| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpoex | Structured version Visualization version GIF version | ||
| Description: If the domain of an operation given by maps-to notation is a set, the operation is a set. (Contributed by Mario Carneiro, 20-Dec-2013.) |
| Ref | Expression |
|---|---|
| mpoex.1 | ⊢ 𝐴 ∈ V |
| mpoex.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| mpoex | ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpoex.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | mpoex.2 | . . 3 ⊢ 𝐵 ∈ V | |
| 3 | 2 | rgenw 3049 | . 2 ⊢ ∀𝑥 ∈ 𝐴 𝐵 ∈ V |
| 4 | eqid 2730 | . . 3 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | |
| 5 | 4 | mpoexxg 8057 | . 2 ⊢ ((𝐴 ∈ V ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ V) → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V) |
| 6 | 1, 3, 5 | mp2an 692 | 1 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ∀wral 3045 Vcvv 3450 ∈ cmpo 7392 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-oprab 7394 df-mpo 7395 df-1st 7971 df-2nd 7972 |
| This theorem is referenced by: mptmpoopabbrdOLD 8063 qexALT 12930 ruclem13 16217 vdwapfval 16949 prdsco 17438 imasvsca 17490 homffval 17658 comfffval 17666 comffval 17667 comfffn 17672 comfeq 17674 oppccofval 17684 monfval 17701 sectffval 17719 invffval 17727 cofu1st 17852 cofu2nd 17854 cofucl 17857 natfval 17918 fuccofval 17931 fucco 17934 coafval 18033 setcco 18052 catchomfval 18071 catccofval 18073 catcco 18074 estrcco 18098 xpcval 18145 xpchomfval 18147 xpccofval 18150 xpcco 18151 1stf1 18160 1stf2 18161 2ndf1 18163 2ndf2 18164 1stfcl 18165 2ndfcl 18166 prf1 18168 prf2fval 18169 prfcl 18171 prf1st 18172 prf2nd 18173 evlf2 18186 evlf1 18188 evlfcl 18190 curf1fval 18192 curf11 18194 curf12 18195 curf1cl 18196 curf2 18197 curfcl 18200 hof1fval 18221 hof2fval 18223 hofcl 18227 yonedalem3 18248 efmndplusg 18814 mgmnsgrpex 18865 sgrpnmndex 18866 grpsubfvalALT 18923 mulgfvalALT 19009 symgvalstruct 19334 lsmfval 19575 pj1fval 19631 dvrfval 20318 psrmulr 21858 psrvscafval 21864 evlslem2 21993 mamufval 22286 mvmulfval 22436 isphtpy 24887 pcofval 24917 q1pval 26067 r1pval 26070 mulsproplem9 28034 motplusg 28476 midf 28710 ismidb 28712 ttgval 28809 ebtwntg 28916 ecgrtg 28917 elntg 28918 wwlksnon 29788 wspthsnon 29789 clwwlknonmpo 30025 vsfval 30569 dipfval 30638 idlsrgmulr 33485 smatfval 33792 lmatval 33810 qqhval 33969 dya2iocuni 34281 sxbrsigalem5 34286 sitmval 34347 signswplusg 34553 reprval 34608 mclsrcl 35555 mclsval 35557 ldualfvs 39136 paddfval 39798 tgrpopr 40748 erngfplus 40803 erngfmul 40806 erngfplus-rN 40811 erngfmul-rN 40814 dvafvadd 41015 dvafvsca 41017 dvaabl 41025 dvhfvadd 41092 dvhfvsca 41101 djafvalN 41135 djhfval 41398 hlhilip 41949 mendplusgfval 43177 mendmulrfval 43179 mendvscafval 43182 mnringmulrd 44219 mnringmulrcld 44224 hoidmvval 46582 cznrng 48253 cznnring 48254 rngchomfvalALTV 48259 rngccofvalALTV 48262 rngccoALTV 48263 ringchomfvalALTV 48293 ringccofvalALTV 48296 ringccoALTV 48297 rrx2xpreen 48712 lines 48724 spheres 48739 funcf2lem2 49075 upfval 49169 swapfelvv 49256 swapf2fvala 49257 swapf1vala 49259 tposcurf1 49292 diag1f1lem 49299 fucoelvv 49313 fucofn2 49317 fucofvalne 49318 fuco112 49322 fuco111 49323 fuco21 49329 prcofelvv 49373 reldmprcof1 49374 reldmprcof2 49375 prcof1 49381 prcof2a 49382 prcof2 49383 functhinclem1 49437 thincciso 49446 functermc2 49502 incat 49594 setc1onsubc 49595 lanfn 49602 ranfn 49603 lanfval 49606 ranfval 49607 |
| Copyright terms: Public domain | W3C validator |