![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpoex | Structured version Visualization version GIF version |
Description: If the domain of an operation given by maps-to notation is a set, the operation is a set. (Contributed by Mario Carneiro, 20-Dec-2013.) |
Ref | Expression |
---|---|
mpoex.1 | ⊢ 𝐴 ∈ V |
mpoex.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
mpoex | ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpoex.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | mpoex.2 | . . 3 ⊢ 𝐵 ∈ V | |
3 | 2 | rgenw 3071 | . 2 ⊢ ∀𝑥 ∈ 𝐴 𝐵 ∈ V |
4 | eqid 2740 | . . 3 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | |
5 | 4 | mpoexxg 8116 | . 2 ⊢ ((𝐴 ∈ V ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ V) → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V) |
6 | 1, 3, 5 | mp2an 691 | 1 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 ∀wral 3067 Vcvv 3488 ∈ cmpo 7450 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 |
This theorem is referenced by: mptmpoopabbrdOLD 8122 qexALT 13029 ruclem13 16290 vdwapfval 17018 prdsco 17528 imasvsca 17580 homffval 17748 comfffval 17756 comffval 17757 comfffn 17762 comfeq 17764 oppccofval 17775 monfval 17793 sectffval 17811 invffval 17819 cofu1st 17947 cofu2nd 17949 cofucl 17952 natfval 18014 fuccofval 18028 fucco 18032 coafval 18131 setcco 18150 catchomfval 18169 catccofval 18171 catcco 18172 estrcco 18198 xpcval 18246 xpchomfval 18248 xpccofval 18251 xpcco 18252 1stf1 18261 1stf2 18262 2ndf1 18264 2ndf2 18265 1stfcl 18266 2ndfcl 18267 prf1 18269 prf2fval 18270 prfcl 18272 prf1st 18273 prf2nd 18274 evlf2 18288 evlf1 18290 evlfcl 18292 curf1fval 18294 curf11 18296 curf12 18297 curf1cl 18298 curf2 18299 curfcl 18302 hof1fval 18323 hof2fval 18325 hofcl 18329 yonedalem3 18350 efmndplusg 18915 mgmnsgrpex 18966 sgrpnmndex 18967 grpsubfvalALT 19024 mulgfvalALT 19110 symgvalstruct 19438 symgvalstructOLD 19439 lsmfval 19680 pj1fval 19736 dvrfval 20428 psrmulr 21985 psrvscafval 21991 evlslem2 22126 mamufval 22417 mvmulfval 22569 isphtpy 25032 pcofval 25062 q1pval 26214 r1pval 26217 mulsproplem9 28168 motplusg 28568 midf 28802 ismidb 28804 ttgval 28901 ttgvalOLD 28902 ebtwntg 29015 ecgrtg 29016 elntg 29017 wwlksnon 29884 wspthsnon 29885 clwwlknonmpo 30121 vsfval 30665 dipfval 30734 idlsrgmulr 33500 smatfval 33741 lmatval 33759 qqhval 33920 dya2iocuni 34248 sxbrsigalem5 34253 sitmval 34314 signswplusg 34532 reprval 34587 mclsrcl 35529 mclsval 35531 ldualfvs 39092 paddfval 39754 tgrpopr 40704 erngfplus 40759 erngfmul 40762 erngfplus-rN 40767 erngfmul-rN 40770 dvafvadd 40971 dvafvsca 40973 dvaabl 40981 dvhfvadd 41048 dvhfvsca 41057 djafvalN 41091 djhfval 41354 hlhilip 41909 mendplusgfval 43142 mendmulrfval 43144 mendvscafval 43147 mnringmulrd 44190 mnringmulrcld 44197 hoidmvval 46498 cznrng 47984 cznnring 47985 rngchomfvalALTV 47990 rngccofvalALTV 47993 rngccoALTV 47994 ringchomfvalALTV 48024 ringccofvalALTV 48027 ringccoALTV 48028 rrx2xpreen 48453 lines 48465 spheres 48480 functhinclem1 48708 thincciso 48716 |
Copyright terms: Public domain | W3C validator |