Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > hashfn | Structured version Visualization version GIF version |
Description: A function is equinumerous to its domain. (Contributed by Mario Carneiro, 12-Mar-2015.) |
Ref | Expression |
---|---|
hashfn | ⊢ (𝐹 Fn 𝐴 → (♯‘𝐹) = (♯‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fndmeng 8606 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ V) → 𝐴 ≈ 𝐹) | |
2 | ensym 8576 | . . 3 ⊢ (𝐴 ≈ 𝐹 → 𝐹 ≈ 𝐴) | |
3 | hasheni 13758 | . . 3 ⊢ (𝐹 ≈ 𝐴 → (♯‘𝐹) = (♯‘𝐴)) | |
4 | 1, 2, 3 | 3syl 18 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ V) → (♯‘𝐹) = (♯‘𝐴)) |
5 | dmexg 7613 | . . . . . 6 ⊢ (𝐹 ∈ V → dom 𝐹 ∈ V) | |
6 | fndm 6436 | . . . . . . 7 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
7 | 6 | eleq1d 2836 | . . . . . 6 ⊢ (𝐹 Fn 𝐴 → (dom 𝐹 ∈ V ↔ 𝐴 ∈ V)) |
8 | 5, 7 | syl5ib 247 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → (𝐹 ∈ V → 𝐴 ∈ V)) |
9 | 8 | con3dimp 412 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ ¬ 𝐴 ∈ V) → ¬ 𝐹 ∈ V) |
10 | fvprc 6650 | . . . 4 ⊢ (¬ 𝐹 ∈ V → (♯‘𝐹) = ∅) | |
11 | 9, 10 | syl 17 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ ¬ 𝐴 ∈ V) → (♯‘𝐹) = ∅) |
12 | fvprc 6650 | . . . 4 ⊢ (¬ 𝐴 ∈ V → (♯‘𝐴) = ∅) | |
13 | 12 | adantl 485 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ ¬ 𝐴 ∈ V) → (♯‘𝐴) = ∅) |
14 | 11, 13 | eqtr4d 2796 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ ¬ 𝐴 ∈ V) → (♯‘𝐹) = (♯‘𝐴)) |
15 | 4, 14 | pm2.61dan 812 | 1 ⊢ (𝐹 Fn 𝐴 → (♯‘𝐹) = (♯‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 Vcvv 3409 ∅c0 4225 class class class wbr 5032 dom cdm 5524 Fn wfn 6330 ‘cfv 6335 ≈ cen 8524 ♯chash 13740 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5156 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-cnex 10631 ax-resscn 10632 ax-1cn 10633 ax-icn 10634 ax-addcl 10635 ax-addrcl 10636 ax-mulcl 10637 ax-mulrcl 10638 ax-mulcom 10639 ax-addass 10640 ax-mulass 10641 ax-distr 10642 ax-i2m1 10643 ax-1ne0 10644 ax-1rid 10645 ax-rnegex 10646 ax-rrecex 10647 ax-cnre 10648 ax-pre-lttri 10649 ax-pre-lttrn 10650 ax-pre-ltadd 10651 ax-pre-mulgt0 10652 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-int 4839 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-pred 6126 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-riota 7108 df-ov 7153 df-oprab 7154 df-mpo 7155 df-om 7580 df-wrecs 7957 df-recs 8018 df-rdg 8056 df-er 8299 df-en 8528 df-dom 8529 df-sdom 8530 df-fin 8531 df-card 9401 df-pnf 10715 df-mnf 10716 df-xr 10717 df-ltxr 10718 df-le 10719 df-sub 10910 df-neg 10911 df-nn 11675 df-n0 11935 df-z 12021 df-uz 12283 df-hash 13741 |
This theorem is referenced by: fseq1hash 13787 hashfun 13848 hashimarn 13851 fnfz0hash 13854 fnfz0hashnn0 13856 ffzo0hash 13857 fnfzo0hashnn0 13859 wrdred1hash 13960 ccatlen 13974 ccatlenOLD 13975 swrdlen 14056 swrdwrdsymb 14071 pfxlen 14092 revlen 14171 repswlen 14185 lenco 14241 ofccat 14376 pmtrdifwrdellem2 18677 frlmdim 31215 subiwrdlen 31872 signstlen 32065 signsvtn0 32068 signstres 32073 signshlen 32088 frlmvscadiccat 39744 |
Copyright terms: Public domain | W3C validator |