![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpoex | Structured version Visualization version GIF version |
Description: If the domain of an operation given by maps-to notation is a set, the operation is a set. (Contributed by Mario Carneiro, 20-Dec-2013.) |
Ref | Expression |
---|---|
mpoex.1 | ⊢ 𝐴 ∈ V |
mpoex.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
mpoex | ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpoex.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | mpoex.2 | . . 3 ⊢ 𝐵 ∈ V | |
3 | 2 | rgenw 3066 | . 2 ⊢ ∀𝑥 ∈ 𝐴 𝐵 ∈ V |
4 | eqid 2733 | . . 3 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | |
5 | 4 | mpoexxg 8062 | . 2 ⊢ ((𝐴 ∈ V ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ V) → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V) |
6 | 1, 3, 5 | mp2an 691 | 1 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2107 ∀wral 3062 Vcvv 3475 ∈ cmpo 7411 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-oprab 7413 df-mpo 7414 df-1st 7975 df-2nd 7976 |
This theorem is referenced by: mptmpoopabbrd 8067 qexALT 12948 ruclem13 16185 vdwapfval 16904 prdsco 17414 imasvsca 17466 homffval 17634 comfffval 17642 comffval 17643 comfffn 17648 comfeq 17650 oppccofval 17661 monfval 17679 sectffval 17697 invffval 17705 cofu1st 17833 cofu2nd 17835 cofucl 17838 natfval 17897 fuccofval 17911 fucco 17915 coafval 18014 setcco 18033 catchomfval 18052 catccofval 18054 catcco 18055 estrcco 18081 xpcval 18129 xpchomfval 18131 xpccofval 18134 xpcco 18135 1stf1 18144 1stf2 18145 2ndf1 18147 2ndf2 18148 1stfcl 18149 2ndfcl 18150 prf1 18152 prf2fval 18153 prfcl 18155 prf1st 18156 prf2nd 18157 evlf2 18171 evlf1 18173 evlfcl 18175 curf1fval 18177 curf11 18179 curf12 18180 curf1cl 18181 curf2 18182 curfcl 18185 hof1fval 18206 hof2fval 18208 hofcl 18212 yonedalem3 18233 efmndplusg 18761 mgmnsgrpex 18812 sgrpnmndex 18813 grpsubfvalALT 18869 mulgfvalALT 18953 symgvalstruct 19264 symgvalstructOLD 19265 lsmfval 19506 pj1fval 19562 dvrfval 20216 psrmulr 21503 psrvscafval 21509 evlslem2 21642 mamufval 21887 mvmulfval 22044 isphtpy 24497 pcofval 24526 q1pval 25671 r1pval 25674 mulsproplem9 27580 motplusg 27793 midf 28027 ismidb 28029 ttgval 28126 ttgvalOLD 28127 ebtwntg 28240 ecgrtg 28241 elntg 28242 wwlksnon 29105 wspthsnon 29106 clwwlknonmpo 29342 vsfval 29886 dipfval 29955 idlsrgmulr 32621 smatfval 32775 lmatval 32793 qqhval 32954 dya2iocuni 33282 sxbrsigalem5 33287 sitmval 33348 signswplusg 33566 reprval 33622 mclsrcl 34552 mclsval 34554 mpomulex 35161 ldualfvs 38006 paddfval 38668 tgrpopr 39618 erngfplus 39673 erngfmul 39676 erngfplus-rN 39681 erngfmul-rN 39684 dvafvadd 39885 dvafvsca 39887 dvaabl 39895 dvhfvadd 39962 dvhfvsca 39971 djafvalN 40005 djhfval 40268 hlhilip 40823 mendplusgfval 41927 mendmulrfval 41929 mendvscafval 41932 mnringmulrd 42980 mnringmulrcld 42987 hoidmvval 45293 cznrng 46853 cznnring 46854 rngchomfvalALTV 46882 rngccofvalALTV 46885 rngccoALTV 46886 ringchomfvalALTV 46945 ringccofvalALTV 46948 ringccoALTV 46949 rrx2xpreen 47405 lines 47417 spheres 47432 functhinclem1 47661 thincciso 47669 |
Copyright terms: Public domain | W3C validator |