MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsdir Structured version   Visualization version   GIF version

Theorem lgsdir 27270
Description: The Legendre symbol is completely multiplicative in its left argument. Generalization of theorem 9.9(a) in [ApostolNT] p. 188 (which assumes that 𝐴 and 𝐵 are odd positive integers). Together with lgsqr 27289 this implies that the product of two quadratic residues or nonresidues is a residue, and the product of a residue and a nonresidue is a nonresidue. (Contributed by Mario Carneiro, 4-Feb-2015.)
Assertion
Ref Expression
lgsdir (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → ((𝐴 · 𝐵) /L 𝑁) = ((𝐴 /L 𝑁) · (𝐵 /L 𝑁)))

Proof of Theorem lgsdir
Dummy variables 𝑘 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-1cn 11064 . . . . . . 7 1 ∈ ℂ
2 0cn 11104 . . . . . . 7 0 ∈ ℂ
31, 2ifcli 4520 . . . . . 6 if((𝐵↑2) = 1, 1, 0) ∈ ℂ
43mullidi 11117 . . . . 5 (1 · if((𝐵↑2) = 1, 1, 0)) = if((𝐵↑2) = 1, 1, 0)
5 iftrue 4478 . . . . . . 7 ((𝐴↑2) = 1 → if((𝐴↑2) = 1, 1, 0) = 1)
65adantl 481 . . . . . 6 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) ∧ (𝐴↑2) = 1) → if((𝐴↑2) = 1, 1, 0) = 1)
76oveq1d 7361 . . . . 5 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) ∧ (𝐴↑2) = 1) → (if((𝐴↑2) = 1, 1, 0) · if((𝐵↑2) = 1, 1, 0)) = (1 · if((𝐵↑2) = 1, 1, 0)))
8 simpl1 1192 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → 𝐴 ∈ ℤ)
98zcnd 12578 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → 𝐴 ∈ ℂ)
109ad2antrr 726 . . . . . . . . 9 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) ∧ (𝐴↑2) = 1) → 𝐴 ∈ ℂ)
11 simpl2 1193 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → 𝐵 ∈ ℤ)
1211zcnd 12578 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → 𝐵 ∈ ℂ)
1312ad2antrr 726 . . . . . . . . 9 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) ∧ (𝐴↑2) = 1) → 𝐵 ∈ ℂ)
1410, 13sqmuld 14065 . . . . . . . 8 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) ∧ (𝐴↑2) = 1) → ((𝐴 · 𝐵)↑2) = ((𝐴↑2) · (𝐵↑2)))
15 simpr 484 . . . . . . . . 9 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) ∧ (𝐴↑2) = 1) → (𝐴↑2) = 1)
1615oveq1d 7361 . . . . . . . 8 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) ∧ (𝐴↑2) = 1) → ((𝐴↑2) · (𝐵↑2)) = (1 · (𝐵↑2)))
1712sqcld 14051 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → (𝐵↑2) ∈ ℂ)
1817ad2antrr 726 . . . . . . . . 9 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) ∧ (𝐴↑2) = 1) → (𝐵↑2) ∈ ℂ)
1918mullidd 11130 . . . . . . . 8 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) ∧ (𝐴↑2) = 1) → (1 · (𝐵↑2)) = (𝐵↑2))
2014, 16, 193eqtrd 2770 . . . . . . 7 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) ∧ (𝐴↑2) = 1) → ((𝐴 · 𝐵)↑2) = (𝐵↑2))
2120eqeq1d 2733 . . . . . 6 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) ∧ (𝐴↑2) = 1) → (((𝐴 · 𝐵)↑2) = 1 ↔ (𝐵↑2) = 1))
2221ifbid 4496 . . . . 5 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) ∧ (𝐴↑2) = 1) → if(((𝐴 · 𝐵)↑2) = 1, 1, 0) = if((𝐵↑2) = 1, 1, 0))
234, 7, 223eqtr4a 2792 . . . 4 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) ∧ (𝐴↑2) = 1) → (if((𝐴↑2) = 1, 1, 0) · if((𝐵↑2) = 1, 1, 0)) = if(((𝐴 · 𝐵)↑2) = 1, 1, 0))
243mul02i 11302 . . . . 5 (0 · if((𝐵↑2) = 1, 1, 0)) = 0
25 iffalse 4481 . . . . . . 7 (¬ (𝐴↑2) = 1 → if((𝐴↑2) = 1, 1, 0) = 0)
2625adantl 481 . . . . . 6 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) ∧ ¬ (𝐴↑2) = 1) → if((𝐴↑2) = 1, 1, 0) = 0)
2726oveq1d 7361 . . . . 5 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) ∧ ¬ (𝐴↑2) = 1) → (if((𝐴↑2) = 1, 1, 0) · if((𝐵↑2) = 1, 1, 0)) = (0 · if((𝐵↑2) = 1, 1, 0)))
28 dvdsmul1 16188 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐴 ∥ (𝐴 · 𝐵))
298, 11, 28syl2anc 584 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → 𝐴 ∥ (𝐴 · 𝐵))
308, 11zmulcld 12583 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → (𝐴 · 𝐵) ∈ ℤ)
31 dvdssq 16478 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ (𝐴 · 𝐵) ∈ ℤ) → (𝐴 ∥ (𝐴 · 𝐵) ↔ (𝐴↑2) ∥ ((𝐴 · 𝐵)↑2)))
328, 30, 31syl2anc 584 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → (𝐴 ∥ (𝐴 · 𝐵) ↔ (𝐴↑2) ∥ ((𝐴 · 𝐵)↑2)))
3329, 32mpbid 232 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → (𝐴↑2) ∥ ((𝐴 · 𝐵)↑2))
3433adantr 480 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) → (𝐴↑2) ∥ ((𝐴 · 𝐵)↑2))
35 breq2 5093 . . . . . . . . 9 (((𝐴 · 𝐵)↑2) = 1 → ((𝐴↑2) ∥ ((𝐴 · 𝐵)↑2) ↔ (𝐴↑2) ∥ 1))
3634, 35syl5ibcom 245 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) → (((𝐴 · 𝐵)↑2) = 1 → (𝐴↑2) ∥ 1))
37 simprl 770 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → 𝐴 ≠ 0)
3837neneqd 2933 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → ¬ 𝐴 = 0)
39 sqeq0 14027 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → ((𝐴↑2) = 0 ↔ 𝐴 = 0))
409, 39syl 17 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → ((𝐴↑2) = 0 ↔ 𝐴 = 0))
4138, 40mtbird 325 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → ¬ (𝐴↑2) = 0)
42 zsqcl2 14045 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℤ → (𝐴↑2) ∈ ℕ0)
438, 42syl 17 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → (𝐴↑2) ∈ ℕ0)
44 elnn0 12383 . . . . . . . . . . . . . . . 16 ((𝐴↑2) ∈ ℕ0 ↔ ((𝐴↑2) ∈ ℕ ∨ (𝐴↑2) = 0))
4543, 44sylib 218 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → ((𝐴↑2) ∈ ℕ ∨ (𝐴↑2) = 0))
4645ord 864 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → (¬ (𝐴↑2) ∈ ℕ → (𝐴↑2) = 0))
4741, 46mt3d 148 . . . . . . . . . . . . 13 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → (𝐴↑2) ∈ ℕ)
4847adantr 480 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) → (𝐴↑2) ∈ ℕ)
4948nnzd 12495 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) → (𝐴↑2) ∈ ℤ)
50 1nn 12136 . . . . . . . . . . 11 1 ∈ ℕ
51 dvdsle 16221 . . . . . . . . . . 11 (((𝐴↑2) ∈ ℤ ∧ 1 ∈ ℕ) → ((𝐴↑2) ∥ 1 → (𝐴↑2) ≤ 1))
5249, 50, 51sylancl 586 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) → ((𝐴↑2) ∥ 1 → (𝐴↑2) ≤ 1))
5348nnge1d 12173 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) → 1 ≤ (𝐴↑2))
5452, 53jctird 526 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) → ((𝐴↑2) ∥ 1 → ((𝐴↑2) ≤ 1 ∧ 1 ≤ (𝐴↑2))))
5548nnred 12140 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) → (𝐴↑2) ∈ ℝ)
56 1re 11112 . . . . . . . . . 10 1 ∈ ℝ
57 letri3 11198 . . . . . . . . . 10 (((𝐴↑2) ∈ ℝ ∧ 1 ∈ ℝ) → ((𝐴↑2) = 1 ↔ ((𝐴↑2) ≤ 1 ∧ 1 ≤ (𝐴↑2))))
5855, 56, 57sylancl 586 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) → ((𝐴↑2) = 1 ↔ ((𝐴↑2) ≤ 1 ∧ 1 ≤ (𝐴↑2))))
5954, 58sylibrd 259 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) → ((𝐴↑2) ∥ 1 → (𝐴↑2) = 1))
6036, 59syld 47 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) → (((𝐴 · 𝐵)↑2) = 1 → (𝐴↑2) = 1))
6160con3dimp 408 . . . . . 6 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) ∧ ¬ (𝐴↑2) = 1) → ¬ ((𝐴 · 𝐵)↑2) = 1)
6261iffalsed 4483 . . . . 5 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) ∧ ¬ (𝐴↑2) = 1) → if(((𝐴 · 𝐵)↑2) = 1, 1, 0) = 0)
6324, 27, 623eqtr4a 2792 . . . 4 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) ∧ ¬ (𝐴↑2) = 1) → (if((𝐴↑2) = 1, 1, 0) · if((𝐵↑2) = 1, 1, 0)) = if(((𝐴 · 𝐵)↑2) = 1, 1, 0))
6423, 63pm2.61dan 812 . . 3 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) → (if((𝐴↑2) = 1, 1, 0) · if((𝐵↑2) = 1, 1, 0)) = if(((𝐴 · 𝐵)↑2) = 1, 1, 0))
65 oveq2 7354 . . . . 5 (𝑁 = 0 → (𝐴 /L 𝑁) = (𝐴 /L 0))
66 lgs0 27248 . . . . . 6 (𝐴 ∈ ℤ → (𝐴 /L 0) = if((𝐴↑2) = 1, 1, 0))
678, 66syl 17 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → (𝐴 /L 0) = if((𝐴↑2) = 1, 1, 0))
6865, 67sylan9eqr 2788 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) → (𝐴 /L 𝑁) = if((𝐴↑2) = 1, 1, 0))
69 oveq2 7354 . . . . 5 (𝑁 = 0 → (𝐵 /L 𝑁) = (𝐵 /L 0))
70 lgs0 27248 . . . . . 6 (𝐵 ∈ ℤ → (𝐵 /L 0) = if((𝐵↑2) = 1, 1, 0))
7111, 70syl 17 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → (𝐵 /L 0) = if((𝐵↑2) = 1, 1, 0))
7269, 71sylan9eqr 2788 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) → (𝐵 /L 𝑁) = if((𝐵↑2) = 1, 1, 0))
7368, 72oveq12d 7364 . . 3 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) → ((𝐴 /L 𝑁) · (𝐵 /L 𝑁)) = (if((𝐴↑2) = 1, 1, 0) · if((𝐵↑2) = 1, 1, 0)))
74 oveq2 7354 . . . 4 (𝑁 = 0 → ((𝐴 · 𝐵) /L 𝑁) = ((𝐴 · 𝐵) /L 0))
75 lgs0 27248 . . . . 5 ((𝐴 · 𝐵) ∈ ℤ → ((𝐴 · 𝐵) /L 0) = if(((𝐴 · 𝐵)↑2) = 1, 1, 0))
7630, 75syl 17 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → ((𝐴 · 𝐵) /L 0) = if(((𝐴 · 𝐵)↑2) = 1, 1, 0))
7774, 76sylan9eqr 2788 . . 3 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) → ((𝐴 · 𝐵) /L 𝑁) = if(((𝐴 · 𝐵)↑2) = 1, 1, 0))
7864, 73, 773eqtr4rd 2777 . 2 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) → ((𝐴 · 𝐵) /L 𝑁) = ((𝐴 /L 𝑁) · (𝐵 /L 𝑁)))
79 lgsdilem 27262 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → if((𝑁 < 0 ∧ (𝐴 · 𝐵) < 0), -1, 1) = (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · if((𝑁 < 0 ∧ 𝐵 < 0), -1, 1)))
8079adantr 480 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) → if((𝑁 < 0 ∧ (𝐴 · 𝐵) < 0), -1, 1) = (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · if((𝑁 < 0 ∧ 𝐵 < 0), -1, 1)))
81 simpl3 1194 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → 𝑁 ∈ ℤ)
82 nnabscl 15233 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (abs‘𝑁) ∈ ℕ)
8381, 82sylan 580 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) → (abs‘𝑁) ∈ ℕ)
84 nnuz 12775 . . . . . 6 ℕ = (ℤ‘1)
8583, 84eleqtrdi 2841 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) → (abs‘𝑁) ∈ (ℤ‘1))
86 simpll1 1213 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) → 𝐴 ∈ ℤ)
87 simpll3 1215 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) → 𝑁 ∈ ℤ)
88 simpr 484 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) → 𝑁 ≠ 0)
89 eqid 2731 . . . . . . . . 9 (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))
9089lgsfcl3 27256 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)):ℕ⟶ℤ)
9186, 87, 88, 90syl3anc 1373 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) → (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)):ℕ⟶ℤ)
92 elfznn 13453 . . . . . . 7 (𝑘 ∈ (1...(abs‘𝑁)) → 𝑘 ∈ ℕ)
93 ffvelcdm 7014 . . . . . . 7 (((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)):ℕ⟶ℤ ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑘) ∈ ℤ)
9491, 92, 93syl2an 596 . . . . . 6 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) ∧ 𝑘 ∈ (1...(abs‘𝑁))) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑘) ∈ ℤ)
9594zcnd 12578 . . . . 5 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) ∧ 𝑘 ∈ (1...(abs‘𝑁))) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑘) ∈ ℂ)
96 simpll2 1214 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) → 𝐵 ∈ ℤ)
97 eqid 2731 . . . . . . . . 9 (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐵 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐵 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))
9897lgsfcl3 27256 . . . . . . . 8 ((𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐵 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)):ℕ⟶ℤ)
9996, 87, 88, 98syl3anc 1373 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) → (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐵 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)):ℕ⟶ℤ)
100 ffvelcdm 7014 . . . . . . 7 (((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐵 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)):ℕ⟶ℤ ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐵 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑘) ∈ ℤ)
10199, 92, 100syl2an 596 . . . . . 6 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) ∧ 𝑘 ∈ (1...(abs‘𝑁))) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐵 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑘) ∈ ℤ)
102101zcnd 12578 . . . . 5 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) ∧ 𝑘 ∈ (1...(abs‘𝑁))) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐵 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑘) ∈ ℂ)
10386adantr 480 . . . . . . . . . . . 12 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) ∧ 𝑘 ∈ ℙ) → 𝐴 ∈ ℤ)
10496adantr 480 . . . . . . . . . . . 12 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) ∧ 𝑘 ∈ ℙ) → 𝐵 ∈ ℤ)
105 simpr 484 . . . . . . . . . . . 12 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) ∧ 𝑘 ∈ ℙ) → 𝑘 ∈ ℙ)
106 lgsdirprm 27269 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑘 ∈ ℙ) → ((𝐴 · 𝐵) /L 𝑘) = ((𝐴 /L 𝑘) · (𝐵 /L 𝑘)))
107103, 104, 105, 106syl3anc 1373 . . . . . . . . . . 11 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) ∧ 𝑘 ∈ ℙ) → ((𝐴 · 𝐵) /L 𝑘) = ((𝐴 /L 𝑘) · (𝐵 /L 𝑘)))
108107oveq1d 7361 . . . . . . . . . 10 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) ∧ 𝑘 ∈ ℙ) → (((𝐴 · 𝐵) /L 𝑘)↑(𝑘 pCnt 𝑁)) = (((𝐴 /L 𝑘) · (𝐵 /L 𝑘))↑(𝑘 pCnt 𝑁)))
109 prmz 16586 . . . . . . . . . . . . 13 (𝑘 ∈ ℙ → 𝑘 ∈ ℤ)
110 lgscl 27249 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝐴 /L 𝑘) ∈ ℤ)
11186, 109, 110syl2an 596 . . . . . . . . . . . 12 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) ∧ 𝑘 ∈ ℙ) → (𝐴 /L 𝑘) ∈ ℤ)
112111zcnd 12578 . . . . . . . . . . 11 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) ∧ 𝑘 ∈ ℙ) → (𝐴 /L 𝑘) ∈ ℂ)
113 lgscl 27249 . . . . . . . . . . . . 13 ((𝐵 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝐵 /L 𝑘) ∈ ℤ)
11496, 109, 113syl2an 596 . . . . . . . . . . . 12 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) ∧ 𝑘 ∈ ℙ) → (𝐵 /L 𝑘) ∈ ℤ)
115114zcnd 12578 . . . . . . . . . . 11 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) ∧ 𝑘 ∈ ℙ) → (𝐵 /L 𝑘) ∈ ℂ)
11687adantr 480 . . . . . . . . . . . 12 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) ∧ 𝑘 ∈ ℙ) → 𝑁 ∈ ℤ)
11788adantr 480 . . . . . . . . . . . 12 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) ∧ 𝑘 ∈ ℙ) → 𝑁 ≠ 0)
118 pczcl 16760 . . . . . . . . . . . 12 ((𝑘 ∈ ℙ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑘 pCnt 𝑁) ∈ ℕ0)
119105, 116, 117, 118syl12anc 836 . . . . . . . . . . 11 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) ∧ 𝑘 ∈ ℙ) → (𝑘 pCnt 𝑁) ∈ ℕ0)
120112, 115, 119mulexpd 14068 . . . . . . . . . 10 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) ∧ 𝑘 ∈ ℙ) → (((𝐴 /L 𝑘) · (𝐵 /L 𝑘))↑(𝑘 pCnt 𝑁)) = (((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)) · ((𝐵 /L 𝑘)↑(𝑘 pCnt 𝑁))))
121108, 120eqtrd 2766 . . . . . . . . 9 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) ∧ 𝑘 ∈ ℙ) → (((𝐴 · 𝐵) /L 𝑘)↑(𝑘 pCnt 𝑁)) = (((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)) · ((𝐵 /L 𝑘)↑(𝑘 pCnt 𝑁))))
122 iftrue 4478 . . . . . . . . . 10 (𝑘 ∈ ℙ → if(𝑘 ∈ ℙ, (((𝐴 · 𝐵) /L 𝑘)↑(𝑘 pCnt 𝑁)), 1) = (((𝐴 · 𝐵) /L 𝑘)↑(𝑘 pCnt 𝑁)))
123122adantl 481 . . . . . . . . 9 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) ∧ 𝑘 ∈ ℙ) → if(𝑘 ∈ ℙ, (((𝐴 · 𝐵) /L 𝑘)↑(𝑘 pCnt 𝑁)), 1) = (((𝐴 · 𝐵) /L 𝑘)↑(𝑘 pCnt 𝑁)))
124 iftrue 4478 . . . . . . . . . . 11 (𝑘 ∈ ℙ → if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1) = ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)))
125 iftrue 4478 . . . . . . . . . . 11 (𝑘 ∈ ℙ → if(𝑘 ∈ ℙ, ((𝐵 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1) = ((𝐵 /L 𝑘)↑(𝑘 pCnt 𝑁)))
126124, 125oveq12d 7364 . . . . . . . . . 10 (𝑘 ∈ ℙ → (if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1) · if(𝑘 ∈ ℙ, ((𝐵 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1)) = (((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)) · ((𝐵 /L 𝑘)↑(𝑘 pCnt 𝑁))))
127126adantl 481 . . . . . . . . 9 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) ∧ 𝑘 ∈ ℙ) → (if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1) · if(𝑘 ∈ ℙ, ((𝐵 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1)) = (((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)) · ((𝐵 /L 𝑘)↑(𝑘 pCnt 𝑁))))
128121, 123, 1273eqtr4d 2776 . . . . . . . 8 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) ∧ 𝑘 ∈ ℙ) → if(𝑘 ∈ ℙ, (((𝐴 · 𝐵) /L 𝑘)↑(𝑘 pCnt 𝑁)), 1) = (if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1) · if(𝑘 ∈ ℙ, ((𝐵 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1)))
129 1t1e1 12282 . . . . . . . . . . 11 (1 · 1) = 1
130129eqcomi 2740 . . . . . . . . . 10 1 = (1 · 1)
131 iffalse 4481 . . . . . . . . . 10 𝑘 ∈ ℙ → if(𝑘 ∈ ℙ, (((𝐴 · 𝐵) /L 𝑘)↑(𝑘 pCnt 𝑁)), 1) = 1)
132 iffalse 4481 . . . . . . . . . . 11 𝑘 ∈ ℙ → if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1) = 1)
133 iffalse 4481 . . . . . . . . . . 11 𝑘 ∈ ℙ → if(𝑘 ∈ ℙ, ((𝐵 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1) = 1)
134132, 133oveq12d 7364 . . . . . . . . . 10 𝑘 ∈ ℙ → (if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1) · if(𝑘 ∈ ℙ, ((𝐵 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1)) = (1 · 1))
135130, 131, 1343eqtr4a 2792 . . . . . . . . 9 𝑘 ∈ ℙ → if(𝑘 ∈ ℙ, (((𝐴 · 𝐵) /L 𝑘)↑(𝑘 pCnt 𝑁)), 1) = (if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1) · if(𝑘 ∈ ℙ, ((𝐵 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1)))
136135adantl 481 . . . . . . . 8 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) ∧ ¬ 𝑘 ∈ ℙ) → if(𝑘 ∈ ℙ, (((𝐴 · 𝐵) /L 𝑘)↑(𝑘 pCnt 𝑁)), 1) = (if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1) · if(𝑘 ∈ ℙ, ((𝐵 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1)))
137128, 136pm2.61dan 812 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) → if(𝑘 ∈ ℙ, (((𝐴 · 𝐵) /L 𝑘)↑(𝑘 pCnt 𝑁)), 1) = (if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1) · if(𝑘 ∈ ℙ, ((𝐵 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1)))
138137adantr 480 . . . . . 6 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) ∧ 𝑘 ∈ (1...(abs‘𝑁))) → if(𝑘 ∈ ℙ, (((𝐴 · 𝐵) /L 𝑘)↑(𝑘 pCnt 𝑁)), 1) = (if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1) · if(𝑘 ∈ ℙ, ((𝐵 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1)))
13992adantl 481 . . . . . . 7 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) ∧ 𝑘 ∈ (1...(abs‘𝑁))) → 𝑘 ∈ ℕ)
140 eleq1w 2814 . . . . . . . . 9 (𝑛 = 𝑘 → (𝑛 ∈ ℙ ↔ 𝑘 ∈ ℙ))
141 oveq2 7354 . . . . . . . . . 10 (𝑛 = 𝑘 → ((𝐴 · 𝐵) /L 𝑛) = ((𝐴 · 𝐵) /L 𝑘))
142 oveq1 7353 . . . . . . . . . 10 (𝑛 = 𝑘 → (𝑛 pCnt 𝑁) = (𝑘 pCnt 𝑁))
143141, 142oveq12d 7364 . . . . . . . . 9 (𝑛 = 𝑘 → (((𝐴 · 𝐵) /L 𝑛)↑(𝑛 pCnt 𝑁)) = (((𝐴 · 𝐵) /L 𝑘)↑(𝑘 pCnt 𝑁)))
144140, 143ifbieq1d 4497 . . . . . . . 8 (𝑛 = 𝑘 → if(𝑛 ∈ ℙ, (((𝐴 · 𝐵) /L 𝑛)↑(𝑛 pCnt 𝑁)), 1) = if(𝑘 ∈ ℙ, (((𝐴 · 𝐵) /L 𝑘)↑(𝑘 pCnt 𝑁)), 1))
145 eqid 2731 . . . . . . . 8 (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (((𝐴 · 𝐵) /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (((𝐴 · 𝐵) /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))
146 ovex 7379 . . . . . . . . 9 (((𝐴 · 𝐵) /L 𝑘)↑(𝑘 pCnt 𝑁)) ∈ V
147 1ex 11108 . . . . . . . . 9 1 ∈ V
148146, 147ifex 4523 . . . . . . . 8 if(𝑘 ∈ ℙ, (((𝐴 · 𝐵) /L 𝑘)↑(𝑘 pCnt 𝑁)), 1) ∈ V
149144, 145, 148fvmpt 6929 . . . . . . 7 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (((𝐴 · 𝐵) /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑘) = if(𝑘 ∈ ℙ, (((𝐴 · 𝐵) /L 𝑘)↑(𝑘 pCnt 𝑁)), 1))
150139, 149syl 17 . . . . . 6 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) ∧ 𝑘 ∈ (1...(abs‘𝑁))) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (((𝐴 · 𝐵) /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑘) = if(𝑘 ∈ ℙ, (((𝐴 · 𝐵) /L 𝑘)↑(𝑘 pCnt 𝑁)), 1))
151 oveq2 7354 . . . . . . . . . . 11 (𝑛 = 𝑘 → (𝐴 /L 𝑛) = (𝐴 /L 𝑘))
152151, 142oveq12d 7364 . . . . . . . . . 10 (𝑛 = 𝑘 → ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)) = ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)))
153140, 152ifbieq1d 4497 . . . . . . . . 9 (𝑛 = 𝑘 → if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1) = if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1))
154 ovex 7379 . . . . . . . . . 10 ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)) ∈ V
155154, 147ifex 4523 . . . . . . . . 9 if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1) ∈ V
156153, 89, 155fvmpt 6929 . . . . . . . 8 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑘) = if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1))
157139, 156syl 17 . . . . . . 7 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) ∧ 𝑘 ∈ (1...(abs‘𝑁))) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑘) = if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1))
158 oveq2 7354 . . . . . . . . . . 11 (𝑛 = 𝑘 → (𝐵 /L 𝑛) = (𝐵 /L 𝑘))
159158, 142oveq12d 7364 . . . . . . . . . 10 (𝑛 = 𝑘 → ((𝐵 /L 𝑛)↑(𝑛 pCnt 𝑁)) = ((𝐵 /L 𝑘)↑(𝑘 pCnt 𝑁)))
160140, 159ifbieq1d 4497 . . . . . . . . 9 (𝑛 = 𝑘 → if(𝑛 ∈ ℙ, ((𝐵 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1) = if(𝑘 ∈ ℙ, ((𝐵 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1))
161 ovex 7379 . . . . . . . . . 10 ((𝐵 /L 𝑘)↑(𝑘 pCnt 𝑁)) ∈ V
162161, 147ifex 4523 . . . . . . . . 9 if(𝑘 ∈ ℙ, ((𝐵 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1) ∈ V
163160, 97, 162fvmpt 6929 . . . . . . . 8 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐵 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑘) = if(𝑘 ∈ ℙ, ((𝐵 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1))
164139, 163syl 17 . . . . . . 7 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) ∧ 𝑘 ∈ (1...(abs‘𝑁))) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐵 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑘) = if(𝑘 ∈ ℙ, ((𝐵 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1))
165157, 164oveq12d 7364 . . . . . 6 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) ∧ 𝑘 ∈ (1...(abs‘𝑁))) → (((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑘) · ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐵 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑘)) = (if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1) · if(𝑘 ∈ ℙ, ((𝐵 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1)))
166138, 150, 1653eqtr4d 2776 . . . . 5 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) ∧ 𝑘 ∈ (1...(abs‘𝑁))) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (((𝐴 · 𝐵) /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑘) = (((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑘) · ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐵 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑘)))
16785, 95, 102, 166prodfmul 15797 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) → (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (((𝐴 · 𝐵) /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) = ((seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐵 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁))))
16880, 167oveq12d 7364 . . 3 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) → (if((𝑁 < 0 ∧ (𝐴 · 𝐵) < 0), -1, 1) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (((𝐴 · 𝐵) /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁))) = ((if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · if((𝑁 < 0 ∧ 𝐵 < 0), -1, 1)) · ((seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐵 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)))))
16930adantr 480 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) → (𝐴 · 𝐵) ∈ ℤ)
170145lgsval4 27255 . . . 4 (((𝐴 · 𝐵) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → ((𝐴 · 𝐵) /L 𝑁) = (if((𝑁 < 0 ∧ (𝐴 · 𝐵) < 0), -1, 1) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (((𝐴 · 𝐵) /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁))))
171169, 87, 88, 170syl3anc 1373 . . 3 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) → ((𝐴 · 𝐵) /L 𝑁) = (if((𝑁 < 0 ∧ (𝐴 · 𝐵) < 0), -1, 1) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (((𝐴 · 𝐵) /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁))))
17289lgsval4 27255 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝐴 /L 𝑁) = (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁))))
17386, 87, 88, 172syl3anc 1373 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) → (𝐴 /L 𝑁) = (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁))))
17497lgsval4 27255 . . . . . 6 ((𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝐵 /L 𝑁) = (if((𝑁 < 0 ∧ 𝐵 < 0), -1, 1) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐵 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁))))
17596, 87, 88, 174syl3anc 1373 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) → (𝐵 /L 𝑁) = (if((𝑁 < 0 ∧ 𝐵 < 0), -1, 1) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐵 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁))))
176173, 175oveq12d 7364 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) → ((𝐴 /L 𝑁) · (𝐵 /L 𝑁)) = ((if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁))) · (if((𝑁 < 0 ∧ 𝐵 < 0), -1, 1) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐵 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)))))
177 neg1cn 12110 . . . . . . 7 -1 ∈ ℂ
178177, 1ifcli 4520 . . . . . 6 if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) ∈ ℂ
179178a1i 11 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) → if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) ∈ ℂ)
180 mulcl 11090 . . . . . . 7 ((𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑘 · 𝑥) ∈ ℂ)
181180adantl 481 . . . . . 6 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) ∧ (𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝑘 · 𝑥) ∈ ℂ)
18285, 95, 181seqcl 13929 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) → (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) ∈ ℂ)
183177, 1ifcli 4520 . . . . . 6 if((𝑁 < 0 ∧ 𝐵 < 0), -1, 1) ∈ ℂ
184183a1i 11 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) → if((𝑁 < 0 ∧ 𝐵 < 0), -1, 1) ∈ ℂ)
18585, 102, 181seqcl 13929 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) → (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐵 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) ∈ ℂ)
186179, 182, 184, 185mul4d 11325 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) → ((if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁))) · (if((𝑁 < 0 ∧ 𝐵 < 0), -1, 1) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐵 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)))) = ((if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · if((𝑁 < 0 ∧ 𝐵 < 0), -1, 1)) · ((seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐵 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)))))
187176, 186eqtrd 2766 . . 3 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) → ((𝐴 /L 𝑁) · (𝐵 /L 𝑁)) = ((if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · if((𝑁 < 0 ∧ 𝐵 < 0), -1, 1)) · ((seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐵 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)))))
188168, 171, 1873eqtr4d 2776 . 2 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) → ((𝐴 · 𝐵) /L 𝑁) = ((𝐴 /L 𝑁) · (𝐵 /L 𝑁)))
18978, 188pm2.61dane 3015 1 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → ((𝐴 · 𝐵) /L 𝑁) = ((𝐴 /L 𝑁) · (𝐵 /L 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2111  wne 2928  ifcif 4472   class class class wbr 5089  cmpt 5170  wf 6477  cfv 6481  (class class class)co 7346  cc 11004  cr 11005  0cc0 11006  1c1 11007   · cmul 11011   < clt 11146  cle 11147  -cneg 11345  cn 12125  2c2 12180  0cn0 12381  cz 12468  cuz 12732  ...cfz 13407  seqcseq 13908  cexp 13968  abscabs 15141  cdvds 16163  cprime 16582   pCnt cpc 16748   /L clgs 27232
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-oadd 8389  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-inf 9327  df-dju 9794  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-xnn0 12455  df-z 12469  df-uz 12733  df-q 12847  df-rp 12891  df-fz 13408  df-fzo 13555  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-dvds 16164  df-gcd 16406  df-prm 16583  df-phi 16677  df-pc 16749  df-lgs 27233
This theorem is referenced by:  lgssq  27275  lgsmulsqcoprm  27281  lgsdirnn0  27282  lgsquad2lem1  27322
  Copyright terms: Public domain W3C validator