Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fiinfnf1o | Structured version Visualization version GIF version |
Description: There is no bijection between a finite set and an infinite set. (Contributed by Alexander van der Vekens, 25-Dec-2017.) |
Ref | Expression |
---|---|
fiinfnf1o | ⊢ ((𝐴 ∈ Fin ∧ ¬ 𝐵 ∈ Fin) → ¬ ∃𝑓 𝑓:𝐴–1-1-onto→𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1ofo 6741 | . . . 4 ⊢ (𝑓:𝐴–1-1-onto→𝐵 → 𝑓:𝐴–onto→𝐵) | |
2 | fofi 9133 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ 𝑓:𝐴–onto→𝐵) → 𝐵 ∈ Fin) | |
3 | 2 | ex 412 | . . . 4 ⊢ (𝐴 ∈ Fin → (𝑓:𝐴–onto→𝐵 → 𝐵 ∈ Fin)) |
4 | 1, 3 | syl5 34 | . . 3 ⊢ (𝐴 ∈ Fin → (𝑓:𝐴–1-1-onto→𝐵 → 𝐵 ∈ Fin)) |
5 | 4 | exlimdv 1932 | . 2 ⊢ (𝐴 ∈ Fin → (∃𝑓 𝑓:𝐴–1-1-onto→𝐵 → 𝐵 ∈ Fin)) |
6 | 5 | con3dimp 408 | 1 ⊢ ((𝐴 ∈ Fin ∧ ¬ 𝐵 ∈ Fin) → ¬ ∃𝑓 𝑓:𝐴–1-1-onto→𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∃wex 1777 ∈ wcel 2101 –onto→wfo 6445 –1-1-onto→wf1o 6446 Fincfn 8753 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-10 2132 ax-11 2149 ax-12 2166 ax-ext 2704 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7608 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2063 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2884 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3223 df-rab 3224 df-v 3436 df-sbc 3719 df-dif 3892 df-un 3894 df-in 3896 df-ss 3906 df-pss 3908 df-nul 4260 df-if 4463 df-pw 4538 df-sn 4565 df-pr 4567 df-op 4571 df-uni 4842 df-br 5078 df-opab 5140 df-tr 5195 df-id 5491 df-eprel 5497 df-po 5505 df-so 5506 df-fr 5546 df-we 5548 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-rn 5602 df-res 5603 df-ima 5604 df-ord 6273 df-on 6274 df-lim 6275 df-suc 6276 df-iota 6399 df-fun 6449 df-fn 6450 df-f 6451 df-f1 6452 df-fo 6453 df-f1o 6454 df-fv 6455 df-om 7733 df-1o 8317 df-er 8518 df-en 8754 df-dom 8755 df-fin 8757 |
This theorem is referenced by: hasheqf1oi 14094 |
Copyright terms: Public domain | W3C validator |