| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fiinfnf1o | Structured version Visualization version GIF version | ||
| Description: There is no bijection between a finite set and an infinite set. (Contributed by Alexander van der Vekens, 25-Dec-2017.) |
| Ref | Expression |
|---|---|
| fiinfnf1o | ⊢ ((𝐴 ∈ Fin ∧ ¬ 𝐵 ∈ Fin) → ¬ ∃𝑓 𝑓:𝐴–1-1-onto→𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1ofo 6775 | . . . 4 ⊢ (𝑓:𝐴–1-1-onto→𝐵 → 𝑓:𝐴–onto→𝐵) | |
| 2 | fofi 9204 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ 𝑓:𝐴–onto→𝐵) → 𝐵 ∈ Fin) | |
| 3 | 2 | ex 412 | . . . 4 ⊢ (𝐴 ∈ Fin → (𝑓:𝐴–onto→𝐵 → 𝐵 ∈ Fin)) |
| 4 | 1, 3 | syl5 34 | . . 3 ⊢ (𝐴 ∈ Fin → (𝑓:𝐴–1-1-onto→𝐵 → 𝐵 ∈ Fin)) |
| 5 | 4 | exlimdv 1934 | . 2 ⊢ (𝐴 ∈ Fin → (∃𝑓 𝑓:𝐴–1-1-onto→𝐵 → 𝐵 ∈ Fin)) |
| 6 | 5 | con3dimp 408 | 1 ⊢ ((𝐴 ∈ Fin ∧ ¬ 𝐵 ∈ Fin) → ¬ ∃𝑓 𝑓:𝐴–1-1-onto→𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∃wex 1780 ∈ wcel 2113 –onto→wfo 6484 –1-1-onto→wf1o 6485 Fincfn 8875 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-om 7803 df-1o 8391 df-en 8876 df-dom 8877 df-fin 8879 |
| This theorem is referenced by: hasheqf1oi 14260 |
| Copyright terms: Public domain | W3C validator |