Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mpoex | Structured version Visualization version GIF version |
Description: If the domain of an operation given by maps-to notation is a set, the operation is a set. (Contributed by Mario Carneiro, 20-Dec-2013.) |
Ref | Expression |
---|---|
mpoex.1 | ⊢ 𝐴 ∈ V |
mpoex.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
mpoex | ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpoex.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | mpoex.2 | . . 3 ⊢ 𝐵 ∈ V | |
3 | 2 | rgenw 3066 | . 2 ⊢ ∀𝑥 ∈ 𝐴 𝐵 ∈ V |
4 | eqid 2736 | . . 3 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | |
5 | 4 | mpoexxg 7948 | . 2 ⊢ ((𝐴 ∈ V ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ V) → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V) |
6 | 1, 3, 5 | mp2an 690 | 1 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2104 ∀wral 3062 Vcvv 3437 ∈ cmpo 7309 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-oprab 7311 df-mpo 7312 df-1st 7863 df-2nd 7864 |
This theorem is referenced by: mptmpoopabbrd 7953 qexALT 12750 ruclem13 15996 vdwapfval 16717 prdsco 17224 imasvsca 17276 homffval 17444 comfffval 17452 comffval 17453 comfffn 17458 comfeq 17460 oppccofval 17471 monfval 17489 sectffval 17507 invffval 17515 cofu1st 17643 cofu2nd 17645 cofucl 17648 natfval 17707 fuccofval 17721 fucco 17725 coafval 17824 setcco 17843 catchomfval 17862 catccofval 17864 catcco 17865 estrcco 17891 xpcval 17939 xpchomfval 17941 xpccofval 17944 xpcco 17945 1stf1 17954 1stf2 17955 2ndf1 17957 2ndf2 17958 1stfcl 17959 2ndfcl 17960 prf1 17962 prf2fval 17963 prfcl 17965 prf1st 17966 prf2nd 17967 evlf2 17981 evlf1 17983 evlfcl 17985 curf1fval 17987 curf11 17989 curf12 17990 curf1cl 17991 curf2 17992 curfcl 17995 hof1fval 18016 hof2fval 18018 hofcl 18022 yonedalem3 18043 efmndplusg 18564 mgmnsgrpex 18615 sgrpnmndex 18616 grpsubfvalALT 18669 mulgfvalALT 18748 symgvalstruct 19049 symgvalstructOLD 19050 lsmfval 19288 pj1fval 19345 dvrfval 19971 psrmulr 21198 psrvscafval 21204 evlslem2 21334 mamufval 21579 mvmulfval 21736 isphtpy 24189 pcofval 24218 q1pval 25363 r1pval 25366 motplusg 26948 midf 27182 ismidb 27184 ttgval 27281 ttgvalOLD 27282 ebtwntg 27395 ecgrtg 27396 elntg 27397 wwlksnon 28261 wspthsnon 28262 clwwlknonmpo 28498 vsfval 29040 dipfval 29109 idlsrgmulr 31697 smatfval 31790 lmatval 31808 qqhval 31969 dya2iocuni 32295 sxbrsigalem5 32300 sitmval 32361 signswplusg 32579 reprval 32635 mclsrcl 33568 mclsval 33570 ldualfvs 37192 paddfval 37853 tgrpopr 38803 erngfplus 38858 erngfmul 38861 erngfplus-rN 38866 erngfmul-rN 38869 dvafvadd 39070 dvafvsca 39072 dvaabl 39080 dvhfvadd 39147 dvhfvsca 39156 djafvalN 39190 djhfval 39453 hlhilip 40008 mendplusgfval 41048 mendmulrfval 41050 mendvscafval 41053 mnringmulrd 41877 mnringmulrcld 41884 hoidmvval 44165 cznrng 45571 cznnring 45572 rngchomfvalALTV 45600 rngccofvalALTV 45603 rngccoALTV 45604 ringchomfvalALTV 45663 ringccofvalALTV 45666 ringccoALTV 45667 rrx2xpreen 46123 lines 46135 spheres 46150 functhinclem1 46380 thincciso 46388 |
Copyright terms: Public domain | W3C validator |