![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > curf1fval | Structured version Visualization version GIF version |
Description: Value of the object part of the curry functor. (Contributed by Mario Carneiro, 12-Jan-2017.) |
Ref | Expression |
---|---|
curfval.g | ⊢ 𝐺 = (⟨𝐶, 𝐷⟩ curryF 𝐹) |
curfval.a | ⊢ 𝐴 = (Base‘𝐶) |
curfval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
curfval.d | ⊢ (𝜑 → 𝐷 ∈ Cat) |
curfval.f | ⊢ (𝜑 → 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸)) |
curfval.b | ⊢ 𝐵 = (Base‘𝐷) |
curfval.j | ⊢ 𝐽 = (Hom ‘𝐷) |
curfval.1 | ⊢ 1 = (Id‘𝐶) |
Ref | Expression |
---|---|
curf1fval | ⊢ (𝜑 → (1st ‘𝐺) = (𝑥 ∈ 𝐴 ↦ ⟨(𝑦 ∈ 𝐵 ↦ (𝑥(1st ‘𝐹)𝑦)), (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1 ‘𝑥)(⟨𝑥, 𝑦⟩(2nd ‘𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | curfval.g | . . 3 ⊢ 𝐺 = (⟨𝐶, 𝐷⟩ curryF 𝐹) | |
2 | curfval.a | . . 3 ⊢ 𝐴 = (Base‘𝐶) | |
3 | curfval.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
4 | curfval.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ Cat) | |
5 | curfval.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸)) | |
6 | curfval.b | . . 3 ⊢ 𝐵 = (Base‘𝐷) | |
7 | curfval.j | . . 3 ⊢ 𝐽 = (Hom ‘𝐷) | |
8 | curfval.1 | . . 3 ⊢ 1 = (Id‘𝐶) | |
9 | eqid 2733 | . . 3 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
10 | eqid 2733 | . . 3 ⊢ (Id‘𝐷) = (Id‘𝐷) | |
11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | curfval 18117 | . 2 ⊢ (𝜑 → 𝐺 = ⟨(𝑥 ∈ 𝐴 ↦ ⟨(𝑦 ∈ 𝐵 ↦ (𝑥(1st ‘𝐹)𝑦)), (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1 ‘𝑥)(⟨𝑥, 𝑦⟩(2nd ‘𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩), (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐴 ↦ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ (𝑧 ∈ 𝐵 ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd ‘𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧)))))⟩) |
12 | 2 | fvexi 6857 | . . . 4 ⊢ 𝐴 ∈ V |
13 | 12 | mptex 7174 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ ⟨(𝑦 ∈ 𝐵 ↦ (𝑥(1st ‘𝐹)𝑦)), (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1 ‘𝑥)(⟨𝑥, 𝑦⟩(2nd ‘𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩) ∈ V |
14 | 12, 12 | mpoex 8013 | . . 3 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐴 ↦ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ (𝑧 ∈ 𝐵 ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd ‘𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧))))) ∈ V |
15 | 13, 14 | op1std 7932 | . 2 ⊢ (𝐺 = ⟨(𝑥 ∈ 𝐴 ↦ ⟨(𝑦 ∈ 𝐵 ↦ (𝑥(1st ‘𝐹)𝑦)), (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1 ‘𝑥)(⟨𝑥, 𝑦⟩(2nd ‘𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩), (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐴 ↦ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ (𝑧 ∈ 𝐵 ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd ‘𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧)))))⟩ → (1st ‘𝐺) = (𝑥 ∈ 𝐴 ↦ ⟨(𝑦 ∈ 𝐵 ↦ (𝑥(1st ‘𝐹)𝑦)), (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1 ‘𝑥)(⟨𝑥, 𝑦⟩(2nd ‘𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩)) |
16 | 11, 15 | syl 17 | 1 ⊢ (𝜑 → (1st ‘𝐺) = (𝑥 ∈ 𝐴 ↦ ⟨(𝑦 ∈ 𝐵 ↦ (𝑥(1st ‘𝐹)𝑦)), (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1 ‘𝑥)(⟨𝑥, 𝑦⟩(2nd ‘𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2107 ⟨cop 4593 ↦ cmpt 5189 ‘cfv 6497 (class class class)co 7358 ∈ cmpo 7360 1st c1st 7920 2nd c2nd 7921 Basecbs 17088 Hom chom 17149 Catccat 17549 Idccid 17550 Func cfunc 17745 ×c cxpc 18061 curryF ccurf 18104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5243 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3353 df-rab 3407 df-v 3446 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-iun 4957 df-br 5107 df-opab 5169 df-mpt 5190 df-id 5532 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-ov 7361 df-oprab 7362 df-mpo 7363 df-1st 7922 df-2nd 7923 df-curf 18108 |
This theorem is referenced by: curf1 18119 |
Copyright terms: Public domain | W3C validator |