| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > curf1fval | Structured version Visualization version GIF version | ||
| Description: Value of the object part of the curry functor. (Contributed by Mario Carneiro, 12-Jan-2017.) |
| Ref | Expression |
|---|---|
| curfval.g | ⊢ 𝐺 = (〈𝐶, 𝐷〉 curryF 𝐹) |
| curfval.a | ⊢ 𝐴 = (Base‘𝐶) |
| curfval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| curfval.d | ⊢ (𝜑 → 𝐷 ∈ Cat) |
| curfval.f | ⊢ (𝜑 → 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸)) |
| curfval.b | ⊢ 𝐵 = (Base‘𝐷) |
| curfval.j | ⊢ 𝐽 = (Hom ‘𝐷) |
| curfval.1 | ⊢ 1 = (Id‘𝐶) |
| Ref | Expression |
|---|---|
| curf1fval | ⊢ (𝜑 → (1st ‘𝐺) = (𝑥 ∈ 𝐴 ↦ 〈(𝑦 ∈ 𝐵 ↦ (𝑥(1st ‘𝐹)𝑦)), (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1 ‘𝑥)(〈𝑥, 𝑦〉(2nd ‘𝐹)〈𝑥, 𝑧〉)𝑔)))〉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | curfval.g | . . 3 ⊢ 𝐺 = (〈𝐶, 𝐷〉 curryF 𝐹) | |
| 2 | curfval.a | . . 3 ⊢ 𝐴 = (Base‘𝐶) | |
| 3 | curfval.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 4 | curfval.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ Cat) | |
| 5 | curfval.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸)) | |
| 6 | curfval.b | . . 3 ⊢ 𝐵 = (Base‘𝐷) | |
| 7 | curfval.j | . . 3 ⊢ 𝐽 = (Hom ‘𝐷) | |
| 8 | curfval.1 | . . 3 ⊢ 1 = (Id‘𝐶) | |
| 9 | eqid 2729 | . . 3 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 10 | eqid 2729 | . . 3 ⊢ (Id‘𝐷) = (Id‘𝐷) | |
| 11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | curfval 18184 | . 2 ⊢ (𝜑 → 𝐺 = 〈(𝑥 ∈ 𝐴 ↦ 〈(𝑦 ∈ 𝐵 ↦ (𝑥(1st ‘𝐹)𝑦)), (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1 ‘𝑥)(〈𝑥, 𝑦〉(2nd ‘𝐹)〈𝑥, 𝑧〉)𝑔)))〉), (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐴 ↦ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ (𝑧 ∈ 𝐵 ↦ (𝑔(〈𝑥, 𝑧〉(2nd ‘𝐹)〈𝑦, 𝑧〉)((Id‘𝐷)‘𝑧)))))〉) |
| 12 | 2 | fvexi 6872 | . . . 4 ⊢ 𝐴 ∈ V |
| 13 | 12 | mptex 7197 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ 〈(𝑦 ∈ 𝐵 ↦ (𝑥(1st ‘𝐹)𝑦)), (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1 ‘𝑥)(〈𝑥, 𝑦〉(2nd ‘𝐹)〈𝑥, 𝑧〉)𝑔)))〉) ∈ V |
| 14 | 12, 12 | mpoex 8058 | . . 3 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐴 ↦ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ (𝑧 ∈ 𝐵 ↦ (𝑔(〈𝑥, 𝑧〉(2nd ‘𝐹)〈𝑦, 𝑧〉)((Id‘𝐷)‘𝑧))))) ∈ V |
| 15 | 13, 14 | op1std 7978 | . 2 ⊢ (𝐺 = 〈(𝑥 ∈ 𝐴 ↦ 〈(𝑦 ∈ 𝐵 ↦ (𝑥(1st ‘𝐹)𝑦)), (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1 ‘𝑥)(〈𝑥, 𝑦〉(2nd ‘𝐹)〈𝑥, 𝑧〉)𝑔)))〉), (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐴 ↦ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ (𝑧 ∈ 𝐵 ↦ (𝑔(〈𝑥, 𝑧〉(2nd ‘𝐹)〈𝑦, 𝑧〉)((Id‘𝐷)‘𝑧)))))〉 → (1st ‘𝐺) = (𝑥 ∈ 𝐴 ↦ 〈(𝑦 ∈ 𝐵 ↦ (𝑥(1st ‘𝐹)𝑦)), (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1 ‘𝑥)(〈𝑥, 𝑦〉(2nd ‘𝐹)〈𝑥, 𝑧〉)𝑔)))〉)) |
| 16 | 11, 15 | syl 17 | 1 ⊢ (𝜑 → (1st ‘𝐺) = (𝑥 ∈ 𝐴 ↦ 〈(𝑦 ∈ 𝐵 ↦ (𝑥(1st ‘𝐹)𝑦)), (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1 ‘𝑥)(〈𝑥, 𝑦〉(2nd ‘𝐹)〈𝑥, 𝑧〉)𝑔)))〉)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 〈cop 4595 ↦ cmpt 5188 ‘cfv 6511 (class class class)co 7387 ∈ cmpo 7389 1st c1st 7966 2nd c2nd 7967 Basecbs 17179 Hom chom 17231 Catccat 17625 Idccid 17626 Func cfunc 17816 ×c cxpc 18129 curryF ccurf 18171 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-curf 18175 |
| This theorem is referenced by: curf1 18186 |
| Copyright terms: Public domain | W3C validator |