Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mpoex | Structured version Visualization version GIF version |
Description: If the domain of an operation given by maps-to notation is a set, the operation is a set. (Contributed by Mario Carneiro, 20-Dec-2013.) |
Ref | Expression |
---|---|
mpoex.1 | ⊢ 𝐴 ∈ V |
mpoex.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
mpoex | ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpoex.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | mpoex.2 | . . 3 ⊢ 𝐵 ∈ V | |
3 | 2 | rgenw 3082 | . 2 ⊢ ∀𝑥 ∈ 𝐴 𝐵 ∈ V |
4 | eqid 2758 | . . 3 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | |
5 | 4 | mpoexxg 7783 | . 2 ⊢ ((𝐴 ∈ V ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ V) → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V) |
6 | 1, 3, 5 | mp2an 691 | 1 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2111 ∀wral 3070 Vcvv 3409 ∈ cmpo 7157 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5159 ax-sep 5172 ax-nul 5179 ax-pow 5237 ax-pr 5301 ax-un 7464 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-iun 4888 df-br 5036 df-opab 5098 df-mpt 5116 df-id 5433 df-xp 5533 df-rel 5534 df-cnv 5535 df-co 5536 df-dm 5537 df-rn 5538 df-res 5539 df-ima 5540 df-iota 6298 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-oprab 7159 df-mpo 7160 df-1st 7698 df-2nd 7699 |
This theorem is referenced by: qexALT 12409 ruclem13 15648 vdwapfval 16367 prdsco 16804 imasvsca 16856 homffval 17023 comfffval 17031 comffval 17032 comfffn 17037 comfeq 17039 oppccofval 17049 monfval 17066 sectffval 17084 invffval 17092 cofu1st 17217 cofu2nd 17219 cofucl 17222 natfval 17280 fuccofval 17293 fucco 17296 coafval 17395 setcco 17414 catchomfval 17429 catccofval 17431 catcco 17432 estrcco 17451 xpcval 17498 xpchomfval 17500 xpccofval 17503 xpcco 17504 1stf1 17513 1stf2 17514 2ndf1 17516 2ndf2 17517 1stfcl 17518 2ndfcl 17519 prf1 17521 prf2fval 17522 prfcl 17524 prf1st 17525 prf2nd 17526 evlf2 17539 evlf1 17541 evlfcl 17543 curf1fval 17545 curf11 17547 curf12 17548 curf1cl 17549 curf2 17550 curfcl 17553 hof1fval 17574 hof2fval 17576 hofcl 17580 yonedalem3 17601 efmndplusg 18116 mgmnsgrpex 18167 sgrpnmndex 18168 grpsubfvalALT 18220 mulgfvalALT 18299 symgvalstruct 18597 lsmfval 18835 pj1fval 18892 dvrfval 19510 psrmulr 20717 psrvscafval 20723 evlslem2 20847 mamufval 21092 mvmulfval 21247 isphtpy 23687 pcofval 23716 q1pval 24858 r1pval 24861 motplusg 26440 midf 26674 ismidb 26676 ttgval 26773 ebtwntg 26880 ecgrtg 26881 elntg 26882 wwlksnon 27741 wspthsnon 27742 clwwlknonmpo 27978 vsfval 28520 dipfval 28589 idlsrgmulr 31177 smatfval 31270 lmatval 31288 qqhval 31447 dya2iocuni 31773 sxbrsigalem5 31778 sitmval 31839 signswplusg 32057 reprval 32113 mclsrcl 33043 mclsval 33045 ldualfvs 36738 paddfval 37399 tgrpopr 38349 erngfplus 38404 erngfmul 38407 erngfplus-rN 38412 erngfmul-rN 38415 dvafvadd 38616 dvafvsca 38618 dvaabl 38626 dvhfvadd 38693 dvhfvsca 38702 djafvalN 38736 djhfval 38999 hlhilip 39550 mendplusgfval 40530 mendmulrfval 40532 mendvscafval 40535 mnringmulrd 41332 mnringmulrcld 41337 hoidmvval 43610 cznrng 44974 cznnring 44975 rngchomfvalALTV 45003 rngccofvalALTV 45006 rngccoALTV 45007 ringchomfvalALTV 45066 ringccofvalALTV 45069 ringccoALTV 45070 rrx2xpreen 45526 lines 45538 spheres 45553 |
Copyright terms: Public domain | W3C validator |