MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashfn Structured version   Visualization version   GIF version

Theorem hashfn 14335
Description: A function is equinumerous to its domain. (Contributed by Mario Carneiro, 12-Mar-2015.)
Assertion
Ref Expression
hashfn (𝐹 Fn 𝐴 → (♯‘𝐹) = (♯‘𝐴))

Proof of Theorem hashfn
StepHypRef Expression
1 fndmeng 9035 . . 3 ((𝐹 Fn 𝐴𝐴 ∈ V) → 𝐴𝐹)
2 ensym 8999 . . 3 (𝐴𝐹𝐹𝐴)
3 hasheni 14308 . . 3 (𝐹𝐴 → (♯‘𝐹) = (♯‘𝐴))
41, 2, 33syl 18 . 2 ((𝐹 Fn 𝐴𝐴 ∈ V) → (♯‘𝐹) = (♯‘𝐴))
5 dmexg 7894 . . . . . 6 (𝐹 ∈ V → dom 𝐹 ∈ V)
6 fndm 6653 . . . . . . 7 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
76eleq1d 2819 . . . . . 6 (𝐹 Fn 𝐴 → (dom 𝐹 ∈ V ↔ 𝐴 ∈ V))
85, 7imbitrid 243 . . . . 5 (𝐹 Fn 𝐴 → (𝐹 ∈ V → 𝐴 ∈ V))
98con3dimp 410 . . . 4 ((𝐹 Fn 𝐴 ∧ ¬ 𝐴 ∈ V) → ¬ 𝐹 ∈ V)
10 fvprc 6884 . . . 4 𝐹 ∈ V → (♯‘𝐹) = ∅)
119, 10syl 17 . . 3 ((𝐹 Fn 𝐴 ∧ ¬ 𝐴 ∈ V) → (♯‘𝐹) = ∅)
12 fvprc 6884 . . . 4 𝐴 ∈ V → (♯‘𝐴) = ∅)
1312adantl 483 . . 3 ((𝐹 Fn 𝐴 ∧ ¬ 𝐴 ∈ V) → (♯‘𝐴) = ∅)
1411, 13eqtr4d 2776 . 2 ((𝐹 Fn 𝐴 ∧ ¬ 𝐴 ∈ V) → (♯‘𝐹) = (♯‘𝐴))
154, 14pm2.61dan 812 1 (𝐹 Fn 𝐴 → (♯‘𝐹) = (♯‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 397   = wceq 1542  wcel 2107  Vcvv 3475  c0 4323   class class class wbr 5149  dom cdm 5677   Fn wfn 6539  cfv 6544  cen 8936  chash 14290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-fin 8943  df-card 9934  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-nn 12213  df-n0 12473  df-z 12559  df-uz 12823  df-hash 14291
This theorem is referenced by:  fseq1hash  14336  hashfun  14397  hashimarn  14400  fnfz0hash  14405  fnfz0hashnn0  14407  ffzo0hash  14408  fnfzo0hashnn0  14410  wrdred1hash  14511  ccatlen  14525  swrdlen  14597  swrdwrdsymb  14612  pfxlen  14633  revlen  14712  repswlen  14726  lenco  14783  ofccat  14916  pmtrdifwrdellem2  19350  frlmdim  32727  ply1degltdim  32739  subiwrdlen  33416  signstlen  33609  signsvtn0  33612  signstres  33617  signshlen  33632  sticksstones2  41011  frlmvscadiccat  41128
  Copyright terms: Public domain W3C validator