Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  curf1fval Structured version   Visualization version   GIF version

Theorem curf1fval 17344
 Description: Value of the object part of the curry functor. (Contributed by Mario Carneiro, 12-Jan-2017.)
Hypotheses
Ref Expression
curfval.g 𝐺 = (⟨𝐶, 𝐷⟩ curryF 𝐹)
curfval.a 𝐴 = (Base‘𝐶)
curfval.c (𝜑𝐶 ∈ Cat)
curfval.d (𝜑𝐷 ∈ Cat)
curfval.f (𝜑𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸))
curfval.b 𝐵 = (Base‘𝐷)
curfval.j 𝐽 = (Hom ‘𝐷)
curfval.1 1 = (Id‘𝐶)
Assertion
Ref Expression
curf1fval (𝜑 → (1st𝐺) = (𝑥𝐴 ↦ ⟨(𝑦𝐵 ↦ (𝑥(1st𝐹)𝑦)), (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩))
Distinct variable groups:   𝑥,𝑔,𝑦,𝑧, 1   𝑥,𝐴,𝑦   𝐵,𝑔,𝑥,𝑦,𝑧   𝐶,𝑔,𝑥,𝑦,𝑧   𝐷,𝑔,𝑥,𝑦,𝑧   𝜑,𝑔,𝑥,𝑦,𝑧   𝑔,𝐸,𝑦,𝑧   𝑔,𝐽,𝑥   𝑔,𝐹,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐴(𝑧,𝑔)   𝐸(𝑥)   𝐺(𝑥,𝑦,𝑧,𝑔)   𝐽(𝑦,𝑧)

Proof of Theorem curf1fval
StepHypRef Expression
1 curfval.g . . 3 𝐺 = (⟨𝐶, 𝐷⟩ curryF 𝐹)
2 curfval.a . . 3 𝐴 = (Base‘𝐶)
3 curfval.c . . 3 (𝜑𝐶 ∈ Cat)
4 curfval.d . . 3 (𝜑𝐷 ∈ Cat)
5 curfval.f . . 3 (𝜑𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸))
6 curfval.b . . 3 𝐵 = (Base‘𝐷)
7 curfval.j . . 3 𝐽 = (Hom ‘𝐷)
8 curfval.1 . . 3 1 = (Id‘𝐶)
9 eqid 2771 . . 3 (Hom ‘𝐶) = (Hom ‘𝐶)
10 eqid 2771 . . 3 (Id‘𝐷) = (Id‘𝐷)
111, 2, 3, 4, 5, 6, 7, 8, 9, 10curfval 17343 . 2 (𝜑𝐺 = ⟨(𝑥𝐴 ↦ ⟨(𝑦𝐵 ↦ (𝑥(1st𝐹)𝑦)), (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩), (𝑥𝐴, 𝑦𝐴 ↦ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ (𝑧𝐵 ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧)))))⟩)
122fvexi 6510 . . . 4 𝐴 ∈ V
1312mptex 6810 . . 3 (𝑥𝐴 ↦ ⟨(𝑦𝐵 ↦ (𝑥(1st𝐹)𝑦)), (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩) ∈ V
1412, 12mpoex 7583 . . 3 (𝑥𝐴, 𝑦𝐴 ↦ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ (𝑧𝐵 ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧))))) ∈ V
1513, 14op1std 7509 . 2 (𝐺 = ⟨(𝑥𝐴 ↦ ⟨(𝑦𝐵 ↦ (𝑥(1st𝐹)𝑦)), (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩), (𝑥𝐴, 𝑦𝐴 ↦ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ (𝑧𝐵 ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧)))))⟩ → (1st𝐺) = (𝑥𝐴 ↦ ⟨(𝑦𝐵 ↦ (𝑥(1st𝐹)𝑦)), (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩))
1611, 15syl 17 1 (𝜑 → (1st𝐺) = (𝑥𝐴 ↦ ⟨(𝑦𝐵 ↦ (𝑥(1st𝐹)𝑦)), (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1508   ∈ wcel 2051  ⟨cop 4441   ↦ cmpt 5004  ‘cfv 6185  (class class class)co 6974   ∈ cmpo 6976  1st c1st 7497  2nd c2nd 7498  Basecbs 16337  Hom chom 16430  Catccat 16805  Idccid 16806   Func cfunc 16994   ×c cxpc 17288   curryF ccurf 17330 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2743  ax-rep 5045  ax-sep 5056  ax-nul 5063  ax-pow 5115  ax-pr 5182  ax-un 7277 This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2548  df-eu 2585  df-clab 2752  df-cleq 2764  df-clel 2839  df-nfc 2911  df-ne 2961  df-ral 3086  df-rex 3087  df-reu 3088  df-rab 3090  df-v 3410  df-sbc 3675  df-csb 3780  df-dif 3825  df-un 3827  df-in 3829  df-ss 3836  df-nul 4173  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-op 4442  df-uni 4709  df-iun 4790  df-br 4926  df-opab 4988  df-mpt 5005  df-id 5308  df-xp 5409  df-rel 5410  df-cnv 5411  df-co 5412  df-dm 5413  df-rn 5414  df-res 5415  df-ima 5416  df-iota 6149  df-fun 6187  df-fn 6188  df-f 6189  df-f1 6190  df-fo 6191  df-f1o 6192  df-fv 6193  df-ov 6977  df-oprab 6978  df-mpo 6979  df-1st 7499  df-2nd 7500  df-curf 17334 This theorem is referenced by:  curf1  17345
 Copyright terms: Public domain W3C validator