MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fiinfnf1o Structured version   Visualization version   GIF version

Theorem fiinfnf1o 14092
Description: There is no bijection between a finite set and an infinite set. (Contributed by Alexander van der Vekens, 25-Dec-2017.)
Assertion
Ref Expression
fiinfnf1o ((𝐴 ∈ Fin ∧ ¬ 𝐵 ∈ Fin) → ¬ ∃𝑓 𝑓:𝐴1-1-onto𝐵)
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓

Proof of Theorem fiinfnf1o
StepHypRef Expression
1 f1ofo 6741 . . . 4 (𝑓:𝐴1-1-onto𝐵𝑓:𝐴onto𝐵)
2 fofi 9133 . . . . 5 ((𝐴 ∈ Fin ∧ 𝑓:𝐴onto𝐵) → 𝐵 ∈ Fin)
32ex 412 . . . 4 (𝐴 ∈ Fin → (𝑓:𝐴onto𝐵𝐵 ∈ Fin))
41, 3syl5 34 . . 3 (𝐴 ∈ Fin → (𝑓:𝐴1-1-onto𝐵𝐵 ∈ Fin))
54exlimdv 1932 . 2 (𝐴 ∈ Fin → (∃𝑓 𝑓:𝐴1-1-onto𝐵𝐵 ∈ Fin))
65con3dimp 408 1 ((𝐴 ∈ Fin ∧ ¬ 𝐵 ∈ Fin) → ¬ ∃𝑓 𝑓:𝐴1-1-onto𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wex 1777  wcel 2101  ontowfo 6445  1-1-ontowf1o 6446  Fincfn 8753
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2103  ax-9 2111  ax-10 2132  ax-11 2149  ax-12 2166  ax-ext 2704  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7608
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2063  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2884  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3223  df-rab 3224  df-v 3436  df-sbc 3719  df-dif 3892  df-un 3894  df-in 3896  df-ss 3906  df-pss 3908  df-nul 4260  df-if 4463  df-pw 4538  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4842  df-br 5078  df-opab 5140  df-tr 5195  df-id 5491  df-eprel 5497  df-po 5505  df-so 5506  df-fr 5546  df-we 5548  df-xp 5597  df-rel 5598  df-cnv 5599  df-co 5600  df-dm 5601  df-rn 5602  df-res 5603  df-ima 5604  df-ord 6273  df-on 6274  df-lim 6275  df-suc 6276  df-iota 6399  df-fun 6449  df-fn 6450  df-f 6451  df-f1 6452  df-fo 6453  df-f1o 6454  df-fv 6455  df-om 7733  df-1o 8317  df-er 8518  df-en 8754  df-dom 8755  df-fin 8757
This theorem is referenced by:  hasheqf1oi  14094
  Copyright terms: Public domain W3C validator