![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > curf1fval | Structured version Visualization version GIF version |
Description: Value of the object part of the curry functor. (Contributed by Mario Carneiro, 12-Jan-2017.) |
Ref | Expression |
---|---|
curfval.g | ⊢ 𝐺 = (〈𝐶, 𝐷〉 curryF 𝐹) |
curfval.a | ⊢ 𝐴 = (Base‘𝐶) |
curfval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
curfval.d | ⊢ (𝜑 → 𝐷 ∈ Cat) |
curfval.f | ⊢ (𝜑 → 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸)) |
curfval.b | ⊢ 𝐵 = (Base‘𝐷) |
curfval.j | ⊢ 𝐽 = (Hom ‘𝐷) |
curfval.1 | ⊢ 1 = (Id‘𝐶) |
Ref | Expression |
---|---|
curf1fval | ⊢ (𝜑 → (1st ‘𝐺) = (𝑥 ∈ 𝐴 ↦ 〈(𝑦 ∈ 𝐵 ↦ (𝑥(1st ‘𝐹)𝑦)), (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1 ‘𝑥)(〈𝑥, 𝑦〉(2nd ‘𝐹)〈𝑥, 𝑧〉)𝑔)))〉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | curfval.g | . . 3 ⊢ 𝐺 = (〈𝐶, 𝐷〉 curryF 𝐹) | |
2 | curfval.a | . . 3 ⊢ 𝐴 = (Base‘𝐶) | |
3 | curfval.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
4 | curfval.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ Cat) | |
5 | curfval.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸)) | |
6 | curfval.b | . . 3 ⊢ 𝐵 = (Base‘𝐷) | |
7 | curfval.j | . . 3 ⊢ 𝐽 = (Hom ‘𝐷) | |
8 | curfval.1 | . . 3 ⊢ 1 = (Id‘𝐶) | |
9 | eqid 2771 | . . 3 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
10 | eqid 2771 | . . 3 ⊢ (Id‘𝐷) = (Id‘𝐷) | |
11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | curfval 17343 | . 2 ⊢ (𝜑 → 𝐺 = 〈(𝑥 ∈ 𝐴 ↦ 〈(𝑦 ∈ 𝐵 ↦ (𝑥(1st ‘𝐹)𝑦)), (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1 ‘𝑥)(〈𝑥, 𝑦〉(2nd ‘𝐹)〈𝑥, 𝑧〉)𝑔)))〉), (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐴 ↦ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ (𝑧 ∈ 𝐵 ↦ (𝑔(〈𝑥, 𝑧〉(2nd ‘𝐹)〈𝑦, 𝑧〉)((Id‘𝐷)‘𝑧)))))〉) |
12 | 2 | fvexi 6510 | . . . 4 ⊢ 𝐴 ∈ V |
13 | 12 | mptex 6810 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ 〈(𝑦 ∈ 𝐵 ↦ (𝑥(1st ‘𝐹)𝑦)), (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1 ‘𝑥)(〈𝑥, 𝑦〉(2nd ‘𝐹)〈𝑥, 𝑧〉)𝑔)))〉) ∈ V |
14 | 12, 12 | mpoex 7583 | . . 3 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐴 ↦ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ (𝑧 ∈ 𝐵 ↦ (𝑔(〈𝑥, 𝑧〉(2nd ‘𝐹)〈𝑦, 𝑧〉)((Id‘𝐷)‘𝑧))))) ∈ V |
15 | 13, 14 | op1std 7509 | . 2 ⊢ (𝐺 = 〈(𝑥 ∈ 𝐴 ↦ 〈(𝑦 ∈ 𝐵 ↦ (𝑥(1st ‘𝐹)𝑦)), (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1 ‘𝑥)(〈𝑥, 𝑦〉(2nd ‘𝐹)〈𝑥, 𝑧〉)𝑔)))〉), (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐴 ↦ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ (𝑧 ∈ 𝐵 ↦ (𝑔(〈𝑥, 𝑧〉(2nd ‘𝐹)〈𝑦, 𝑧〉)((Id‘𝐷)‘𝑧)))))〉 → (1st ‘𝐺) = (𝑥 ∈ 𝐴 ↦ 〈(𝑦 ∈ 𝐵 ↦ (𝑥(1st ‘𝐹)𝑦)), (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1 ‘𝑥)(〈𝑥, 𝑦〉(2nd ‘𝐹)〈𝑥, 𝑧〉)𝑔)))〉)) |
16 | 11, 15 | syl 17 | 1 ⊢ (𝜑 → (1st ‘𝐺) = (𝑥 ∈ 𝐴 ↦ 〈(𝑦 ∈ 𝐵 ↦ (𝑥(1st ‘𝐹)𝑦)), (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1 ‘𝑥)(〈𝑥, 𝑦〉(2nd ‘𝐹)〈𝑥, 𝑧〉)𝑔)))〉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1508 ∈ wcel 2051 〈cop 4441 ↦ cmpt 5004 ‘cfv 6185 (class class class)co 6974 ∈ cmpo 6976 1st c1st 7497 2nd c2nd 7498 Basecbs 16337 Hom chom 16430 Catccat 16805 Idccid 16806 Func cfunc 16994 ×c cxpc 17288 curryF ccurf 17330 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2743 ax-rep 5045 ax-sep 5056 ax-nul 5063 ax-pow 5115 ax-pr 5182 ax-un 7277 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2548 df-eu 2585 df-clab 2752 df-cleq 2764 df-clel 2839 df-nfc 2911 df-ne 2961 df-ral 3086 df-rex 3087 df-reu 3088 df-rab 3090 df-v 3410 df-sbc 3675 df-csb 3780 df-dif 3825 df-un 3827 df-in 3829 df-ss 3836 df-nul 4173 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-op 4442 df-uni 4709 df-iun 4790 df-br 4926 df-opab 4988 df-mpt 5005 df-id 5308 df-xp 5409 df-rel 5410 df-cnv 5411 df-co 5412 df-dm 5413 df-rn 5414 df-res 5415 df-ima 5416 df-iota 6149 df-fun 6187 df-fn 6188 df-f 6189 df-f1 6190 df-fo 6191 df-f1o 6192 df-fv 6193 df-ov 6977 df-oprab 6978 df-mpo 6979 df-1st 7499 df-2nd 7500 df-curf 17334 |
This theorem is referenced by: curf1 17345 |
Copyright terms: Public domain | W3C validator |