| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hashfn | Structured version Visualization version GIF version | ||
| Description: A function is equinumerous to its domain. (Contributed by Mario Carneiro, 12-Mar-2015.) |
| Ref | Expression |
|---|---|
| hashfn | ⊢ (𝐹 Fn 𝐴 → (♯‘𝐹) = (♯‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fndmeng 8957 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ V) → 𝐴 ≈ 𝐹) | |
| 2 | ensym 8925 | . . 3 ⊢ (𝐴 ≈ 𝐹 → 𝐹 ≈ 𝐴) | |
| 3 | hasheni 14255 | . . 3 ⊢ (𝐹 ≈ 𝐴 → (♯‘𝐹) = (♯‘𝐴)) | |
| 4 | 1, 2, 3 | 3syl 18 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ V) → (♯‘𝐹) = (♯‘𝐴)) |
| 5 | dmexg 7831 | . . . . . 6 ⊢ (𝐹 ∈ V → dom 𝐹 ∈ V) | |
| 6 | fndm 6584 | . . . . . . 7 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
| 7 | 6 | eleq1d 2816 | . . . . . 6 ⊢ (𝐹 Fn 𝐴 → (dom 𝐹 ∈ V ↔ 𝐴 ∈ V)) |
| 8 | 5, 7 | imbitrid 244 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → (𝐹 ∈ V → 𝐴 ∈ V)) |
| 9 | 8 | con3dimp 408 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ ¬ 𝐴 ∈ V) → ¬ 𝐹 ∈ V) |
| 10 | fvprc 6814 | . . . 4 ⊢ (¬ 𝐹 ∈ V → (♯‘𝐹) = ∅) | |
| 11 | 9, 10 | syl 17 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ ¬ 𝐴 ∈ V) → (♯‘𝐹) = ∅) |
| 12 | fvprc 6814 | . . . 4 ⊢ (¬ 𝐴 ∈ V → (♯‘𝐴) = ∅) | |
| 13 | 12 | adantl 481 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ ¬ 𝐴 ∈ V) → (♯‘𝐴) = ∅) |
| 14 | 11, 13 | eqtr4d 2769 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ ¬ 𝐴 ∈ V) → (♯‘𝐹) = (♯‘𝐴)) |
| 15 | 4, 14 | pm2.61dan 812 | 1 ⊢ (𝐹 Fn 𝐴 → (♯‘𝐹) = (♯‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∅c0 4280 class class class wbr 5089 dom cdm 5614 Fn wfn 6476 ‘cfv 6481 ≈ cen 8866 ♯chash 14237 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-n0 12382 df-z 12469 df-uz 12733 df-hash 14238 |
| This theorem is referenced by: fseq1hash 14283 hashfun 14344 hashimarn 14347 fnfz0hash 14353 fnfz0hashnn0 14355 ffzo0hash 14356 fnfzo0hashnn0 14358 wrdred1hash 14468 ccatlen 14482 swrdlen 14555 swrdwrdsymb 14570 pfxlen 14591 revlen 14669 repswlen 14683 lenco 14739 ofccat 14876 pmtrdifwrdellem2 19394 1arithidomlem1 33500 1arithidomlem2 33501 1arithidom 33502 frlmdim 33624 ply1degltdim 33636 subiwrdlen 34399 signstlen 34580 signsvtn0 34583 signstres 34588 signshlen 34603 sticksstones2 42188 frlmvscadiccat 42547 upgrimwlklem1 47936 grtriclwlk3 47984 |
| Copyright terms: Public domain | W3C validator |