![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpoex | Structured version Visualization version GIF version |
Description: If the domain of an operation given by maps-to notation is a set, the operation is a set. (Contributed by Mario Carneiro, 20-Dec-2013.) |
Ref | Expression |
---|---|
mpoex.1 | ⊢ 𝐴 ∈ V |
mpoex.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
mpoex | ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpoex.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | mpoex.2 | . . 3 ⊢ 𝐵 ∈ V | |
3 | 2 | rgenw 3119 | . 2 ⊢ ∀𝑥 ∈ 𝐴 𝐵 ∈ V |
4 | eqid 2797 | . . 3 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | |
5 | 4 | mpoexxg 7636 | . 2 ⊢ ((𝐴 ∈ V ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ V) → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V) |
6 | 1, 3, 5 | mp2an 688 | 1 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2083 ∀wral 3107 Vcvv 3440 ∈ cmpo 7025 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-8 2085 ax-9 2093 ax-10 2114 ax-11 2128 ax-12 2143 ax-13 2346 ax-ext 2771 ax-rep 5088 ax-sep 5101 ax-nul 5108 ax-pow 5164 ax-pr 5228 ax-un 7326 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1082 df-tru 1528 df-ex 1766 df-nf 1770 df-sb 2045 df-mo 2578 df-eu 2614 df-clab 2778 df-cleq 2790 df-clel 2865 df-nfc 2937 df-ne 2987 df-ral 3112 df-rex 3113 df-reu 3114 df-rab 3116 df-v 3442 df-sbc 3712 df-csb 3818 df-dif 3868 df-un 3870 df-in 3872 df-ss 3880 df-nul 4218 df-if 4388 df-pw 4461 df-sn 4479 df-pr 4481 df-op 4485 df-uni 4752 df-iun 4833 df-br 4969 df-opab 5031 df-mpt 5048 df-id 5355 df-xp 5456 df-rel 5457 df-cnv 5458 df-co 5459 df-dm 5460 df-rn 5461 df-res 5462 df-ima 5463 df-iota 6196 df-fun 6234 df-fn 6235 df-f 6236 df-f1 6237 df-fo 6238 df-f1o 6239 df-fv 6240 df-oprab 7027 df-mpo 7028 df-1st 7552 df-2nd 7553 |
This theorem is referenced by: qexALT 12217 ruclem13 15432 vdwapfval 16140 prdsco 16574 imasvsca 16626 homffval 16793 comfffval 16801 comffval 16802 comfffn 16807 comfeq 16809 oppccofval 16819 monfval 16835 sectffval 16853 invffval 16861 cofu1st 16986 cofu2nd 16988 cofucl 16991 natfval 17049 fuccofval 17062 fucco 17065 coafval 17157 setcco 17176 catchomfval 17191 catccofval 17193 catcco 17194 estrcco 17213 xpcval 17260 xpchomfval 17262 xpccofval 17265 xpcco 17266 1stf1 17275 1stf2 17276 2ndf1 17278 2ndf2 17279 1stfcl 17280 2ndfcl 17281 prf1 17283 prf2fval 17284 prfcl 17286 prf1st 17287 prf2nd 17288 evlf2 17301 evlf1 17303 evlfcl 17305 curf1fval 17307 curf11 17309 curf12 17310 curf1cl 17311 curf2 17312 curfcl 17315 hof1fval 17336 hof2fval 17338 hofcl 17342 yonedalem3 17363 mgmnsgrpex 17861 sgrpnmndex 17862 grpsubfvalALT 17909 mulgfvalALT 17988 symgplusg 18252 lsmfval 18497 pj1fval 18551 dvrfval 19128 psrmulr 19856 psrvscafval 19862 evlslem2 19983 mamufval 20682 mvmulfval 20839 isphtpy 23272 pcofval 23301 q1pval 24434 r1pval 24437 motplusg 26014 midf 26248 ismidb 26250 ttgval 26348 ebtwntg 26455 ecgrtg 26456 elntg 26457 wwlksnon 27315 wspthsnon 27316 clwwlknonmpo 27554 vsfval 28097 dipfval 28166 smatfval 30671 lmatval 30689 qqhval 30828 dya2iocuni 31154 sxbrsigalem5 31159 sitmval 31220 signswplusg 31438 reprval 31494 mclsrcl 32418 mclsval 32420 ldualfvs 35824 paddfval 36485 tgrpopr 37435 erngfplus 37490 erngfmul 37493 erngfplus-rN 37498 erngfmul-rN 37501 dvafvadd 37702 dvafvsca 37704 dvaabl 37712 dvhfvadd 37779 dvhfvsca 37788 djafvalN 37822 djhfval 38085 hlhilip 38636 mendplusgfval 39291 mendmulrfval 39293 mendvscafval 39296 hoidmvval 42423 cznrng 43726 cznnring 43727 rngchomfvalALTV 43755 rngccofvalALTV 43758 rngccoALTV 43759 ringchomfvalALTV 43818 ringccofvalALTV 43821 ringccoALTV 43822 rrx2xpreen 44209 lines 44221 spheres 44236 |
Copyright terms: Public domain | W3C validator |