| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpoex | Structured version Visualization version GIF version | ||
| Description: If the domain of an operation given by maps-to notation is a set, the operation is a set. (Contributed by Mario Carneiro, 20-Dec-2013.) |
| Ref | Expression |
|---|---|
| mpoex.1 | ⊢ 𝐴 ∈ V |
| mpoex.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| mpoex | ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpoex.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | mpoex.2 | . . 3 ⊢ 𝐵 ∈ V | |
| 3 | 2 | rgenw 3055 | . 2 ⊢ ∀𝑥 ∈ 𝐴 𝐵 ∈ V |
| 4 | eqid 2735 | . . 3 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | |
| 5 | 4 | mpoexxg 8074 | . 2 ⊢ ((𝐴 ∈ V ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ V) → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V) |
| 6 | 1, 3, 5 | mp2an 692 | 1 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2108 ∀wral 3051 Vcvv 3459 ∈ cmpo 7407 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-oprab 7409 df-mpo 7410 df-1st 7988 df-2nd 7989 |
| This theorem is referenced by: mptmpoopabbrdOLD 8080 qexALT 12980 ruclem13 16260 vdwapfval 16991 prdsco 17482 imasvsca 17534 homffval 17702 comfffval 17710 comffval 17711 comfffn 17716 comfeq 17718 oppccofval 17728 monfval 17745 sectffval 17763 invffval 17771 cofu1st 17896 cofu2nd 17898 cofucl 17901 natfval 17962 fuccofval 17975 fucco 17978 coafval 18077 setcco 18096 catchomfval 18115 catccofval 18117 catcco 18118 estrcco 18142 xpcval 18189 xpchomfval 18191 xpccofval 18194 xpcco 18195 1stf1 18204 1stf2 18205 2ndf1 18207 2ndf2 18208 1stfcl 18209 2ndfcl 18210 prf1 18212 prf2fval 18213 prfcl 18215 prf1st 18216 prf2nd 18217 evlf2 18230 evlf1 18232 evlfcl 18234 curf1fval 18236 curf11 18238 curf12 18239 curf1cl 18240 curf2 18241 curfcl 18244 hof1fval 18265 hof2fval 18267 hofcl 18271 yonedalem3 18292 efmndplusg 18858 mgmnsgrpex 18909 sgrpnmndex 18910 grpsubfvalALT 18967 mulgfvalALT 19053 symgvalstruct 19378 lsmfval 19619 pj1fval 19675 dvrfval 20362 psrmulr 21902 psrvscafval 21908 evlslem2 22037 mamufval 22330 mvmulfval 22480 isphtpy 24931 pcofval 24961 q1pval 26112 r1pval 26115 mulsproplem9 28079 motplusg 28521 midf 28755 ismidb 28757 ttgval 28854 ebtwntg 28961 ecgrtg 28962 elntg 28963 wwlksnon 29833 wspthsnon 29834 clwwlknonmpo 30070 vsfval 30614 dipfval 30683 idlsrgmulr 33522 smatfval 33826 lmatval 33844 qqhval 34003 dya2iocuni 34315 sxbrsigalem5 34320 sitmval 34381 signswplusg 34587 reprval 34642 mclsrcl 35583 mclsval 35585 ldualfvs 39154 paddfval 39816 tgrpopr 40766 erngfplus 40821 erngfmul 40824 erngfplus-rN 40829 erngfmul-rN 40832 dvafvadd 41033 dvafvsca 41035 dvaabl 41043 dvhfvadd 41110 dvhfvsca 41119 djafvalN 41153 djhfval 41416 hlhilip 41967 mendplusgfval 43205 mendmulrfval 43207 mendvscafval 43210 mnringmulrd 44247 mnringmulrcld 44252 hoidmvval 46606 cznrng 48236 cznnring 48237 rngchomfvalALTV 48242 rngccofvalALTV 48245 rngccoALTV 48246 ringchomfvalALTV 48276 ringccofvalALTV 48279 ringccoALTV 48280 rrx2xpreen 48699 lines 48711 spheres 48726 funcf2lem2 49047 upfval 49111 swapfelvv 49180 swapf2fvala 49181 swapf1vala 49183 tposcurf1 49210 diag1f1lem 49217 fucoelvv 49231 fucofn2 49235 fucofvalne 49236 fuco112 49240 fuco111 49241 fuco21 49247 prcofelvv 49290 reldmprcof1 49291 reldmprcof2 49292 prcof1 49298 prcof2a 49299 prcof2 49300 functhinclem1 49330 thincciso 49339 functermc2 49394 incat 49478 setc1onsubc 49479 lanfn 49486 ranfn 49487 lanfval 49490 ranfval 49491 |
| Copyright terms: Public domain | W3C validator |