| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > curf1fval | Structured version Visualization version GIF version | ||
| Description: Value of the object part of the curry functor. (Contributed by Mario Carneiro, 12-Jan-2017.) |
| Ref | Expression |
|---|---|
| curfval.g | ⊢ 𝐺 = (〈𝐶, 𝐷〉 curryF 𝐹) |
| curfval.a | ⊢ 𝐴 = (Base‘𝐶) |
| curfval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| curfval.d | ⊢ (𝜑 → 𝐷 ∈ Cat) |
| curfval.f | ⊢ (𝜑 → 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸)) |
| curfval.b | ⊢ 𝐵 = (Base‘𝐷) |
| curfval.j | ⊢ 𝐽 = (Hom ‘𝐷) |
| curfval.1 | ⊢ 1 = (Id‘𝐶) |
| Ref | Expression |
|---|---|
| curf1fval | ⊢ (𝜑 → (1st ‘𝐺) = (𝑥 ∈ 𝐴 ↦ 〈(𝑦 ∈ 𝐵 ↦ (𝑥(1st ‘𝐹)𝑦)), (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1 ‘𝑥)(〈𝑥, 𝑦〉(2nd ‘𝐹)〈𝑥, 𝑧〉)𝑔)))〉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | curfval.g | . . 3 ⊢ 𝐺 = (〈𝐶, 𝐷〉 curryF 𝐹) | |
| 2 | curfval.a | . . 3 ⊢ 𝐴 = (Base‘𝐶) | |
| 3 | curfval.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 4 | curfval.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ Cat) | |
| 5 | curfval.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸)) | |
| 6 | curfval.b | . . 3 ⊢ 𝐵 = (Base‘𝐷) | |
| 7 | curfval.j | . . 3 ⊢ 𝐽 = (Hom ‘𝐷) | |
| 8 | curfval.1 | . . 3 ⊢ 1 = (Id‘𝐶) | |
| 9 | eqid 2730 | . . 3 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 10 | eqid 2730 | . . 3 ⊢ (Id‘𝐷) = (Id‘𝐷) | |
| 11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | curfval 18191 | . 2 ⊢ (𝜑 → 𝐺 = 〈(𝑥 ∈ 𝐴 ↦ 〈(𝑦 ∈ 𝐵 ↦ (𝑥(1st ‘𝐹)𝑦)), (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1 ‘𝑥)(〈𝑥, 𝑦〉(2nd ‘𝐹)〈𝑥, 𝑧〉)𝑔)))〉), (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐴 ↦ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ (𝑧 ∈ 𝐵 ↦ (𝑔(〈𝑥, 𝑧〉(2nd ‘𝐹)〈𝑦, 𝑧〉)((Id‘𝐷)‘𝑧)))))〉) |
| 12 | 2 | fvexi 6875 | . . . 4 ⊢ 𝐴 ∈ V |
| 13 | 12 | mptex 7200 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ 〈(𝑦 ∈ 𝐵 ↦ (𝑥(1st ‘𝐹)𝑦)), (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1 ‘𝑥)(〈𝑥, 𝑦〉(2nd ‘𝐹)〈𝑥, 𝑧〉)𝑔)))〉) ∈ V |
| 14 | 12, 12 | mpoex 8061 | . . 3 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐴 ↦ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ (𝑧 ∈ 𝐵 ↦ (𝑔(〈𝑥, 𝑧〉(2nd ‘𝐹)〈𝑦, 𝑧〉)((Id‘𝐷)‘𝑧))))) ∈ V |
| 15 | 13, 14 | op1std 7981 | . 2 ⊢ (𝐺 = 〈(𝑥 ∈ 𝐴 ↦ 〈(𝑦 ∈ 𝐵 ↦ (𝑥(1st ‘𝐹)𝑦)), (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1 ‘𝑥)(〈𝑥, 𝑦〉(2nd ‘𝐹)〈𝑥, 𝑧〉)𝑔)))〉), (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐴 ↦ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ (𝑧 ∈ 𝐵 ↦ (𝑔(〈𝑥, 𝑧〉(2nd ‘𝐹)〈𝑦, 𝑧〉)((Id‘𝐷)‘𝑧)))))〉 → (1st ‘𝐺) = (𝑥 ∈ 𝐴 ↦ 〈(𝑦 ∈ 𝐵 ↦ (𝑥(1st ‘𝐹)𝑦)), (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1 ‘𝑥)(〈𝑥, 𝑦〉(2nd ‘𝐹)〈𝑥, 𝑧〉)𝑔)))〉)) |
| 16 | 11, 15 | syl 17 | 1 ⊢ (𝜑 → (1st ‘𝐺) = (𝑥 ∈ 𝐴 ↦ 〈(𝑦 ∈ 𝐵 ↦ (𝑥(1st ‘𝐹)𝑦)), (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1 ‘𝑥)(〈𝑥, 𝑦〉(2nd ‘𝐹)〈𝑥, 𝑧〉)𝑔)))〉)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 〈cop 4598 ↦ cmpt 5191 ‘cfv 6514 (class class class)co 7390 ∈ cmpo 7392 1st c1st 7969 2nd c2nd 7970 Basecbs 17186 Hom chom 17238 Catccat 17632 Idccid 17633 Func cfunc 17823 ×c cxpc 18136 curryF ccurf 18178 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-1st 7971 df-2nd 7972 df-curf 18182 |
| This theorem is referenced by: curf1 18193 |
| Copyright terms: Public domain | W3C validator |