Step | Hyp | Ref
| Expression |
1 | | ax-1cn 10929 |
. . . . . . 7
⊢ 1 ∈
ℂ |
2 | | 0cn 10967 |
. . . . . . 7
⊢ 0 ∈
ℂ |
3 | 1, 2 | ifcli 4506 |
. . . . . 6
⊢ if((𝐵↑2) = 1, 1, 0) ∈
ℂ |
4 | 3 | mulid2i 10980 |
. . . . 5
⊢ (1
· if((𝐵↑2) = 1,
1, 0)) = if((𝐵↑2) = 1,
1, 0) |
5 | | iftrue 4465 |
. . . . . . 7
⊢ ((𝐴↑2) = 1 → if((𝐴↑2) = 1, 1, 0) =
1) |
6 | 5 | adantl 482 |
. . . . . 6
⊢
(((((𝐴 ∈
ℤ ∧ 𝐵 ∈
ℤ ∧ 𝑁 ∈
ℤ) ∧ (𝐴 ≠ 0
∧ 𝐵 ≠ 0)) ∧
𝑁 = 0) ∧ (𝐴↑2) = 1) → if((𝐴↑2) = 1, 1, 0) =
1) |
7 | 6 | oveq1d 7290 |
. . . . 5
⊢
(((((𝐴 ∈
ℤ ∧ 𝐵 ∈
ℤ ∧ 𝑁 ∈
ℤ) ∧ (𝐴 ≠ 0
∧ 𝐵 ≠ 0)) ∧
𝑁 = 0) ∧ (𝐴↑2) = 1) → (if((𝐴↑2) = 1, 1, 0) ·
if((𝐵↑2) = 1, 1, 0)) =
(1 · if((𝐵↑2) =
1, 1, 0))) |
8 | | simpl1 1190 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → 𝐴 ∈ ℤ) |
9 | 8 | zcnd 12427 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → 𝐴 ∈ ℂ) |
10 | 9 | ad2antrr 723 |
. . . . . . . . 9
⊢
(((((𝐴 ∈
ℤ ∧ 𝐵 ∈
ℤ ∧ 𝑁 ∈
ℤ) ∧ (𝐴 ≠ 0
∧ 𝐵 ≠ 0)) ∧
𝑁 = 0) ∧ (𝐴↑2) = 1) → 𝐴 ∈
ℂ) |
11 | | simpl2 1191 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → 𝐵 ∈ ℤ) |
12 | 11 | zcnd 12427 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → 𝐵 ∈ ℂ) |
13 | 12 | ad2antrr 723 |
. . . . . . . . 9
⊢
(((((𝐴 ∈
ℤ ∧ 𝐵 ∈
ℤ ∧ 𝑁 ∈
ℤ) ∧ (𝐴 ≠ 0
∧ 𝐵 ≠ 0)) ∧
𝑁 = 0) ∧ (𝐴↑2) = 1) → 𝐵 ∈
ℂ) |
14 | 10, 13 | sqmuld 13876 |
. . . . . . . 8
⊢
(((((𝐴 ∈
ℤ ∧ 𝐵 ∈
ℤ ∧ 𝑁 ∈
ℤ) ∧ (𝐴 ≠ 0
∧ 𝐵 ≠ 0)) ∧
𝑁 = 0) ∧ (𝐴↑2) = 1) → ((𝐴 · 𝐵)↑2) = ((𝐴↑2) · (𝐵↑2))) |
15 | | simpr 485 |
. . . . . . . . 9
⊢
(((((𝐴 ∈
ℤ ∧ 𝐵 ∈
ℤ ∧ 𝑁 ∈
ℤ) ∧ (𝐴 ≠ 0
∧ 𝐵 ≠ 0)) ∧
𝑁 = 0) ∧ (𝐴↑2) = 1) → (𝐴↑2) = 1) |
16 | 15 | oveq1d 7290 |
. . . . . . . 8
⊢
(((((𝐴 ∈
ℤ ∧ 𝐵 ∈
ℤ ∧ 𝑁 ∈
ℤ) ∧ (𝐴 ≠ 0
∧ 𝐵 ≠ 0)) ∧
𝑁 = 0) ∧ (𝐴↑2) = 1) → ((𝐴↑2) · (𝐵↑2)) = (1 · (𝐵↑2))) |
17 | 12 | sqcld 13862 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → (𝐵↑2) ∈ ℂ) |
18 | 17 | ad2antrr 723 |
. . . . . . . . 9
⊢
(((((𝐴 ∈
ℤ ∧ 𝐵 ∈
ℤ ∧ 𝑁 ∈
ℤ) ∧ (𝐴 ≠ 0
∧ 𝐵 ≠ 0)) ∧
𝑁 = 0) ∧ (𝐴↑2) = 1) → (𝐵↑2) ∈
ℂ) |
19 | 18 | mulid2d 10993 |
. . . . . . . 8
⊢
(((((𝐴 ∈
ℤ ∧ 𝐵 ∈
ℤ ∧ 𝑁 ∈
ℤ) ∧ (𝐴 ≠ 0
∧ 𝐵 ≠ 0)) ∧
𝑁 = 0) ∧ (𝐴↑2) = 1) → (1 ·
(𝐵↑2)) = (𝐵↑2)) |
20 | 14, 16, 19 | 3eqtrd 2782 |
. . . . . . 7
⊢
(((((𝐴 ∈
ℤ ∧ 𝐵 ∈
ℤ ∧ 𝑁 ∈
ℤ) ∧ (𝐴 ≠ 0
∧ 𝐵 ≠ 0)) ∧
𝑁 = 0) ∧ (𝐴↑2) = 1) → ((𝐴 · 𝐵)↑2) = (𝐵↑2)) |
21 | 20 | eqeq1d 2740 |
. . . . . 6
⊢
(((((𝐴 ∈
ℤ ∧ 𝐵 ∈
ℤ ∧ 𝑁 ∈
ℤ) ∧ (𝐴 ≠ 0
∧ 𝐵 ≠ 0)) ∧
𝑁 = 0) ∧ (𝐴↑2) = 1) → (((𝐴 · 𝐵)↑2) = 1 ↔ (𝐵↑2) = 1)) |
22 | 21 | ifbid 4482 |
. . . . 5
⊢
(((((𝐴 ∈
ℤ ∧ 𝐵 ∈
ℤ ∧ 𝑁 ∈
ℤ) ∧ (𝐴 ≠ 0
∧ 𝐵 ≠ 0)) ∧
𝑁 = 0) ∧ (𝐴↑2) = 1) → if(((𝐴 · 𝐵)↑2) = 1, 1, 0) = if((𝐵↑2) = 1, 1, 0)) |
23 | 4, 7, 22 | 3eqtr4a 2804 |
. . . 4
⊢
(((((𝐴 ∈
ℤ ∧ 𝐵 ∈
ℤ ∧ 𝑁 ∈
ℤ) ∧ (𝐴 ≠ 0
∧ 𝐵 ≠ 0)) ∧
𝑁 = 0) ∧ (𝐴↑2) = 1) → (if((𝐴↑2) = 1, 1, 0) ·
if((𝐵↑2) = 1, 1, 0)) =
if(((𝐴 · 𝐵)↑2) = 1, 1,
0)) |
24 | 3 | mul02i 11164 |
. . . . 5
⊢ (0
· if((𝐵↑2) = 1,
1, 0)) = 0 |
25 | | iffalse 4468 |
. . . . . . 7
⊢ (¬
(𝐴↑2) = 1 →
if((𝐴↑2) = 1, 1, 0) =
0) |
26 | 25 | adantl 482 |
. . . . . 6
⊢
(((((𝐴 ∈
ℤ ∧ 𝐵 ∈
ℤ ∧ 𝑁 ∈
ℤ) ∧ (𝐴 ≠ 0
∧ 𝐵 ≠ 0)) ∧
𝑁 = 0) ∧ ¬ (𝐴↑2) = 1) → if((𝐴↑2) = 1, 1, 0) =
0) |
27 | 26 | oveq1d 7290 |
. . . . 5
⊢
(((((𝐴 ∈
ℤ ∧ 𝐵 ∈
ℤ ∧ 𝑁 ∈
ℤ) ∧ (𝐴 ≠ 0
∧ 𝐵 ≠ 0)) ∧
𝑁 = 0) ∧ ¬ (𝐴↑2) = 1) → (if((𝐴↑2) = 1, 1, 0) ·
if((𝐵↑2) = 1, 1, 0)) =
(0 · if((𝐵↑2) =
1, 1, 0))) |
28 | | dvdsmul1 15987 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐴 ∥ (𝐴 · 𝐵)) |
29 | 8, 11, 28 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → 𝐴 ∥ (𝐴 · 𝐵)) |
30 | 8, 11 | zmulcld 12432 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → (𝐴 · 𝐵) ∈ ℤ) |
31 | | dvdssq 16272 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℤ ∧ (𝐴 · 𝐵) ∈ ℤ) → (𝐴 ∥ (𝐴 · 𝐵) ↔ (𝐴↑2) ∥ ((𝐴 · 𝐵)↑2))) |
32 | 8, 30, 31 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → (𝐴 ∥ (𝐴 · 𝐵) ↔ (𝐴↑2) ∥ ((𝐴 · 𝐵)↑2))) |
33 | 29, 32 | mpbid 231 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → (𝐴↑2) ∥ ((𝐴 · 𝐵)↑2)) |
34 | 33 | adantr 481 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) → (𝐴↑2) ∥ ((𝐴 · 𝐵)↑2)) |
35 | | breq2 5078 |
. . . . . . . . 9
⊢ (((𝐴 · 𝐵)↑2) = 1 → ((𝐴↑2) ∥ ((𝐴 · 𝐵)↑2) ↔ (𝐴↑2) ∥ 1)) |
36 | 34, 35 | syl5ibcom 244 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) → (((𝐴 · 𝐵)↑2) = 1 → (𝐴↑2) ∥ 1)) |
37 | | simprl 768 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → 𝐴 ≠ 0) |
38 | 37 | neneqd 2948 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → ¬ 𝐴 = 0) |
39 | | sqeq0 13840 |
. . . . . . . . . . . . . . . 16
⊢ (𝐴 ∈ ℂ → ((𝐴↑2) = 0 ↔ 𝐴 = 0)) |
40 | 9, 39 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → ((𝐴↑2) = 0 ↔ 𝐴 = 0)) |
41 | 38, 40 | mtbird 325 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → ¬ (𝐴↑2) = 0) |
42 | | zsqcl2 13856 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐴 ∈ ℤ → (𝐴↑2) ∈
ℕ0) |
43 | 8, 42 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → (𝐴↑2) ∈
ℕ0) |
44 | | elnn0 12235 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴↑2) ∈
ℕ0 ↔ ((𝐴↑2) ∈ ℕ ∨ (𝐴↑2) = 0)) |
45 | 43, 44 | sylib 217 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → ((𝐴↑2) ∈ ℕ ∨ (𝐴↑2) = 0)) |
46 | 45 | ord 861 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → (¬ (𝐴↑2) ∈ ℕ → (𝐴↑2) = 0)) |
47 | 41, 46 | mt3d 148 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → (𝐴↑2) ∈ ℕ) |
48 | 47 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) → (𝐴↑2) ∈ ℕ) |
49 | 48 | nnzd 12425 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) → (𝐴↑2) ∈ ℤ) |
50 | | 1nn 11984 |
. . . . . . . . . . 11
⊢ 1 ∈
ℕ |
51 | | dvdsle 16019 |
. . . . . . . . . . 11
⊢ (((𝐴↑2) ∈ ℤ ∧ 1
∈ ℕ) → ((𝐴↑2) ∥ 1 → (𝐴↑2) ≤ 1)) |
52 | 49, 50, 51 | sylancl 586 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) → ((𝐴↑2) ∥ 1 → (𝐴↑2) ≤ 1)) |
53 | 48 | nnge1d 12021 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) → 1 ≤ (𝐴↑2)) |
54 | 52, 53 | jctird 527 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) → ((𝐴↑2) ∥ 1 → ((𝐴↑2) ≤ 1 ∧ 1 ≤
(𝐴↑2)))) |
55 | 48 | nnred 11988 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) → (𝐴↑2) ∈ ℝ) |
56 | | 1re 10975 |
. . . . . . . . . 10
⊢ 1 ∈
ℝ |
57 | | letri3 11060 |
. . . . . . . . . 10
⊢ (((𝐴↑2) ∈ ℝ ∧ 1
∈ ℝ) → ((𝐴↑2) = 1 ↔ ((𝐴↑2) ≤ 1 ∧ 1 ≤ (𝐴↑2)))) |
58 | 55, 56, 57 | sylancl 586 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) → ((𝐴↑2) = 1 ↔ ((𝐴↑2) ≤ 1 ∧ 1 ≤ (𝐴↑2)))) |
59 | 54, 58 | sylibrd 258 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) → ((𝐴↑2) ∥ 1 → (𝐴↑2) = 1)) |
60 | 36, 59 | syld 47 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) → (((𝐴 · 𝐵)↑2) = 1 → (𝐴↑2) = 1)) |
61 | 60 | con3dimp 409 |
. . . . . 6
⊢
(((((𝐴 ∈
ℤ ∧ 𝐵 ∈
ℤ ∧ 𝑁 ∈
ℤ) ∧ (𝐴 ≠ 0
∧ 𝐵 ≠ 0)) ∧
𝑁 = 0) ∧ ¬ (𝐴↑2) = 1) → ¬
((𝐴 · 𝐵)↑2) = 1) |
62 | 61 | iffalsed 4470 |
. . . . 5
⊢
(((((𝐴 ∈
ℤ ∧ 𝐵 ∈
ℤ ∧ 𝑁 ∈
ℤ) ∧ (𝐴 ≠ 0
∧ 𝐵 ≠ 0)) ∧
𝑁 = 0) ∧ ¬ (𝐴↑2) = 1) → if(((𝐴 · 𝐵)↑2) = 1, 1, 0) = 0) |
63 | 24, 27, 62 | 3eqtr4a 2804 |
. . . 4
⊢
(((((𝐴 ∈
ℤ ∧ 𝐵 ∈
ℤ ∧ 𝑁 ∈
ℤ) ∧ (𝐴 ≠ 0
∧ 𝐵 ≠ 0)) ∧
𝑁 = 0) ∧ ¬ (𝐴↑2) = 1) → (if((𝐴↑2) = 1, 1, 0) ·
if((𝐵↑2) = 1, 1, 0)) =
if(((𝐴 · 𝐵)↑2) = 1, 1,
0)) |
64 | 23, 63 | pm2.61dan 810 |
. . 3
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) → (if((𝐴↑2) = 1, 1, 0) · if((𝐵↑2) = 1, 1, 0)) =
if(((𝐴 · 𝐵)↑2) = 1, 1,
0)) |
65 | | oveq2 7283 |
. . . . 5
⊢ (𝑁 = 0 → (𝐴 /L 𝑁) = (𝐴 /L 0)) |
66 | | lgs0 26458 |
. . . . . 6
⊢ (𝐴 ∈ ℤ → (𝐴 /L 0) =
if((𝐴↑2) = 1, 1,
0)) |
67 | 8, 66 | syl 17 |
. . . . 5
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → (𝐴 /L 0) = if((𝐴↑2) = 1, 1,
0)) |
68 | 65, 67 | sylan9eqr 2800 |
. . . 4
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) → (𝐴 /L 𝑁) = if((𝐴↑2) = 1, 1, 0)) |
69 | | oveq2 7283 |
. . . . 5
⊢ (𝑁 = 0 → (𝐵 /L 𝑁) = (𝐵 /L 0)) |
70 | | lgs0 26458 |
. . . . . 6
⊢ (𝐵 ∈ ℤ → (𝐵 /L 0) =
if((𝐵↑2) = 1, 1,
0)) |
71 | 11, 70 | syl 17 |
. . . . 5
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → (𝐵 /L 0) = if((𝐵↑2) = 1, 1,
0)) |
72 | 69, 71 | sylan9eqr 2800 |
. . . 4
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) → (𝐵 /L 𝑁) = if((𝐵↑2) = 1, 1, 0)) |
73 | 68, 72 | oveq12d 7293 |
. . 3
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) → ((𝐴 /L 𝑁) · (𝐵 /L 𝑁)) = (if((𝐴↑2) = 1, 1, 0) · if((𝐵↑2) = 1, 1,
0))) |
74 | | oveq2 7283 |
. . . 4
⊢ (𝑁 = 0 → ((𝐴 · 𝐵) /L 𝑁) = ((𝐴 · 𝐵) /L 0)) |
75 | | lgs0 26458 |
. . . . 5
⊢ ((𝐴 · 𝐵) ∈ ℤ → ((𝐴 · 𝐵) /L 0) = if(((𝐴 · 𝐵)↑2) = 1, 1, 0)) |
76 | 30, 75 | syl 17 |
. . . 4
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → ((𝐴 · 𝐵) /L 0) = if(((𝐴 · 𝐵)↑2) = 1, 1, 0)) |
77 | 74, 76 | sylan9eqr 2800 |
. . 3
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) → ((𝐴 · 𝐵) /L 𝑁) = if(((𝐴 · 𝐵)↑2) = 1, 1, 0)) |
78 | 64, 73, 77 | 3eqtr4rd 2789 |
. 2
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) → ((𝐴 · 𝐵) /L 𝑁) = ((𝐴 /L 𝑁) · (𝐵 /L 𝑁))) |
79 | | lgsdilem 26472 |
. . . . 5
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → if((𝑁 < 0 ∧ (𝐴 · 𝐵) < 0), -1, 1) = (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · if((𝑁 < 0 ∧ 𝐵 < 0), -1, 1))) |
80 | 79 | adantr 481 |
. . . 4
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) → if((𝑁 < 0 ∧ (𝐴 · 𝐵) < 0), -1, 1) = (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · if((𝑁 < 0 ∧ 𝐵 < 0), -1, 1))) |
81 | | simpl3 1192 |
. . . . . . 7
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → 𝑁 ∈ ℤ) |
82 | | nnabscl 15037 |
. . . . . . 7
⊢ ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (abs‘𝑁) ∈
ℕ) |
83 | 81, 82 | sylan 580 |
. . . . . 6
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) → (abs‘𝑁) ∈ ℕ) |
84 | | nnuz 12621 |
. . . . . 6
⊢ ℕ =
(ℤ≥‘1) |
85 | 83, 84 | eleqtrdi 2849 |
. . . . 5
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) → (abs‘𝑁) ∈
(ℤ≥‘1)) |
86 | | simpll1 1211 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) → 𝐴 ∈ ℤ) |
87 | | simpll3 1213 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) → 𝑁 ∈ ℤ) |
88 | | simpr 485 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) → 𝑁 ≠ 0) |
89 | | eqid 2738 |
. . . . . . . . 9
⊢ (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)) |
90 | 89 | lgsfcl3 26466 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)),
1)):ℕ⟶ℤ) |
91 | 86, 87, 88, 90 | syl3anc 1370 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) → (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)),
1)):ℕ⟶ℤ) |
92 | | elfznn 13285 |
. . . . . . 7
⊢ (𝑘 ∈ (1...(abs‘𝑁)) → 𝑘 ∈ ℕ) |
93 | | ffvelrn 6959 |
. . . . . . 7
⊢ (((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)):ℕ⟶ℤ ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑘) ∈ ℤ) |
94 | 91, 92, 93 | syl2an 596 |
. . . . . 6
⊢
(((((𝐴 ∈
ℤ ∧ 𝐵 ∈
ℤ ∧ 𝑁 ∈
ℤ) ∧ (𝐴 ≠ 0
∧ 𝐵 ≠ 0)) ∧
𝑁 ≠ 0) ∧ 𝑘 ∈ (1...(abs‘𝑁))) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑘) ∈ ℤ) |
95 | 94 | zcnd 12427 |
. . . . 5
⊢
(((((𝐴 ∈
ℤ ∧ 𝐵 ∈
ℤ ∧ 𝑁 ∈
ℤ) ∧ (𝐴 ≠ 0
∧ 𝐵 ≠ 0)) ∧
𝑁 ≠ 0) ∧ 𝑘 ∈ (1...(abs‘𝑁))) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑘) ∈ ℂ) |
96 | | simpll2 1212 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) → 𝐵 ∈ ℤ) |
97 | | eqid 2738 |
. . . . . . . . 9
⊢ (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐵 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐵 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)) |
98 | 97 | lgsfcl3 26466 |
. . . . . . . 8
⊢ ((𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐵 /L 𝑛)↑(𝑛 pCnt 𝑁)),
1)):ℕ⟶ℤ) |
99 | 96, 87, 88, 98 | syl3anc 1370 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) → (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐵 /L 𝑛)↑(𝑛 pCnt 𝑁)),
1)):ℕ⟶ℤ) |
100 | | ffvelrn 6959 |
. . . . . . 7
⊢ (((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐵 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)):ℕ⟶ℤ ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐵 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑘) ∈ ℤ) |
101 | 99, 92, 100 | syl2an 596 |
. . . . . 6
⊢
(((((𝐴 ∈
ℤ ∧ 𝐵 ∈
ℤ ∧ 𝑁 ∈
ℤ) ∧ (𝐴 ≠ 0
∧ 𝐵 ≠ 0)) ∧
𝑁 ≠ 0) ∧ 𝑘 ∈ (1...(abs‘𝑁))) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐵 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑘) ∈ ℤ) |
102 | 101 | zcnd 12427 |
. . . . 5
⊢
(((((𝐴 ∈
ℤ ∧ 𝐵 ∈
ℤ ∧ 𝑁 ∈
ℤ) ∧ (𝐴 ≠ 0
∧ 𝐵 ≠ 0)) ∧
𝑁 ≠ 0) ∧ 𝑘 ∈ (1...(abs‘𝑁))) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐵 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑘) ∈ ℂ) |
103 | 86 | adantr 481 |
. . . . . . . . . . . 12
⊢
(((((𝐴 ∈
ℤ ∧ 𝐵 ∈
ℤ ∧ 𝑁 ∈
ℤ) ∧ (𝐴 ≠ 0
∧ 𝐵 ≠ 0)) ∧
𝑁 ≠ 0) ∧ 𝑘 ∈ ℙ) → 𝐴 ∈
ℤ) |
104 | 96 | adantr 481 |
. . . . . . . . . . . 12
⊢
(((((𝐴 ∈
ℤ ∧ 𝐵 ∈
ℤ ∧ 𝑁 ∈
ℤ) ∧ (𝐴 ≠ 0
∧ 𝐵 ≠ 0)) ∧
𝑁 ≠ 0) ∧ 𝑘 ∈ ℙ) → 𝐵 ∈
ℤ) |
105 | | simpr 485 |
. . . . . . . . . . . 12
⊢
(((((𝐴 ∈
ℤ ∧ 𝐵 ∈
ℤ ∧ 𝑁 ∈
ℤ) ∧ (𝐴 ≠ 0
∧ 𝐵 ≠ 0)) ∧
𝑁 ≠ 0) ∧ 𝑘 ∈ ℙ) → 𝑘 ∈
ℙ) |
106 | | lgsdirprm 26479 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑘 ∈ ℙ) → ((𝐴 · 𝐵) /L 𝑘) = ((𝐴 /L 𝑘) · (𝐵 /L 𝑘))) |
107 | 103, 104,
105, 106 | syl3anc 1370 |
. . . . . . . . . . 11
⊢
(((((𝐴 ∈
ℤ ∧ 𝐵 ∈
ℤ ∧ 𝑁 ∈
ℤ) ∧ (𝐴 ≠ 0
∧ 𝐵 ≠ 0)) ∧
𝑁 ≠ 0) ∧ 𝑘 ∈ ℙ) → ((𝐴 · 𝐵) /L 𝑘) = ((𝐴 /L 𝑘) · (𝐵 /L 𝑘))) |
108 | 107 | oveq1d 7290 |
. . . . . . . . . 10
⊢
(((((𝐴 ∈
ℤ ∧ 𝐵 ∈
ℤ ∧ 𝑁 ∈
ℤ) ∧ (𝐴 ≠ 0
∧ 𝐵 ≠ 0)) ∧
𝑁 ≠ 0) ∧ 𝑘 ∈ ℙ) → (((𝐴 · 𝐵) /L 𝑘)↑(𝑘 pCnt 𝑁)) = (((𝐴 /L 𝑘) · (𝐵 /L 𝑘))↑(𝑘 pCnt 𝑁))) |
109 | | prmz 16380 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ ℙ → 𝑘 ∈
ℤ) |
110 | | lgscl 26459 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝐴 /L 𝑘) ∈
ℤ) |
111 | 86, 109, 110 | syl2an 596 |
. . . . . . . . . . . 12
⊢
(((((𝐴 ∈
ℤ ∧ 𝐵 ∈
ℤ ∧ 𝑁 ∈
ℤ) ∧ (𝐴 ≠ 0
∧ 𝐵 ≠ 0)) ∧
𝑁 ≠ 0) ∧ 𝑘 ∈ ℙ) → (𝐴 /L 𝑘) ∈
ℤ) |
112 | 111 | zcnd 12427 |
. . . . . . . . . . 11
⊢
(((((𝐴 ∈
ℤ ∧ 𝐵 ∈
ℤ ∧ 𝑁 ∈
ℤ) ∧ (𝐴 ≠ 0
∧ 𝐵 ≠ 0)) ∧
𝑁 ≠ 0) ∧ 𝑘 ∈ ℙ) → (𝐴 /L 𝑘) ∈
ℂ) |
113 | | lgscl 26459 |
. . . . . . . . . . . . 13
⊢ ((𝐵 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝐵 /L 𝑘) ∈
ℤ) |
114 | 96, 109, 113 | syl2an 596 |
. . . . . . . . . . . 12
⊢
(((((𝐴 ∈
ℤ ∧ 𝐵 ∈
ℤ ∧ 𝑁 ∈
ℤ) ∧ (𝐴 ≠ 0
∧ 𝐵 ≠ 0)) ∧
𝑁 ≠ 0) ∧ 𝑘 ∈ ℙ) → (𝐵 /L 𝑘) ∈
ℤ) |
115 | 114 | zcnd 12427 |
. . . . . . . . . . 11
⊢
(((((𝐴 ∈
ℤ ∧ 𝐵 ∈
ℤ ∧ 𝑁 ∈
ℤ) ∧ (𝐴 ≠ 0
∧ 𝐵 ≠ 0)) ∧
𝑁 ≠ 0) ∧ 𝑘 ∈ ℙ) → (𝐵 /L 𝑘) ∈
ℂ) |
116 | 87 | adantr 481 |
. . . . . . . . . . . 12
⊢
(((((𝐴 ∈
ℤ ∧ 𝐵 ∈
ℤ ∧ 𝑁 ∈
ℤ) ∧ (𝐴 ≠ 0
∧ 𝐵 ≠ 0)) ∧
𝑁 ≠ 0) ∧ 𝑘 ∈ ℙ) → 𝑁 ∈
ℤ) |
117 | 88 | adantr 481 |
. . . . . . . . . . . 12
⊢
(((((𝐴 ∈
ℤ ∧ 𝐵 ∈
ℤ ∧ 𝑁 ∈
ℤ) ∧ (𝐴 ≠ 0
∧ 𝐵 ≠ 0)) ∧
𝑁 ≠ 0) ∧ 𝑘 ∈ ℙ) → 𝑁 ≠ 0) |
118 | | pczcl 16549 |
. . . . . . . . . . . 12
⊢ ((𝑘 ∈ ℙ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑘 pCnt 𝑁) ∈
ℕ0) |
119 | 105, 116,
117, 118 | syl12anc 834 |
. . . . . . . . . . 11
⊢
(((((𝐴 ∈
ℤ ∧ 𝐵 ∈
ℤ ∧ 𝑁 ∈
ℤ) ∧ (𝐴 ≠ 0
∧ 𝐵 ≠ 0)) ∧
𝑁 ≠ 0) ∧ 𝑘 ∈ ℙ) → (𝑘 pCnt 𝑁) ∈
ℕ0) |
120 | 112, 115,
119 | mulexpd 13879 |
. . . . . . . . . 10
⊢
(((((𝐴 ∈
ℤ ∧ 𝐵 ∈
ℤ ∧ 𝑁 ∈
ℤ) ∧ (𝐴 ≠ 0
∧ 𝐵 ≠ 0)) ∧
𝑁 ≠ 0) ∧ 𝑘 ∈ ℙ) → (((𝐴 /L 𝑘) · (𝐵 /L 𝑘))↑(𝑘 pCnt 𝑁)) = (((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)) · ((𝐵 /L 𝑘)↑(𝑘 pCnt 𝑁)))) |
121 | 108, 120 | eqtrd 2778 |
. . . . . . . . 9
⊢
(((((𝐴 ∈
ℤ ∧ 𝐵 ∈
ℤ ∧ 𝑁 ∈
ℤ) ∧ (𝐴 ≠ 0
∧ 𝐵 ≠ 0)) ∧
𝑁 ≠ 0) ∧ 𝑘 ∈ ℙ) → (((𝐴 · 𝐵) /L 𝑘)↑(𝑘 pCnt 𝑁)) = (((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)) · ((𝐵 /L 𝑘)↑(𝑘 pCnt 𝑁)))) |
122 | | iftrue 4465 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℙ → if(𝑘 ∈ ℙ, (((𝐴 · 𝐵) /L 𝑘)↑(𝑘 pCnt 𝑁)), 1) = (((𝐴 · 𝐵) /L 𝑘)↑(𝑘 pCnt 𝑁))) |
123 | 122 | adantl 482 |
. . . . . . . . 9
⊢
(((((𝐴 ∈
ℤ ∧ 𝐵 ∈
ℤ ∧ 𝑁 ∈
ℤ) ∧ (𝐴 ≠ 0
∧ 𝐵 ≠ 0)) ∧
𝑁 ≠ 0) ∧ 𝑘 ∈ ℙ) → if(𝑘 ∈ ℙ, (((𝐴 · 𝐵) /L 𝑘)↑(𝑘 pCnt 𝑁)), 1) = (((𝐴 · 𝐵) /L 𝑘)↑(𝑘 pCnt 𝑁))) |
124 | | iftrue 4465 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ℙ → if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1) = ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁))) |
125 | | iftrue 4465 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ℙ → if(𝑘 ∈ ℙ, ((𝐵 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1) = ((𝐵 /L 𝑘)↑(𝑘 pCnt 𝑁))) |
126 | 124, 125 | oveq12d 7293 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℙ → (if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1) · if(𝑘 ∈ ℙ, ((𝐵 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1)) = (((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)) · ((𝐵 /L 𝑘)↑(𝑘 pCnt 𝑁)))) |
127 | 126 | adantl 482 |
. . . . . . . . 9
⊢
(((((𝐴 ∈
ℤ ∧ 𝐵 ∈
ℤ ∧ 𝑁 ∈
ℤ) ∧ (𝐴 ≠ 0
∧ 𝐵 ≠ 0)) ∧
𝑁 ≠ 0) ∧ 𝑘 ∈ ℙ) →
(if(𝑘 ∈ ℙ,
((𝐴 /L
𝑘)↑(𝑘 pCnt 𝑁)), 1) · if(𝑘 ∈ ℙ, ((𝐵 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1)) = (((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)) · ((𝐵 /L 𝑘)↑(𝑘 pCnt 𝑁)))) |
128 | 121, 123,
127 | 3eqtr4d 2788 |
. . . . . . . 8
⊢
(((((𝐴 ∈
ℤ ∧ 𝐵 ∈
ℤ ∧ 𝑁 ∈
ℤ) ∧ (𝐴 ≠ 0
∧ 𝐵 ≠ 0)) ∧
𝑁 ≠ 0) ∧ 𝑘 ∈ ℙ) → if(𝑘 ∈ ℙ, (((𝐴 · 𝐵) /L 𝑘)↑(𝑘 pCnt 𝑁)), 1) = (if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1) · if(𝑘 ∈ ℙ, ((𝐵 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1))) |
129 | | 1t1e1 12135 |
. . . . . . . . . . 11
⊢ (1
· 1) = 1 |
130 | 129 | eqcomi 2747 |
. . . . . . . . . 10
⊢ 1 = (1
· 1) |
131 | | iffalse 4468 |
. . . . . . . . . 10
⊢ (¬
𝑘 ∈ ℙ →
if(𝑘 ∈ ℙ,
(((𝐴 · 𝐵) /L 𝑘)↑(𝑘 pCnt 𝑁)), 1) = 1) |
132 | | iffalse 4468 |
. . . . . . . . . . 11
⊢ (¬
𝑘 ∈ ℙ →
if(𝑘 ∈ ℙ,
((𝐴 /L
𝑘)↑(𝑘 pCnt 𝑁)), 1) = 1) |
133 | | iffalse 4468 |
. . . . . . . . . . 11
⊢ (¬
𝑘 ∈ ℙ →
if(𝑘 ∈ ℙ,
((𝐵 /L
𝑘)↑(𝑘 pCnt 𝑁)), 1) = 1) |
134 | 132, 133 | oveq12d 7293 |
. . . . . . . . . 10
⊢ (¬
𝑘 ∈ ℙ →
(if(𝑘 ∈ ℙ,
((𝐴 /L
𝑘)↑(𝑘 pCnt 𝑁)), 1) · if(𝑘 ∈ ℙ, ((𝐵 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1)) = (1 · 1)) |
135 | 130, 131,
134 | 3eqtr4a 2804 |
. . . . . . . . 9
⊢ (¬
𝑘 ∈ ℙ →
if(𝑘 ∈ ℙ,
(((𝐴 · 𝐵) /L 𝑘)↑(𝑘 pCnt 𝑁)), 1) = (if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1) · if(𝑘 ∈ ℙ, ((𝐵 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1))) |
136 | 135 | adantl 482 |
. . . . . . . 8
⊢
(((((𝐴 ∈
ℤ ∧ 𝐵 ∈
ℤ ∧ 𝑁 ∈
ℤ) ∧ (𝐴 ≠ 0
∧ 𝐵 ≠ 0)) ∧
𝑁 ≠ 0) ∧ ¬ 𝑘 ∈ ℙ) → if(𝑘 ∈ ℙ, (((𝐴 · 𝐵) /L 𝑘)↑(𝑘 pCnt 𝑁)), 1) = (if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1) · if(𝑘 ∈ ℙ, ((𝐵 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1))) |
137 | 128, 136 | pm2.61dan 810 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) → if(𝑘 ∈ ℙ, (((𝐴 · 𝐵) /L 𝑘)↑(𝑘 pCnt 𝑁)), 1) = (if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1) · if(𝑘 ∈ ℙ, ((𝐵 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1))) |
138 | 137 | adantr 481 |
. . . . . 6
⊢
(((((𝐴 ∈
ℤ ∧ 𝐵 ∈
ℤ ∧ 𝑁 ∈
ℤ) ∧ (𝐴 ≠ 0
∧ 𝐵 ≠ 0)) ∧
𝑁 ≠ 0) ∧ 𝑘 ∈ (1...(abs‘𝑁))) → if(𝑘 ∈ ℙ, (((𝐴 · 𝐵) /L 𝑘)↑(𝑘 pCnt 𝑁)), 1) = (if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1) · if(𝑘 ∈ ℙ, ((𝐵 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1))) |
139 | 92 | adantl 482 |
. . . . . . 7
⊢
(((((𝐴 ∈
ℤ ∧ 𝐵 ∈
ℤ ∧ 𝑁 ∈
ℤ) ∧ (𝐴 ≠ 0
∧ 𝐵 ≠ 0)) ∧
𝑁 ≠ 0) ∧ 𝑘 ∈ (1...(abs‘𝑁))) → 𝑘 ∈ ℕ) |
140 | | eleq1w 2821 |
. . . . . . . . 9
⊢ (𝑛 = 𝑘 → (𝑛 ∈ ℙ ↔ 𝑘 ∈ ℙ)) |
141 | | oveq2 7283 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑘 → ((𝐴 · 𝐵) /L 𝑛) = ((𝐴 · 𝐵) /L 𝑘)) |
142 | | oveq1 7282 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑘 → (𝑛 pCnt 𝑁) = (𝑘 pCnt 𝑁)) |
143 | 141, 142 | oveq12d 7293 |
. . . . . . . . 9
⊢ (𝑛 = 𝑘 → (((𝐴 · 𝐵) /L 𝑛)↑(𝑛 pCnt 𝑁)) = (((𝐴 · 𝐵) /L 𝑘)↑(𝑘 pCnt 𝑁))) |
144 | 140, 143 | ifbieq1d 4483 |
. . . . . . . 8
⊢ (𝑛 = 𝑘 → if(𝑛 ∈ ℙ, (((𝐴 · 𝐵) /L 𝑛)↑(𝑛 pCnt 𝑁)), 1) = if(𝑘 ∈ ℙ, (((𝐴 · 𝐵) /L 𝑘)↑(𝑘 pCnt 𝑁)), 1)) |
145 | | eqid 2738 |
. . . . . . . 8
⊢ (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (((𝐴 · 𝐵) /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (((𝐴 · 𝐵) /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)) |
146 | | ovex 7308 |
. . . . . . . . 9
⊢ (((𝐴 · 𝐵) /L 𝑘)↑(𝑘 pCnt 𝑁)) ∈ V |
147 | | 1ex 10971 |
. . . . . . . . 9
⊢ 1 ∈
V |
148 | 146, 147 | ifex 4509 |
. . . . . . . 8
⊢ if(𝑘 ∈ ℙ, (((𝐴 · 𝐵) /L 𝑘)↑(𝑘 pCnt 𝑁)), 1) ∈ V |
149 | 144, 145,
148 | fvmpt 6875 |
. . . . . . 7
⊢ (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (((𝐴 · 𝐵) /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑘) = if(𝑘 ∈ ℙ, (((𝐴 · 𝐵) /L 𝑘)↑(𝑘 pCnt 𝑁)), 1)) |
150 | 139, 149 | syl 17 |
. . . . . 6
⊢
(((((𝐴 ∈
ℤ ∧ 𝐵 ∈
ℤ ∧ 𝑁 ∈
ℤ) ∧ (𝐴 ≠ 0
∧ 𝐵 ≠ 0)) ∧
𝑁 ≠ 0) ∧ 𝑘 ∈ (1...(abs‘𝑁))) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (((𝐴 · 𝐵) /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑘) = if(𝑘 ∈ ℙ, (((𝐴 · 𝐵) /L 𝑘)↑(𝑘 pCnt 𝑁)), 1)) |
151 | | oveq2 7283 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑘 → (𝐴 /L 𝑛) = (𝐴 /L 𝑘)) |
152 | 151, 142 | oveq12d 7293 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑘 → ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)) = ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁))) |
153 | 140, 152 | ifbieq1d 4483 |
. . . . . . . . 9
⊢ (𝑛 = 𝑘 → if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1) = if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1)) |
154 | | ovex 7308 |
. . . . . . . . . 10
⊢ ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)) ∈ V |
155 | 154, 147 | ifex 4509 |
. . . . . . . . 9
⊢ if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1) ∈ V |
156 | 153, 89, 155 | fvmpt 6875 |
. . . . . . . 8
⊢ (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑘) = if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1)) |
157 | 139, 156 | syl 17 |
. . . . . . 7
⊢
(((((𝐴 ∈
ℤ ∧ 𝐵 ∈
ℤ ∧ 𝑁 ∈
ℤ) ∧ (𝐴 ≠ 0
∧ 𝐵 ≠ 0)) ∧
𝑁 ≠ 0) ∧ 𝑘 ∈ (1...(abs‘𝑁))) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑘) = if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1)) |
158 | | oveq2 7283 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑘 → (𝐵 /L 𝑛) = (𝐵 /L 𝑘)) |
159 | 158, 142 | oveq12d 7293 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑘 → ((𝐵 /L 𝑛)↑(𝑛 pCnt 𝑁)) = ((𝐵 /L 𝑘)↑(𝑘 pCnt 𝑁))) |
160 | 140, 159 | ifbieq1d 4483 |
. . . . . . . . 9
⊢ (𝑛 = 𝑘 → if(𝑛 ∈ ℙ, ((𝐵 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1) = if(𝑘 ∈ ℙ, ((𝐵 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1)) |
161 | | ovex 7308 |
. . . . . . . . . 10
⊢ ((𝐵 /L 𝑘)↑(𝑘 pCnt 𝑁)) ∈ V |
162 | 161, 147 | ifex 4509 |
. . . . . . . . 9
⊢ if(𝑘 ∈ ℙ, ((𝐵 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1) ∈ V |
163 | 160, 97, 162 | fvmpt 6875 |
. . . . . . . 8
⊢ (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐵 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑘) = if(𝑘 ∈ ℙ, ((𝐵 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1)) |
164 | 139, 163 | syl 17 |
. . . . . . 7
⊢
(((((𝐴 ∈
ℤ ∧ 𝐵 ∈
ℤ ∧ 𝑁 ∈
ℤ) ∧ (𝐴 ≠ 0
∧ 𝐵 ≠ 0)) ∧
𝑁 ≠ 0) ∧ 𝑘 ∈ (1...(abs‘𝑁))) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐵 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑘) = if(𝑘 ∈ ℙ, ((𝐵 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1)) |
165 | 157, 164 | oveq12d 7293 |
. . . . . 6
⊢
(((((𝐴 ∈
ℤ ∧ 𝐵 ∈
ℤ ∧ 𝑁 ∈
ℤ) ∧ (𝐴 ≠ 0
∧ 𝐵 ≠ 0)) ∧
𝑁 ≠ 0) ∧ 𝑘 ∈ (1...(abs‘𝑁))) → (((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑘) · ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐵 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑘)) = (if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1) · if(𝑘 ∈ ℙ, ((𝐵 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1))) |
166 | 138, 150,
165 | 3eqtr4d 2788 |
. . . . 5
⊢
(((((𝐴 ∈
ℤ ∧ 𝐵 ∈
ℤ ∧ 𝑁 ∈
ℤ) ∧ (𝐴 ≠ 0
∧ 𝐵 ≠ 0)) ∧
𝑁 ≠ 0) ∧ 𝑘 ∈ (1...(abs‘𝑁))) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (((𝐴 · 𝐵) /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑘) = (((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑘) · ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐵 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑘))) |
167 | 85, 95, 102, 166 | prodfmul 15602 |
. . . 4
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) → (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (((𝐴 · 𝐵) /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) = ((seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐵 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)))) |
168 | 80, 167 | oveq12d 7293 |
. . 3
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) → (if((𝑁 < 0 ∧ (𝐴 · 𝐵) < 0), -1, 1) · (seq1( · ,
(𝑛 ∈ ℕ ↦
if(𝑛 ∈ ℙ,
(((𝐴 · 𝐵) /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁))) = ((if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · if((𝑁 < 0 ∧ 𝐵 < 0), -1, 1)) · ((seq1( ·
, (𝑛 ∈ ℕ ↦
if(𝑛 ∈ ℙ,
((𝐴 /L
𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐵 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁))))) |
169 | 30 | adantr 481 |
. . . 4
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) → (𝐴 · 𝐵) ∈ ℤ) |
170 | 145 | lgsval4 26465 |
. . . 4
⊢ (((𝐴 · 𝐵) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → ((𝐴 · 𝐵) /L 𝑁) = (if((𝑁 < 0 ∧ (𝐴 · 𝐵) < 0), -1, 1) · (seq1( · ,
(𝑛 ∈ ℕ ↦
if(𝑛 ∈ ℙ,
(((𝐴 · 𝐵) /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)))) |
171 | 169, 87, 88, 170 | syl3anc 1370 |
. . 3
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) → ((𝐴 · 𝐵) /L 𝑁) = (if((𝑁 < 0 ∧ (𝐴 · 𝐵) < 0), -1, 1) · (seq1( · ,
(𝑛 ∈ ℕ ↦
if(𝑛 ∈ ℙ,
(((𝐴 · 𝐵) /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)))) |
172 | 89 | lgsval4 26465 |
. . . . . 6
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝐴 /L 𝑁) = (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · ,
(𝑛 ∈ ℕ ↦
if(𝑛 ∈ ℙ,
((𝐴 /L
𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)))) |
173 | 86, 87, 88, 172 | syl3anc 1370 |
. . . . 5
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) → (𝐴 /L 𝑁) = (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · ,
(𝑛 ∈ ℕ ↦
if(𝑛 ∈ ℙ,
((𝐴 /L
𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)))) |
174 | 97 | lgsval4 26465 |
. . . . . 6
⊢ ((𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝐵 /L 𝑁) = (if((𝑁 < 0 ∧ 𝐵 < 0), -1, 1) · (seq1( · ,
(𝑛 ∈ ℕ ↦
if(𝑛 ∈ ℙ,
((𝐵 /L
𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)))) |
175 | 96, 87, 88, 174 | syl3anc 1370 |
. . . . 5
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) → (𝐵 /L 𝑁) = (if((𝑁 < 0 ∧ 𝐵 < 0), -1, 1) · (seq1( · ,
(𝑛 ∈ ℕ ↦
if(𝑛 ∈ ℙ,
((𝐵 /L
𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)))) |
176 | 173, 175 | oveq12d 7293 |
. . . 4
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) → ((𝐴 /L 𝑁) · (𝐵 /L 𝑁)) = ((if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · ,
(𝑛 ∈ ℕ ↦
if(𝑛 ∈ ℙ,
((𝐴 /L
𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁))) · (if((𝑁 < 0 ∧ 𝐵 < 0), -1, 1) · (seq1( · ,
(𝑛 ∈ ℕ ↦
if(𝑛 ∈ ℙ,
((𝐵 /L
𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁))))) |
177 | | neg1cn 12087 |
. . . . . . 7
⊢ -1 ∈
ℂ |
178 | 177, 1 | ifcli 4506 |
. . . . . 6
⊢ if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) ∈
ℂ |
179 | 178 | a1i 11 |
. . . . 5
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) → if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) ∈
ℂ) |
180 | | mulcl 10955 |
. . . . . . 7
⊢ ((𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑘 · 𝑥) ∈ ℂ) |
181 | 180 | adantl 482 |
. . . . . 6
⊢
(((((𝐴 ∈
ℤ ∧ 𝐵 ∈
ℤ ∧ 𝑁 ∈
ℤ) ∧ (𝐴 ≠ 0
∧ 𝐵 ≠ 0)) ∧
𝑁 ≠ 0) ∧ (𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝑘 · 𝑥) ∈ ℂ) |
182 | 85, 95, 181 | seqcl 13743 |
. . . . 5
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) → (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) ∈ ℂ) |
183 | 177, 1 | ifcli 4506 |
. . . . . 6
⊢ if((𝑁 < 0 ∧ 𝐵 < 0), -1, 1) ∈
ℂ |
184 | 183 | a1i 11 |
. . . . 5
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) → if((𝑁 < 0 ∧ 𝐵 < 0), -1, 1) ∈
ℂ) |
185 | 85, 102, 181 | seqcl 13743 |
. . . . 5
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) → (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐵 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) ∈ ℂ) |
186 | 179, 182,
184, 185 | mul4d 11187 |
. . . 4
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) → ((if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · ,
(𝑛 ∈ ℕ ↦
if(𝑛 ∈ ℙ,
((𝐴 /L
𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁))) · (if((𝑁 < 0 ∧ 𝐵 < 0), -1, 1) · (seq1( · ,
(𝑛 ∈ ℕ ↦
if(𝑛 ∈ ℙ,
((𝐵 /L
𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)))) = ((if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · if((𝑁 < 0 ∧ 𝐵 < 0), -1, 1)) · ((seq1( ·
, (𝑛 ∈ ℕ ↦
if(𝑛 ∈ ℙ,
((𝐴 /L
𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐵 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁))))) |
187 | 176, 186 | eqtrd 2778 |
. . 3
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) → ((𝐴 /L 𝑁) · (𝐵 /L 𝑁)) = ((if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · if((𝑁 < 0 ∧ 𝐵 < 0), -1, 1)) · ((seq1( ·
, (𝑛 ∈ ℕ ↦
if(𝑛 ∈ ℙ,
((𝐴 /L
𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐵 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁))))) |
188 | 168, 171,
187 | 3eqtr4d 2788 |
. 2
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) → ((𝐴 · 𝐵) /L 𝑁) = ((𝐴 /L 𝑁) · (𝐵 /L 𝑁))) |
189 | 78, 188 | pm2.61dane 3032 |
1
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → ((𝐴 · 𝐵) /L 𝑁) = ((𝐴 /L 𝑁) · (𝐵 /L 𝑁))) |