![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hashfn | Structured version Visualization version GIF version |
Description: A function is equinumerous to its domain. (Contributed by Mario Carneiro, 12-Mar-2015.) |
Ref | Expression |
---|---|
hashfn | ⊢ (𝐹 Fn 𝐴 → (♯‘𝐹) = (♯‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fndmeng 9073 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ V) → 𝐴 ≈ 𝐹) | |
2 | ensym 9041 | . . 3 ⊢ (𝐴 ≈ 𝐹 → 𝐹 ≈ 𝐴) | |
3 | hasheni 14383 | . . 3 ⊢ (𝐹 ≈ 𝐴 → (♯‘𝐹) = (♯‘𝐴)) | |
4 | 1, 2, 3 | 3syl 18 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ V) → (♯‘𝐹) = (♯‘𝐴)) |
5 | dmexg 7923 | . . . . . 6 ⊢ (𝐹 ∈ V → dom 𝐹 ∈ V) | |
6 | fndm 6671 | . . . . . . 7 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
7 | 6 | eleq1d 2823 | . . . . . 6 ⊢ (𝐹 Fn 𝐴 → (dom 𝐹 ∈ V ↔ 𝐴 ∈ V)) |
8 | 5, 7 | imbitrid 244 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → (𝐹 ∈ V → 𝐴 ∈ V)) |
9 | 8 | con3dimp 408 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ ¬ 𝐴 ∈ V) → ¬ 𝐹 ∈ V) |
10 | fvprc 6898 | . . . 4 ⊢ (¬ 𝐹 ∈ V → (♯‘𝐹) = ∅) | |
11 | 9, 10 | syl 17 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ ¬ 𝐴 ∈ V) → (♯‘𝐹) = ∅) |
12 | fvprc 6898 | . . . 4 ⊢ (¬ 𝐴 ∈ V → (♯‘𝐴) = ∅) | |
13 | 12 | adantl 481 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ ¬ 𝐴 ∈ V) → (♯‘𝐴) = ∅) |
14 | 11, 13 | eqtr4d 2777 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ ¬ 𝐴 ∈ V) → (♯‘𝐹) = (♯‘𝐴)) |
15 | 4, 14 | pm2.61dan 813 | 1 ⊢ (𝐹 Fn 𝐴 → (♯‘𝐹) = (♯‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1536 ∈ wcel 2105 Vcvv 3477 ∅c0 4338 class class class wbr 5147 dom cdm 5688 Fn wfn 6557 ‘cfv 6562 ≈ cen 8980 ♯chash 14365 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-int 4951 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-om 7887 df-2nd 8013 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-1o 8504 df-er 8743 df-en 8984 df-dom 8985 df-sdom 8986 df-fin 8987 df-card 9976 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-nn 12264 df-n0 12524 df-z 12611 df-uz 12876 df-hash 14366 |
This theorem is referenced by: fseq1hash 14411 hashfun 14472 hashimarn 14475 fnfz0hash 14481 fnfz0hashnn0 14483 ffzo0hash 14484 fnfzo0hashnn0 14486 wrdred1hash 14595 ccatlen 14609 swrdlen 14681 swrdwrdsymb 14696 pfxlen 14717 revlen 14796 repswlen 14810 lenco 14867 ofccat 15004 pmtrdifwrdellem2 19514 1arithidomlem1 33542 1arithidomlem2 33543 1arithidom 33544 frlmdim 33638 ply1degltdim 33650 subiwrdlen 34367 signstlen 34560 signsvtn0 34563 signstres 34568 signshlen 34583 sticksstones2 42128 frlmvscadiccat 42492 grtriclwlk3 47849 |
Copyright terms: Public domain | W3C validator |