![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fiinfnf1o | Structured version Visualization version GIF version |
Description: There is no bijection between a finite set and an infinite set. (Contributed by Alexander van der Vekens, 25-Dec-2017.) |
Ref | Expression |
---|---|
fiinfnf1o | ⊢ ((𝐴 ∈ Fin ∧ ¬ 𝐵 ∈ Fin) → ¬ ∃𝑓 𝑓:𝐴–1-1-onto→𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1ofo 6385 | . . . 4 ⊢ (𝑓:𝐴–1-1-onto→𝐵 → 𝑓:𝐴–onto→𝐵) | |
2 | fofi 8521 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ 𝑓:𝐴–onto→𝐵) → 𝐵 ∈ Fin) | |
3 | 2 | ex 403 | . . . 4 ⊢ (𝐴 ∈ Fin → (𝑓:𝐴–onto→𝐵 → 𝐵 ∈ Fin)) |
4 | 1, 3 | syl5 34 | . . 3 ⊢ (𝐴 ∈ Fin → (𝑓:𝐴–1-1-onto→𝐵 → 𝐵 ∈ Fin)) |
5 | 4 | exlimdv 2032 | . 2 ⊢ (𝐴 ∈ Fin → (∃𝑓 𝑓:𝐴–1-1-onto→𝐵 → 𝐵 ∈ Fin)) |
6 | 5 | con3dimp 399 | 1 ⊢ ((𝐴 ∈ Fin ∧ ¬ 𝐵 ∈ Fin) → ¬ ∃𝑓 𝑓:𝐴–1-1-onto→𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 386 ∃wex 1878 ∈ wcel 2164 –onto→wfo 6121 –1-1-onto→wf1o 6122 Fincfn 8222 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-sep 5005 ax-nul 5013 ax-pow 5065 ax-pr 5127 ax-un 7209 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3or 1112 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-ral 3122 df-rex 3123 df-reu 3124 df-rab 3126 df-v 3416 df-sbc 3663 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4145 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-tp 4402 df-op 4404 df-uni 4659 df-br 4874 df-opab 4936 df-tr 4976 df-id 5250 df-eprel 5255 df-po 5263 df-so 5264 df-fr 5301 df-we 5303 df-xp 5348 df-rel 5349 df-cnv 5350 df-co 5351 df-dm 5352 df-rn 5353 df-res 5354 df-ima 5355 df-ord 5966 df-on 5967 df-lim 5968 df-suc 5969 df-iota 6086 df-fun 6125 df-fn 6126 df-f 6127 df-f1 6128 df-fo 6129 df-f1o 6130 df-fv 6131 df-om 7327 df-1o 7826 df-er 8009 df-en 8223 df-dom 8224 df-fin 8226 |
This theorem is referenced by: hasheqf1oi 13432 |
Copyright terms: Public domain | W3C validator |