MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashfn Structured version   Visualization version   GIF version

Theorem hashfn 14282
Description: A function is equinumerous to its domain. (Contributed by Mario Carneiro, 12-Mar-2015.)
Assertion
Ref Expression
hashfn (𝐹 Fn 𝐴 → (♯‘𝐹) = (♯‘𝐴))

Proof of Theorem hashfn
StepHypRef Expression
1 fndmeng 8960 . . 3 ((𝐹 Fn 𝐴𝐴 ∈ V) → 𝐴𝐹)
2 ensym 8928 . . 3 (𝐴𝐹𝐹𝐴)
3 hasheni 14255 . . 3 (𝐹𝐴 → (♯‘𝐹) = (♯‘𝐴))
41, 2, 33syl 18 . 2 ((𝐹 Fn 𝐴𝐴 ∈ V) → (♯‘𝐹) = (♯‘𝐴))
5 dmexg 7834 . . . . . 6 (𝐹 ∈ V → dom 𝐹 ∈ V)
6 fndm 6585 . . . . . . 7 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
76eleq1d 2813 . . . . . 6 (𝐹 Fn 𝐴 → (dom 𝐹 ∈ V ↔ 𝐴 ∈ V))
85, 7imbitrid 244 . . . . 5 (𝐹 Fn 𝐴 → (𝐹 ∈ V → 𝐴 ∈ V))
98con3dimp 408 . . . 4 ((𝐹 Fn 𝐴 ∧ ¬ 𝐴 ∈ V) → ¬ 𝐹 ∈ V)
10 fvprc 6814 . . . 4 𝐹 ∈ V → (♯‘𝐹) = ∅)
119, 10syl 17 . . 3 ((𝐹 Fn 𝐴 ∧ ¬ 𝐴 ∈ V) → (♯‘𝐹) = ∅)
12 fvprc 6814 . . . 4 𝐴 ∈ V → (♯‘𝐴) = ∅)
1312adantl 481 . . 3 ((𝐹 Fn 𝐴 ∧ ¬ 𝐴 ∈ V) → (♯‘𝐴) = ∅)
1411, 13eqtr4d 2767 . 2 ((𝐹 Fn 𝐴 ∧ ¬ 𝐴 ∈ V) → (♯‘𝐹) = (♯‘𝐴))
154, 14pm2.61dan 812 1 (𝐹 Fn 𝐴 → (♯‘𝐹) = (♯‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3436  c0 4284   class class class wbr 5092  dom cdm 5619   Fn wfn 6477  cfv 6482  cen 8869  chash 14237
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-n0 12385  df-z 12472  df-uz 12736  df-hash 14238
This theorem is referenced by:  fseq1hash  14283  hashfun  14344  hashimarn  14347  fnfz0hash  14353  fnfz0hashnn0  14355  ffzo0hash  14356  fnfzo0hashnn0  14358  wrdred1hash  14468  ccatlen  14482  swrdlen  14554  swrdwrdsymb  14569  pfxlen  14590  revlen  14668  repswlen  14682  lenco  14739  ofccat  14876  pmtrdifwrdellem2  19361  1arithidomlem1  33472  1arithidomlem2  33473  1arithidom  33474  frlmdim  33578  ply1degltdim  33590  subiwrdlen  34354  signstlen  34535  signsvtn0  34538  signstres  34543  signshlen  34558  sticksstones2  42120  frlmvscadiccat  42479  upgrimwlklem1  47881  grtriclwlk3  47929
  Copyright terms: Public domain W3C validator