MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsdir Structured version   Visualization version   GIF version

Theorem lgsdir 27219
Description: The Legendre symbol is completely multiplicative in its left argument. Generalization of theorem 9.9(a) in [ApostolNT] p. 188 (which assumes that 𝐴 and 𝐵 are odd positive integers). Together with lgsqr 27238 this implies that the product of two quadratic residues or nonresidues is a residue, and the product of a residue and a nonresidue is a nonresidue. (Contributed by Mario Carneiro, 4-Feb-2015.)
Assertion
Ref Expression
lgsdir (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → ((𝐴 · 𝐵) /L 𝑁) = ((𝐴 /L 𝑁) · (𝐵 /L 𝑁)))

Proof of Theorem lgsdir
Dummy variables 𝑘 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-1cn 11102 . . . . . . 7 1 ∈ ℂ
2 0cn 11142 . . . . . . 7 0 ∈ ℂ
31, 2ifcli 4532 . . . . . 6 if((𝐵↑2) = 1, 1, 0) ∈ ℂ
43mullidi 11155 . . . . 5 (1 · if((𝐵↑2) = 1, 1, 0)) = if((𝐵↑2) = 1, 1, 0)
5 iftrue 4490 . . . . . . 7 ((𝐴↑2) = 1 → if((𝐴↑2) = 1, 1, 0) = 1)
65adantl 481 . . . . . 6 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) ∧ (𝐴↑2) = 1) → if((𝐴↑2) = 1, 1, 0) = 1)
76oveq1d 7384 . . . . 5 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) ∧ (𝐴↑2) = 1) → (if((𝐴↑2) = 1, 1, 0) · if((𝐵↑2) = 1, 1, 0)) = (1 · if((𝐵↑2) = 1, 1, 0)))
8 simpl1 1192 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → 𝐴 ∈ ℤ)
98zcnd 12615 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → 𝐴 ∈ ℂ)
109ad2antrr 726 . . . . . . . . 9 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) ∧ (𝐴↑2) = 1) → 𝐴 ∈ ℂ)
11 simpl2 1193 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → 𝐵 ∈ ℤ)
1211zcnd 12615 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → 𝐵 ∈ ℂ)
1312ad2antrr 726 . . . . . . . . 9 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) ∧ (𝐴↑2) = 1) → 𝐵 ∈ ℂ)
1410, 13sqmuld 14099 . . . . . . . 8 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) ∧ (𝐴↑2) = 1) → ((𝐴 · 𝐵)↑2) = ((𝐴↑2) · (𝐵↑2)))
15 simpr 484 . . . . . . . . 9 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) ∧ (𝐴↑2) = 1) → (𝐴↑2) = 1)
1615oveq1d 7384 . . . . . . . 8 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) ∧ (𝐴↑2) = 1) → ((𝐴↑2) · (𝐵↑2)) = (1 · (𝐵↑2)))
1712sqcld 14085 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → (𝐵↑2) ∈ ℂ)
1817ad2antrr 726 . . . . . . . . 9 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) ∧ (𝐴↑2) = 1) → (𝐵↑2) ∈ ℂ)
1918mullidd 11168 . . . . . . . 8 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) ∧ (𝐴↑2) = 1) → (1 · (𝐵↑2)) = (𝐵↑2))
2014, 16, 193eqtrd 2768 . . . . . . 7 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) ∧ (𝐴↑2) = 1) → ((𝐴 · 𝐵)↑2) = (𝐵↑2))
2120eqeq1d 2731 . . . . . 6 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) ∧ (𝐴↑2) = 1) → (((𝐴 · 𝐵)↑2) = 1 ↔ (𝐵↑2) = 1))
2221ifbid 4508 . . . . 5 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) ∧ (𝐴↑2) = 1) → if(((𝐴 · 𝐵)↑2) = 1, 1, 0) = if((𝐵↑2) = 1, 1, 0))
234, 7, 223eqtr4a 2790 . . . 4 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) ∧ (𝐴↑2) = 1) → (if((𝐴↑2) = 1, 1, 0) · if((𝐵↑2) = 1, 1, 0)) = if(((𝐴 · 𝐵)↑2) = 1, 1, 0))
243mul02i 11339 . . . . 5 (0 · if((𝐵↑2) = 1, 1, 0)) = 0
25 iffalse 4493 . . . . . . 7 (¬ (𝐴↑2) = 1 → if((𝐴↑2) = 1, 1, 0) = 0)
2625adantl 481 . . . . . 6 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) ∧ ¬ (𝐴↑2) = 1) → if((𝐴↑2) = 1, 1, 0) = 0)
2726oveq1d 7384 . . . . 5 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) ∧ ¬ (𝐴↑2) = 1) → (if((𝐴↑2) = 1, 1, 0) · if((𝐵↑2) = 1, 1, 0)) = (0 · if((𝐵↑2) = 1, 1, 0)))
28 dvdsmul1 16223 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐴 ∥ (𝐴 · 𝐵))
298, 11, 28syl2anc 584 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → 𝐴 ∥ (𝐴 · 𝐵))
308, 11zmulcld 12620 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → (𝐴 · 𝐵) ∈ ℤ)
31 dvdssq 16513 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ (𝐴 · 𝐵) ∈ ℤ) → (𝐴 ∥ (𝐴 · 𝐵) ↔ (𝐴↑2) ∥ ((𝐴 · 𝐵)↑2)))
328, 30, 31syl2anc 584 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → (𝐴 ∥ (𝐴 · 𝐵) ↔ (𝐴↑2) ∥ ((𝐴 · 𝐵)↑2)))
3329, 32mpbid 232 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → (𝐴↑2) ∥ ((𝐴 · 𝐵)↑2))
3433adantr 480 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) → (𝐴↑2) ∥ ((𝐴 · 𝐵)↑2))
35 breq2 5106 . . . . . . . . 9 (((𝐴 · 𝐵)↑2) = 1 → ((𝐴↑2) ∥ ((𝐴 · 𝐵)↑2) ↔ (𝐴↑2) ∥ 1))
3634, 35syl5ibcom 245 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) → (((𝐴 · 𝐵)↑2) = 1 → (𝐴↑2) ∥ 1))
37 simprl 770 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → 𝐴 ≠ 0)
3837neneqd 2930 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → ¬ 𝐴 = 0)
39 sqeq0 14061 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → ((𝐴↑2) = 0 ↔ 𝐴 = 0))
409, 39syl 17 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → ((𝐴↑2) = 0 ↔ 𝐴 = 0))
4138, 40mtbird 325 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → ¬ (𝐴↑2) = 0)
42 zsqcl2 14079 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℤ → (𝐴↑2) ∈ ℕ0)
438, 42syl 17 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → (𝐴↑2) ∈ ℕ0)
44 elnn0 12420 . . . . . . . . . . . . . . . 16 ((𝐴↑2) ∈ ℕ0 ↔ ((𝐴↑2) ∈ ℕ ∨ (𝐴↑2) = 0))
4543, 44sylib 218 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → ((𝐴↑2) ∈ ℕ ∨ (𝐴↑2) = 0))
4645ord 864 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → (¬ (𝐴↑2) ∈ ℕ → (𝐴↑2) = 0))
4741, 46mt3d 148 . . . . . . . . . . . . 13 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → (𝐴↑2) ∈ ℕ)
4847adantr 480 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) → (𝐴↑2) ∈ ℕ)
4948nnzd 12532 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) → (𝐴↑2) ∈ ℤ)
50 1nn 12173 . . . . . . . . . . 11 1 ∈ ℕ
51 dvdsle 16256 . . . . . . . . . . 11 (((𝐴↑2) ∈ ℤ ∧ 1 ∈ ℕ) → ((𝐴↑2) ∥ 1 → (𝐴↑2) ≤ 1))
5249, 50, 51sylancl 586 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) → ((𝐴↑2) ∥ 1 → (𝐴↑2) ≤ 1))
5348nnge1d 12210 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) → 1 ≤ (𝐴↑2))
5452, 53jctird 526 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) → ((𝐴↑2) ∥ 1 → ((𝐴↑2) ≤ 1 ∧ 1 ≤ (𝐴↑2))))
5548nnred 12177 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) → (𝐴↑2) ∈ ℝ)
56 1re 11150 . . . . . . . . . 10 1 ∈ ℝ
57 letri3 11235 . . . . . . . . . 10 (((𝐴↑2) ∈ ℝ ∧ 1 ∈ ℝ) → ((𝐴↑2) = 1 ↔ ((𝐴↑2) ≤ 1 ∧ 1 ≤ (𝐴↑2))))
5855, 56, 57sylancl 586 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) → ((𝐴↑2) = 1 ↔ ((𝐴↑2) ≤ 1 ∧ 1 ≤ (𝐴↑2))))
5954, 58sylibrd 259 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) → ((𝐴↑2) ∥ 1 → (𝐴↑2) = 1))
6036, 59syld 47 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) → (((𝐴 · 𝐵)↑2) = 1 → (𝐴↑2) = 1))
6160con3dimp 408 . . . . . 6 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) ∧ ¬ (𝐴↑2) = 1) → ¬ ((𝐴 · 𝐵)↑2) = 1)
6261iffalsed 4495 . . . . 5 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) ∧ ¬ (𝐴↑2) = 1) → if(((𝐴 · 𝐵)↑2) = 1, 1, 0) = 0)
6324, 27, 623eqtr4a 2790 . . . 4 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) ∧ ¬ (𝐴↑2) = 1) → (if((𝐴↑2) = 1, 1, 0) · if((𝐵↑2) = 1, 1, 0)) = if(((𝐴 · 𝐵)↑2) = 1, 1, 0))
6423, 63pm2.61dan 812 . . 3 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) → (if((𝐴↑2) = 1, 1, 0) · if((𝐵↑2) = 1, 1, 0)) = if(((𝐴 · 𝐵)↑2) = 1, 1, 0))
65 oveq2 7377 . . . . 5 (𝑁 = 0 → (𝐴 /L 𝑁) = (𝐴 /L 0))
66 lgs0 27197 . . . . . 6 (𝐴 ∈ ℤ → (𝐴 /L 0) = if((𝐴↑2) = 1, 1, 0))
678, 66syl 17 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → (𝐴 /L 0) = if((𝐴↑2) = 1, 1, 0))
6865, 67sylan9eqr 2786 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) → (𝐴 /L 𝑁) = if((𝐴↑2) = 1, 1, 0))
69 oveq2 7377 . . . . 5 (𝑁 = 0 → (𝐵 /L 𝑁) = (𝐵 /L 0))
70 lgs0 27197 . . . . . 6 (𝐵 ∈ ℤ → (𝐵 /L 0) = if((𝐵↑2) = 1, 1, 0))
7111, 70syl 17 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → (𝐵 /L 0) = if((𝐵↑2) = 1, 1, 0))
7269, 71sylan9eqr 2786 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) → (𝐵 /L 𝑁) = if((𝐵↑2) = 1, 1, 0))
7368, 72oveq12d 7387 . . 3 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) → ((𝐴 /L 𝑁) · (𝐵 /L 𝑁)) = (if((𝐴↑2) = 1, 1, 0) · if((𝐵↑2) = 1, 1, 0)))
74 oveq2 7377 . . . 4 (𝑁 = 0 → ((𝐴 · 𝐵) /L 𝑁) = ((𝐴 · 𝐵) /L 0))
75 lgs0 27197 . . . . 5 ((𝐴 · 𝐵) ∈ ℤ → ((𝐴 · 𝐵) /L 0) = if(((𝐴 · 𝐵)↑2) = 1, 1, 0))
7630, 75syl 17 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → ((𝐴 · 𝐵) /L 0) = if(((𝐴 · 𝐵)↑2) = 1, 1, 0))
7774, 76sylan9eqr 2786 . . 3 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) → ((𝐴 · 𝐵) /L 𝑁) = if(((𝐴 · 𝐵)↑2) = 1, 1, 0))
7864, 73, 773eqtr4rd 2775 . 2 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) → ((𝐴 · 𝐵) /L 𝑁) = ((𝐴 /L 𝑁) · (𝐵 /L 𝑁)))
79 lgsdilem 27211 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → if((𝑁 < 0 ∧ (𝐴 · 𝐵) < 0), -1, 1) = (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · if((𝑁 < 0 ∧ 𝐵 < 0), -1, 1)))
8079adantr 480 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) → if((𝑁 < 0 ∧ (𝐴 · 𝐵) < 0), -1, 1) = (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · if((𝑁 < 0 ∧ 𝐵 < 0), -1, 1)))
81 simpl3 1194 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → 𝑁 ∈ ℤ)
82 nnabscl 15268 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (abs‘𝑁) ∈ ℕ)
8381, 82sylan 580 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) → (abs‘𝑁) ∈ ℕ)
84 nnuz 12812 . . . . . 6 ℕ = (ℤ‘1)
8583, 84eleqtrdi 2838 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) → (abs‘𝑁) ∈ (ℤ‘1))
86 simpll1 1213 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) → 𝐴 ∈ ℤ)
87 simpll3 1215 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) → 𝑁 ∈ ℤ)
88 simpr 484 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) → 𝑁 ≠ 0)
89 eqid 2729 . . . . . . . . 9 (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))
9089lgsfcl3 27205 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)):ℕ⟶ℤ)
9186, 87, 88, 90syl3anc 1373 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) → (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)):ℕ⟶ℤ)
92 elfznn 13490 . . . . . . 7 (𝑘 ∈ (1...(abs‘𝑁)) → 𝑘 ∈ ℕ)
93 ffvelcdm 7035 . . . . . . 7 (((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)):ℕ⟶ℤ ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑘) ∈ ℤ)
9491, 92, 93syl2an 596 . . . . . 6 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) ∧ 𝑘 ∈ (1...(abs‘𝑁))) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑘) ∈ ℤ)
9594zcnd 12615 . . . . 5 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) ∧ 𝑘 ∈ (1...(abs‘𝑁))) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑘) ∈ ℂ)
96 simpll2 1214 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) → 𝐵 ∈ ℤ)
97 eqid 2729 . . . . . . . . 9 (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐵 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐵 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))
9897lgsfcl3 27205 . . . . . . . 8 ((𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐵 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)):ℕ⟶ℤ)
9996, 87, 88, 98syl3anc 1373 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) → (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐵 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)):ℕ⟶ℤ)
100 ffvelcdm 7035 . . . . . . 7 (((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐵 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)):ℕ⟶ℤ ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐵 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑘) ∈ ℤ)
10199, 92, 100syl2an 596 . . . . . 6 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) ∧ 𝑘 ∈ (1...(abs‘𝑁))) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐵 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑘) ∈ ℤ)
102101zcnd 12615 . . . . 5 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) ∧ 𝑘 ∈ (1...(abs‘𝑁))) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐵 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑘) ∈ ℂ)
10386adantr 480 . . . . . . . . . . . 12 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) ∧ 𝑘 ∈ ℙ) → 𝐴 ∈ ℤ)
10496adantr 480 . . . . . . . . . . . 12 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) ∧ 𝑘 ∈ ℙ) → 𝐵 ∈ ℤ)
105 simpr 484 . . . . . . . . . . . 12 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) ∧ 𝑘 ∈ ℙ) → 𝑘 ∈ ℙ)
106 lgsdirprm 27218 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑘 ∈ ℙ) → ((𝐴 · 𝐵) /L 𝑘) = ((𝐴 /L 𝑘) · (𝐵 /L 𝑘)))
107103, 104, 105, 106syl3anc 1373 . . . . . . . . . . 11 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) ∧ 𝑘 ∈ ℙ) → ((𝐴 · 𝐵) /L 𝑘) = ((𝐴 /L 𝑘) · (𝐵 /L 𝑘)))
108107oveq1d 7384 . . . . . . . . . 10 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) ∧ 𝑘 ∈ ℙ) → (((𝐴 · 𝐵) /L 𝑘)↑(𝑘 pCnt 𝑁)) = (((𝐴 /L 𝑘) · (𝐵 /L 𝑘))↑(𝑘 pCnt 𝑁)))
109 prmz 16621 . . . . . . . . . . . . 13 (𝑘 ∈ ℙ → 𝑘 ∈ ℤ)
110 lgscl 27198 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝐴 /L 𝑘) ∈ ℤ)
11186, 109, 110syl2an 596 . . . . . . . . . . . 12 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) ∧ 𝑘 ∈ ℙ) → (𝐴 /L 𝑘) ∈ ℤ)
112111zcnd 12615 . . . . . . . . . . 11 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) ∧ 𝑘 ∈ ℙ) → (𝐴 /L 𝑘) ∈ ℂ)
113 lgscl 27198 . . . . . . . . . . . . 13 ((𝐵 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝐵 /L 𝑘) ∈ ℤ)
11496, 109, 113syl2an 596 . . . . . . . . . . . 12 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) ∧ 𝑘 ∈ ℙ) → (𝐵 /L 𝑘) ∈ ℤ)
115114zcnd 12615 . . . . . . . . . . 11 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) ∧ 𝑘 ∈ ℙ) → (𝐵 /L 𝑘) ∈ ℂ)
11687adantr 480 . . . . . . . . . . . 12 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) ∧ 𝑘 ∈ ℙ) → 𝑁 ∈ ℤ)
11788adantr 480 . . . . . . . . . . . 12 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) ∧ 𝑘 ∈ ℙ) → 𝑁 ≠ 0)
118 pczcl 16795 . . . . . . . . . . . 12 ((𝑘 ∈ ℙ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑘 pCnt 𝑁) ∈ ℕ0)
119105, 116, 117, 118syl12anc 836 . . . . . . . . . . 11 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) ∧ 𝑘 ∈ ℙ) → (𝑘 pCnt 𝑁) ∈ ℕ0)
120112, 115, 119mulexpd 14102 . . . . . . . . . 10 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) ∧ 𝑘 ∈ ℙ) → (((𝐴 /L 𝑘) · (𝐵 /L 𝑘))↑(𝑘 pCnt 𝑁)) = (((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)) · ((𝐵 /L 𝑘)↑(𝑘 pCnt 𝑁))))
121108, 120eqtrd 2764 . . . . . . . . 9 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) ∧ 𝑘 ∈ ℙ) → (((𝐴 · 𝐵) /L 𝑘)↑(𝑘 pCnt 𝑁)) = (((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)) · ((𝐵 /L 𝑘)↑(𝑘 pCnt 𝑁))))
122 iftrue 4490 . . . . . . . . . 10 (𝑘 ∈ ℙ → if(𝑘 ∈ ℙ, (((𝐴 · 𝐵) /L 𝑘)↑(𝑘 pCnt 𝑁)), 1) = (((𝐴 · 𝐵) /L 𝑘)↑(𝑘 pCnt 𝑁)))
123122adantl 481 . . . . . . . . 9 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) ∧ 𝑘 ∈ ℙ) → if(𝑘 ∈ ℙ, (((𝐴 · 𝐵) /L 𝑘)↑(𝑘 pCnt 𝑁)), 1) = (((𝐴 · 𝐵) /L 𝑘)↑(𝑘 pCnt 𝑁)))
124 iftrue 4490 . . . . . . . . . . 11 (𝑘 ∈ ℙ → if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1) = ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)))
125 iftrue 4490 . . . . . . . . . . 11 (𝑘 ∈ ℙ → if(𝑘 ∈ ℙ, ((𝐵 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1) = ((𝐵 /L 𝑘)↑(𝑘 pCnt 𝑁)))
126124, 125oveq12d 7387 . . . . . . . . . 10 (𝑘 ∈ ℙ → (if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1) · if(𝑘 ∈ ℙ, ((𝐵 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1)) = (((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)) · ((𝐵 /L 𝑘)↑(𝑘 pCnt 𝑁))))
127126adantl 481 . . . . . . . . 9 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) ∧ 𝑘 ∈ ℙ) → (if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1) · if(𝑘 ∈ ℙ, ((𝐵 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1)) = (((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)) · ((𝐵 /L 𝑘)↑(𝑘 pCnt 𝑁))))
128121, 123, 1273eqtr4d 2774 . . . . . . . 8 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) ∧ 𝑘 ∈ ℙ) → if(𝑘 ∈ ℙ, (((𝐴 · 𝐵) /L 𝑘)↑(𝑘 pCnt 𝑁)), 1) = (if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1) · if(𝑘 ∈ ℙ, ((𝐵 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1)))
129 1t1e1 12319 . . . . . . . . . . 11 (1 · 1) = 1
130129eqcomi 2738 . . . . . . . . . 10 1 = (1 · 1)
131 iffalse 4493 . . . . . . . . . 10 𝑘 ∈ ℙ → if(𝑘 ∈ ℙ, (((𝐴 · 𝐵) /L 𝑘)↑(𝑘 pCnt 𝑁)), 1) = 1)
132 iffalse 4493 . . . . . . . . . . 11 𝑘 ∈ ℙ → if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1) = 1)
133 iffalse 4493 . . . . . . . . . . 11 𝑘 ∈ ℙ → if(𝑘 ∈ ℙ, ((𝐵 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1) = 1)
134132, 133oveq12d 7387 . . . . . . . . . 10 𝑘 ∈ ℙ → (if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1) · if(𝑘 ∈ ℙ, ((𝐵 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1)) = (1 · 1))
135130, 131, 1343eqtr4a 2790 . . . . . . . . 9 𝑘 ∈ ℙ → if(𝑘 ∈ ℙ, (((𝐴 · 𝐵) /L 𝑘)↑(𝑘 pCnt 𝑁)), 1) = (if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1) · if(𝑘 ∈ ℙ, ((𝐵 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1)))
136135adantl 481 . . . . . . . 8 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) ∧ ¬ 𝑘 ∈ ℙ) → if(𝑘 ∈ ℙ, (((𝐴 · 𝐵) /L 𝑘)↑(𝑘 pCnt 𝑁)), 1) = (if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1) · if(𝑘 ∈ ℙ, ((𝐵 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1)))
137128, 136pm2.61dan 812 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) → if(𝑘 ∈ ℙ, (((𝐴 · 𝐵) /L 𝑘)↑(𝑘 pCnt 𝑁)), 1) = (if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1) · if(𝑘 ∈ ℙ, ((𝐵 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1)))
138137adantr 480 . . . . . 6 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) ∧ 𝑘 ∈ (1...(abs‘𝑁))) → if(𝑘 ∈ ℙ, (((𝐴 · 𝐵) /L 𝑘)↑(𝑘 pCnt 𝑁)), 1) = (if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1) · if(𝑘 ∈ ℙ, ((𝐵 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1)))
13992adantl 481 . . . . . . 7 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) ∧ 𝑘 ∈ (1...(abs‘𝑁))) → 𝑘 ∈ ℕ)
140 eleq1w 2811 . . . . . . . . 9 (𝑛 = 𝑘 → (𝑛 ∈ ℙ ↔ 𝑘 ∈ ℙ))
141 oveq2 7377 . . . . . . . . . 10 (𝑛 = 𝑘 → ((𝐴 · 𝐵) /L 𝑛) = ((𝐴 · 𝐵) /L 𝑘))
142 oveq1 7376 . . . . . . . . . 10 (𝑛 = 𝑘 → (𝑛 pCnt 𝑁) = (𝑘 pCnt 𝑁))
143141, 142oveq12d 7387 . . . . . . . . 9 (𝑛 = 𝑘 → (((𝐴 · 𝐵) /L 𝑛)↑(𝑛 pCnt 𝑁)) = (((𝐴 · 𝐵) /L 𝑘)↑(𝑘 pCnt 𝑁)))
144140, 143ifbieq1d 4509 . . . . . . . 8 (𝑛 = 𝑘 → if(𝑛 ∈ ℙ, (((𝐴 · 𝐵) /L 𝑛)↑(𝑛 pCnt 𝑁)), 1) = if(𝑘 ∈ ℙ, (((𝐴 · 𝐵) /L 𝑘)↑(𝑘 pCnt 𝑁)), 1))
145 eqid 2729 . . . . . . . 8 (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (((𝐴 · 𝐵) /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (((𝐴 · 𝐵) /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))
146 ovex 7402 . . . . . . . . 9 (((𝐴 · 𝐵) /L 𝑘)↑(𝑘 pCnt 𝑁)) ∈ V
147 1ex 11146 . . . . . . . . 9 1 ∈ V
148146, 147ifex 4535 . . . . . . . 8 if(𝑘 ∈ ℙ, (((𝐴 · 𝐵) /L 𝑘)↑(𝑘 pCnt 𝑁)), 1) ∈ V
149144, 145, 148fvmpt 6950 . . . . . . 7 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (((𝐴 · 𝐵) /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑘) = if(𝑘 ∈ ℙ, (((𝐴 · 𝐵) /L 𝑘)↑(𝑘 pCnt 𝑁)), 1))
150139, 149syl 17 . . . . . 6 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) ∧ 𝑘 ∈ (1...(abs‘𝑁))) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (((𝐴 · 𝐵) /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑘) = if(𝑘 ∈ ℙ, (((𝐴 · 𝐵) /L 𝑘)↑(𝑘 pCnt 𝑁)), 1))
151 oveq2 7377 . . . . . . . . . . 11 (𝑛 = 𝑘 → (𝐴 /L 𝑛) = (𝐴 /L 𝑘))
152151, 142oveq12d 7387 . . . . . . . . . 10 (𝑛 = 𝑘 → ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)) = ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)))
153140, 152ifbieq1d 4509 . . . . . . . . 9 (𝑛 = 𝑘 → if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1) = if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1))
154 ovex 7402 . . . . . . . . . 10 ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)) ∈ V
155154, 147ifex 4535 . . . . . . . . 9 if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1) ∈ V
156153, 89, 155fvmpt 6950 . . . . . . . 8 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑘) = if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1))
157139, 156syl 17 . . . . . . 7 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) ∧ 𝑘 ∈ (1...(abs‘𝑁))) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑘) = if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1))
158 oveq2 7377 . . . . . . . . . . 11 (𝑛 = 𝑘 → (𝐵 /L 𝑛) = (𝐵 /L 𝑘))
159158, 142oveq12d 7387 . . . . . . . . . 10 (𝑛 = 𝑘 → ((𝐵 /L 𝑛)↑(𝑛 pCnt 𝑁)) = ((𝐵 /L 𝑘)↑(𝑘 pCnt 𝑁)))
160140, 159ifbieq1d 4509 . . . . . . . . 9 (𝑛 = 𝑘 → if(𝑛 ∈ ℙ, ((𝐵 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1) = if(𝑘 ∈ ℙ, ((𝐵 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1))
161 ovex 7402 . . . . . . . . . 10 ((𝐵 /L 𝑘)↑(𝑘 pCnt 𝑁)) ∈ V
162161, 147ifex 4535 . . . . . . . . 9 if(𝑘 ∈ ℙ, ((𝐵 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1) ∈ V
163160, 97, 162fvmpt 6950 . . . . . . . 8 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐵 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑘) = if(𝑘 ∈ ℙ, ((𝐵 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1))
164139, 163syl 17 . . . . . . 7 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) ∧ 𝑘 ∈ (1...(abs‘𝑁))) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐵 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑘) = if(𝑘 ∈ ℙ, ((𝐵 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1))
165157, 164oveq12d 7387 . . . . . 6 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) ∧ 𝑘 ∈ (1...(abs‘𝑁))) → (((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑘) · ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐵 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑘)) = (if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1) · if(𝑘 ∈ ℙ, ((𝐵 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1)))
166138, 150, 1653eqtr4d 2774 . . . . 5 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) ∧ 𝑘 ∈ (1...(abs‘𝑁))) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (((𝐴 · 𝐵) /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑘) = (((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑘) · ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐵 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑘)))
16785, 95, 102, 166prodfmul 15832 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) → (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (((𝐴 · 𝐵) /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) = ((seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐵 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁))))
16880, 167oveq12d 7387 . . 3 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) → (if((𝑁 < 0 ∧ (𝐴 · 𝐵) < 0), -1, 1) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (((𝐴 · 𝐵) /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁))) = ((if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · if((𝑁 < 0 ∧ 𝐵 < 0), -1, 1)) · ((seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐵 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)))))
16930adantr 480 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) → (𝐴 · 𝐵) ∈ ℤ)
170145lgsval4 27204 . . . 4 (((𝐴 · 𝐵) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → ((𝐴 · 𝐵) /L 𝑁) = (if((𝑁 < 0 ∧ (𝐴 · 𝐵) < 0), -1, 1) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (((𝐴 · 𝐵) /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁))))
171169, 87, 88, 170syl3anc 1373 . . 3 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) → ((𝐴 · 𝐵) /L 𝑁) = (if((𝑁 < 0 ∧ (𝐴 · 𝐵) < 0), -1, 1) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (((𝐴 · 𝐵) /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁))))
17289lgsval4 27204 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝐴 /L 𝑁) = (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁))))
17386, 87, 88, 172syl3anc 1373 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) → (𝐴 /L 𝑁) = (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁))))
17497lgsval4 27204 . . . . . 6 ((𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝐵 /L 𝑁) = (if((𝑁 < 0 ∧ 𝐵 < 0), -1, 1) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐵 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁))))
17596, 87, 88, 174syl3anc 1373 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) → (𝐵 /L 𝑁) = (if((𝑁 < 0 ∧ 𝐵 < 0), -1, 1) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐵 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁))))
176173, 175oveq12d 7387 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) → ((𝐴 /L 𝑁) · (𝐵 /L 𝑁)) = ((if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁))) · (if((𝑁 < 0 ∧ 𝐵 < 0), -1, 1) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐵 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)))))
177 neg1cn 12147 . . . . . . 7 -1 ∈ ℂ
178177, 1ifcli 4532 . . . . . 6 if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) ∈ ℂ
179178a1i 11 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) → if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) ∈ ℂ)
180 mulcl 11128 . . . . . . 7 ((𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑘 · 𝑥) ∈ ℂ)
181180adantl 481 . . . . . 6 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) ∧ (𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝑘 · 𝑥) ∈ ℂ)
18285, 95, 181seqcl 13963 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) → (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) ∈ ℂ)
183177, 1ifcli 4532 . . . . . 6 if((𝑁 < 0 ∧ 𝐵 < 0), -1, 1) ∈ ℂ
184183a1i 11 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) → if((𝑁 < 0 ∧ 𝐵 < 0), -1, 1) ∈ ℂ)
18585, 102, 181seqcl 13963 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) → (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐵 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) ∈ ℂ)
186179, 182, 184, 185mul4d 11362 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) → ((if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁))) · (if((𝑁 < 0 ∧ 𝐵 < 0), -1, 1) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐵 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)))) = ((if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · if((𝑁 < 0 ∧ 𝐵 < 0), -1, 1)) · ((seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐵 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)))))
187176, 186eqtrd 2764 . . 3 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) → ((𝐴 /L 𝑁) · (𝐵 /L 𝑁)) = ((if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · if((𝑁 < 0 ∧ 𝐵 < 0), -1, 1)) · ((seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐵 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)))))
188168, 171, 1873eqtr4d 2774 . 2 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) → ((𝐴 · 𝐵) /L 𝑁) = ((𝐴 /L 𝑁) · (𝐵 /L 𝑁)))
18978, 188pm2.61dane 3012 1 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → ((𝐴 · 𝐵) /L 𝑁) = ((𝐴 /L 𝑁) · (𝐵 /L 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2925  ifcif 4484   class class class wbr 5102  cmpt 5183  wf 6495  cfv 6499  (class class class)co 7369  cc 11042  cr 11043  0cc0 11044  1c1 11045   · cmul 11049   < clt 11184  cle 11185  -cneg 11382  cn 12162  2c2 12217  0cn0 12418  cz 12505  cuz 12769  ...cfz 13444  seqcseq 13942  cexp 14002  abscabs 15176  cdvds 16198  cprime 16617   pCnt cpc 16783   /L clgs 27181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-oadd 8415  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-inf 9370  df-dju 9830  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-xnn0 12492  df-z 12506  df-uz 12770  df-q 12884  df-rp 12928  df-fz 13445  df-fzo 13592  df-fl 13730  df-mod 13808  df-seq 13943  df-exp 14003  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-dvds 16199  df-gcd 16441  df-prm 16618  df-phi 16712  df-pc 16784  df-lgs 27182
This theorem is referenced by:  lgssq  27224  lgsmulsqcoprm  27230  lgsdirnn0  27231  lgsquad2lem1  27271
  Copyright terms: Public domain W3C validator