![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpoex | Structured version Visualization version GIF version |
Description: If the domain of an operation given by maps-to notation is a set, the operation is a set. (Contributed by Mario Carneiro, 20-Dec-2013.) |
Ref | Expression |
---|---|
mpoex.1 | ⊢ 𝐴 ∈ V |
mpoex.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
mpoex | ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpoex.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | mpoex.2 | . . 3 ⊢ 𝐵 ∈ V | |
3 | 2 | rgenw 3063 | . 2 ⊢ ∀𝑥 ∈ 𝐴 𝐵 ∈ V |
4 | eqid 2735 | . . 3 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | |
5 | 4 | mpoexxg 8099 | . 2 ⊢ ((𝐴 ∈ V ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ V) → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V) |
6 | 1, 3, 5 | mp2an 692 | 1 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 ∀wral 3059 Vcvv 3478 ∈ cmpo 7433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-oprab 7435 df-mpo 7436 df-1st 8013 df-2nd 8014 |
This theorem is referenced by: mptmpoopabbrdOLD 8105 qexALT 13004 ruclem13 16275 vdwapfval 17005 prdsco 17515 imasvsca 17567 homffval 17735 comfffval 17743 comffval 17744 comfffn 17749 comfeq 17751 oppccofval 17762 monfval 17780 sectffval 17798 invffval 17806 cofu1st 17934 cofu2nd 17936 cofucl 17939 natfval 18001 fuccofval 18015 fucco 18019 coafval 18118 setcco 18137 catchomfval 18156 catccofval 18158 catcco 18159 estrcco 18185 xpcval 18233 xpchomfval 18235 xpccofval 18238 xpcco 18239 1stf1 18248 1stf2 18249 2ndf1 18251 2ndf2 18252 1stfcl 18253 2ndfcl 18254 prf1 18256 prf2fval 18257 prfcl 18259 prf1st 18260 prf2nd 18261 evlf2 18275 evlf1 18277 evlfcl 18279 curf1fval 18281 curf11 18283 curf12 18284 curf1cl 18285 curf2 18286 curfcl 18289 hof1fval 18310 hof2fval 18312 hofcl 18316 yonedalem3 18337 efmndplusg 18906 mgmnsgrpex 18957 sgrpnmndex 18958 grpsubfvalALT 19015 mulgfvalALT 19101 symgvalstruct 19429 symgvalstructOLD 19430 lsmfval 19671 pj1fval 19727 dvrfval 20419 psrmulr 21980 psrvscafval 21986 evlslem2 22121 mamufval 22412 mvmulfval 22564 isphtpy 25027 pcofval 25057 q1pval 26209 r1pval 26212 mulsproplem9 28165 motplusg 28565 midf 28799 ismidb 28801 ttgval 28898 ttgvalOLD 28899 ebtwntg 29012 ecgrtg 29013 elntg 29014 wwlksnon 29881 wspthsnon 29882 clwwlknonmpo 30118 vsfval 30662 dipfval 30731 idlsrgmulr 33515 smatfval 33756 lmatval 33774 qqhval 33935 dya2iocuni 34265 sxbrsigalem5 34270 sitmval 34331 signswplusg 34549 reprval 34604 mclsrcl 35546 mclsval 35548 ldualfvs 39118 paddfval 39780 tgrpopr 40730 erngfplus 40785 erngfmul 40788 erngfplus-rN 40793 erngfmul-rN 40796 dvafvadd 40997 dvafvsca 40999 dvaabl 41007 dvhfvadd 41074 dvhfvsca 41083 djafvalN 41117 djhfval 41380 hlhilip 41935 mendplusgfval 43170 mendmulrfval 43172 mendvscafval 43175 mnringmulrd 44217 mnringmulrcld 44224 hoidmvval 46533 cznrng 48105 cznnring 48106 rngchomfvalALTV 48111 rngccofvalALTV 48114 rngccoALTV 48115 ringchomfvalALTV 48145 ringccofvalALTV 48148 ringccoALTV 48149 rrx2xpreen 48569 lines 48581 spheres 48596 functhinclem1 48841 thincciso 48849 |
Copyright terms: Public domain | W3C validator |