑇 ∈ (𝑁‘{𝐸, 𝑇})) |
29 | 23, 4, 24, 25, 28 | lspsnel5a 20239 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑁‘{𝑇}) ⊆ (𝑁‘{𝐸, 𝑇})) |
30 | 27, 29 | unssd 4124 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑇})) ⊆ (𝑁‘{𝐸, 𝑇})) |
31 | 30 | sseld 3924 |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑇})) → 𝑥 ∈ (𝑁‘{𝐸, 𝑇}))) |
32 | 31 | con3dimp 408 |
. . . . . . . 8
⊢ ((𝜑 ∧ ¬ 𝑥 ∈ (𝑁‘{𝐸, 𝑇})) → ¬ 𝑥 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑇}))) |
33 | 32 | 3adant2 1129 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ (𝑁‘{𝐸, 𝑇})) → ¬ 𝑥 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑇}))) |
34 | 1, 9, 2, 3, 4, 15,
16, 17, 18, 19, 20, 21, 22, 33 | hdmapval2 39825 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ (𝑁‘{𝐸, 𝑇})) → (𝑆‘𝑇) = (𝐼‘〈𝑥, (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑥〉), 𝑇〉)) |
35 | 34 | eqcomd 2745 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ (𝑁‘{𝐸, 𝑇})) → (𝐼‘〈𝑥, (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑥〉), 𝑇〉) = (𝑆‘𝑇)) |
36 | | eqid 2739 |
. . . . . 6
⊢
(-g‘𝑈) = (-g‘𝑈) |
37 | | eqid 2739 |
. . . . . 6
⊢
(-g‘𝐶) = (-g‘𝐶) |
38 | | hdmap10.l |
. . . . . 6
⊢ 𝐿 = (LSpan‘𝐶) |
39 | | hdmap10.m |
. . . . . 6
⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
40 | 24 | 3ad2ant1 1131 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ (𝑁‘{𝐸, 𝑇})) → 𝑈 ∈ LMod) |
41 | 25 | 3ad2ant1 1131 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ (𝑁‘{𝐸, 𝑇})) → (𝑁‘{𝐸, 𝑇}) ∈ (LSubSp‘𝑈)) |
42 | | simp3 1136 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ (𝑁‘{𝐸, 𝑇})) → ¬ 𝑥 ∈ (𝑁‘{𝐸, 𝑇})) |
43 | 8, 23, 40, 41, 22, 42 | lssneln0 20195 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ (𝑁‘{𝐸, 𝑇})) → 𝑥 ∈ (𝑉 ∖ { 0 })) |
44 | | eqid 2739 |
. . . . . . . . . 10
⊢
(0g‘𝐶) = (0g‘𝐶) |
45 | 1, 2, 3, 8, 15, 16, 44, 17, 5, 10 | hvmapcl2 39759 |
. . . . . . . . 9
⊢ (𝜑 → (𝐽‘𝐸) ∈ (𝐷 ∖ {(0g‘𝐶)})) |
46 | 45 | eldifad 3903 |
. . . . . . . 8
⊢ (𝜑 → (𝐽‘𝐸) ∈ 𝐷) |
47 | 46 | 3ad2ant1 1131 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ (𝑁‘{𝐸, 𝑇})) → (𝐽‘𝐸) ∈ 𝐷) |
48 | 1, 2, 3, 8, 4, 15,
38, 39, 17, 5, 10 | mapdhvmap 39762 |
. . . . . . . 8
⊢ (𝜑 → (𝑀‘(𝑁‘{𝐸})) = (𝐿‘{(𝐽‘𝐸)})) |
49 | 48 | 3ad2ant1 1131 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ (𝑁‘{𝐸, 𝑇})) → (𝑀‘(𝑁‘{𝐸})) = (𝐿‘{(𝐽‘𝐸)})) |
50 | 1, 2, 5 | dvhlvec 39102 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑈 ∈ LVec) |
51 | 50 | 3ad2ant1 1131 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ (𝑁‘{𝐸, 𝑇})) → 𝑈 ∈ LVec) |
52 | 11 | 3ad2ant1 1131 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ (𝑁‘{𝐸, 𝑇})) → 𝐸 ∈ 𝑉) |
53 | 3, 4, 51, 22, 52, 21, 42 | lspindpi 20375 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ (𝑁‘{𝐸, 𝑇})) → ((𝑁‘{𝑥}) ≠ (𝑁‘{𝐸}) ∧ (𝑁‘{𝑥}) ≠ (𝑁‘{𝑇}))) |
54 | 53 | simpld 494 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ (𝑁‘{𝐸, 𝑇})) → (𝑁‘{𝑥}) ≠ (𝑁‘{𝐸})) |
55 | 54 | necomd 3000 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ (𝑁‘{𝐸, 𝑇})) → (𝑁‘{𝐸}) ≠ (𝑁‘{𝑥})) |
56 | 10 | 3ad2ant1 1131 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ (𝑁‘{𝐸, 𝑇})) → 𝐸 ∈ (𝑉 ∖ { 0 })) |
57 | 1, 2, 3, 8, 4, 15,
16, 38, 39, 18, 20, 47, 49, 55, 56, 22 | hdmap1cl 39797 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ (𝑁‘{𝐸, 𝑇})) → (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑥〉) ∈ 𝐷) |
58 | 12 | 3ad2ant1 1131 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ (𝑁‘{𝐸, 𝑇})) → 𝑇 ∈ (𝑉 ∖ { 0 })) |
59 | 1, 2, 3, 15, 16, 19, 5, 13 | hdmapcl 39823 |
. . . . . . 7
⊢ (𝜑 → (𝑆‘𝑇) ∈ 𝐷) |
60 | 59 | 3ad2ant1 1131 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ (𝑁‘{𝐸, 𝑇})) → (𝑆‘𝑇) ∈ 𝐷) |
61 | 53 | simprd 495 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ (𝑁‘{𝐸, 𝑇})) → (𝑁‘{𝑥}) ≠ (𝑁‘{𝑇})) |
62 | | eqid 2739 |
. . . . . . . 8
⊢ (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑥〉) = (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑥〉) |
63 | 1, 2, 3, 36, 8, 4,
15, 16, 37, 38, 39, 18, 20, 56, 47, 43, 57, 55, 49 | hdmap1eq 39794 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ (𝑁‘{𝐸, 𝑇})) → ((𝐼‘〈𝐸, (𝐽‘𝐸), 𝑥〉) = (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑥〉) ↔ ((𝑀‘(𝑁‘{𝑥})) = (𝐿‘{(𝐼‘〈𝐸, (𝐽‘𝐸), 𝑥〉)}) ∧ (𝑀‘(𝑁‘{(𝐸(-g‘𝑈)𝑥)})) = (𝐿‘{((𝐽‘𝐸)(-g‘𝐶)(𝐼‘〈𝐸, (𝐽‘𝐸), 𝑥〉))})))) |
64 | 62, 63 | mpbii 232 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ (𝑁‘{𝐸, 𝑇})) → ((𝑀‘(𝑁‘{𝑥})) = (𝐿‘{(𝐼‘〈𝐸, (𝐽‘𝐸), 𝑥〉)}) ∧ (𝑀‘(𝑁‘{(𝐸(-g‘𝑈)𝑥)})) = (𝐿‘{((𝐽‘𝐸)(-g‘𝐶)(𝐼‘〈𝐸, (𝐽‘𝐸), 𝑥〉))}))) |
65 | 64 | simpld 494 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ (𝑁‘{𝐸, 𝑇})) → (𝑀‘(𝑁‘{𝑥})) = (𝐿‘{(𝐼‘〈𝐸, (𝐽‘𝐸), 𝑥〉)})) |
66 | 1, 2, 3, 36, 8, 4,
15, 16, 37, 38, 39, 18, 20, 43, 57, 58, 60, 61, 65 | hdmap1eq 39794 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ (𝑁‘{𝐸, 𝑇})) → ((𝐼‘〈𝑥, (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑥〉), 𝑇〉) = (𝑆‘𝑇) ↔ ((𝑀‘(𝑁‘{𝑇})) = (𝐿‘{(𝑆‘𝑇)}) ∧ (𝑀‘(𝑁‘{(𝑥(-g‘𝑈)𝑇)})) = (𝐿‘{((𝐼‘〈𝐸, (𝐽‘𝐸), 𝑥〉)(-g‘𝐶)(𝑆‘𝑇))})))) |
67 | 35, 66 | mpbid 231 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ (𝑁‘{𝐸, 𝑇})) → ((𝑀‘(𝑁‘{𝑇})) = (𝐿‘{(𝑆‘𝑇)}) ∧ (𝑀‘(𝑁‘{(𝑥(-g‘𝑈)𝑇)})) = (𝐿‘{((𝐼‘〈𝐸, (𝐽‘𝐸), 𝑥〉)(-g‘𝐶)(𝑆‘𝑇))}))) |
68 | 67 | simpld 494 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ (𝑁‘{𝐸, 𝑇})) → (𝑀‘(𝑁‘{𝑇})) = (𝐿‘{(𝑆‘𝑇)})) |
69 | 68 | rexlimdv3a 3216 |
. 2
⊢ (𝜑 → (∃𝑥 ∈ 𝑉 ¬ 𝑥 ∈ (𝑁‘{𝐸, 𝑇}) → (𝑀‘(𝑁‘{𝑇})) = (𝐿‘{(𝑆‘𝑇)}))) |
70 | 14, 69 | mpd 15 |
1
⊢ (𝜑 → (𝑀‘(𝑁‘{𝑇})) = (𝐿‘{(𝑆‘𝑇)})) |