![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpoex | Structured version Visualization version GIF version |
Description: If the domain of an operation given by maps-to notation is a set, the operation is a set. (Contributed by Mario Carneiro, 20-Dec-2013.) |
Ref | Expression |
---|---|
mpoex.1 | ⊢ 𝐴 ∈ V |
mpoex.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
mpoex | ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpoex.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | mpoex.2 | . . 3 ⊢ 𝐵 ∈ V | |
3 | 2 | rgenw 3065 | . 2 ⊢ ∀𝑥 ∈ 𝐴 𝐵 ∈ V |
4 | eqid 2732 | . . 3 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | |
5 | 4 | mpoexxg 8064 | . 2 ⊢ ((𝐴 ∈ V ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ V) → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V) |
6 | 1, 3, 5 | mp2an 690 | 1 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 ∀wral 3061 Vcvv 3474 ∈ cmpo 7413 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-oprab 7415 df-mpo 7416 df-1st 7977 df-2nd 7978 |
This theorem is referenced by: mptmpoopabbrd 8069 qexALT 12952 ruclem13 16189 vdwapfval 16908 prdsco 17418 imasvsca 17470 homffval 17638 comfffval 17646 comffval 17647 comfffn 17652 comfeq 17654 oppccofval 17665 monfval 17683 sectffval 17701 invffval 17709 cofu1st 17837 cofu2nd 17839 cofucl 17842 natfval 17901 fuccofval 17915 fucco 17919 coafval 18018 setcco 18037 catchomfval 18056 catccofval 18058 catcco 18059 estrcco 18085 xpcval 18133 xpchomfval 18135 xpccofval 18138 xpcco 18139 1stf1 18148 1stf2 18149 2ndf1 18151 2ndf2 18152 1stfcl 18153 2ndfcl 18154 prf1 18156 prf2fval 18157 prfcl 18159 prf1st 18160 prf2nd 18161 evlf2 18175 evlf1 18177 evlfcl 18179 curf1fval 18181 curf11 18183 curf12 18184 curf1cl 18185 curf2 18186 curfcl 18189 hof1fval 18210 hof2fval 18212 hofcl 18216 yonedalem3 18237 efmndplusg 18797 mgmnsgrpex 18848 sgrpnmndex 18849 grpsubfvalALT 18905 mulgfvalALT 18989 symgvalstruct 19305 symgvalstructOLD 19306 lsmfval 19547 pj1fval 19603 dvrfval 20293 psrmulr 21722 psrvscafval 21728 evlslem2 21861 mamufval 22107 mvmulfval 22264 isphtpy 24721 pcofval 24750 q1pval 25895 r1pval 25898 mulsproplem9 27807 motplusg 28048 midf 28282 ismidb 28284 ttgval 28381 ttgvalOLD 28382 ebtwntg 28495 ecgrtg 28496 elntg 28497 wwlksnon 29360 wspthsnon 29361 clwwlknonmpo 29597 vsfval 30141 dipfval 30210 idlsrgmulr 32883 smatfval 33061 lmatval 33079 qqhval 33240 dya2iocuni 33568 sxbrsigalem5 33573 sitmval 33634 signswplusg 33852 reprval 33908 mclsrcl 34838 mclsval 34840 ldualfvs 38309 paddfval 38971 tgrpopr 39921 erngfplus 39976 erngfmul 39979 erngfplus-rN 39984 erngfmul-rN 39987 dvafvadd 40188 dvafvsca 40190 dvaabl 40198 dvhfvadd 40265 dvhfvsca 40274 djafvalN 40308 djhfval 40571 hlhilip 41126 mendplusgfval 42229 mendmulrfval 42231 mendvscafval 42234 mnringmulrd 43282 mnringmulrcld 43289 hoidmvval 45592 cznrng 46942 cznnring 46943 rngchomfvalALTV 46971 rngccofvalALTV 46974 rngccoALTV 46975 ringchomfvalALTV 47034 ringccofvalALTV 47037 ringccoALTV 47038 rrx2xpreen 47493 lines 47505 spheres 47520 functhinclem1 47749 thincciso 47757 |
Copyright terms: Public domain | W3C validator |