| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpoex | Structured version Visualization version GIF version | ||
| Description: If the domain of an operation given by maps-to notation is a set, the operation is a set. (Contributed by Mario Carneiro, 20-Dec-2013.) |
| Ref | Expression |
|---|---|
| mpoex.1 | ⊢ 𝐴 ∈ V |
| mpoex.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| mpoex | ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpoex.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | mpoex.2 | . . 3 ⊢ 𝐵 ∈ V | |
| 3 | 2 | rgenw 3052 | . 2 ⊢ ∀𝑥 ∈ 𝐴 𝐵 ∈ V |
| 4 | eqid 2733 | . . 3 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | |
| 5 | 4 | mpoexxg 8016 | . 2 ⊢ ((𝐴 ∈ V ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ V) → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V) |
| 6 | 1, 3, 5 | mp2an 692 | 1 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2113 ∀wral 3048 Vcvv 3437 ∈ cmpo 7357 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-oprab 7359 df-mpo 7360 df-1st 7930 df-2nd 7931 |
| This theorem is referenced by: mptmpoopabbrdOLD 8022 qexALT 12868 ruclem13 16158 vdwapfval 16890 prdsco 17379 imasvsca 17432 homffval 17604 comfffval 17612 comffval 17613 comfffn 17618 comfeq 17620 oppccofval 17630 monfval 17647 sectffval 17665 invffval 17673 cofu1st 17798 cofu2nd 17800 cofucl 17803 natfval 17864 fuccofval 17877 fucco 17880 coafval 17979 setcco 17998 catchomfval 18017 catccofval 18019 catcco 18020 estrcco 18044 xpcval 18091 xpchomfval 18093 xpccofval 18096 xpcco 18097 1stf1 18106 1stf2 18107 2ndf1 18109 2ndf2 18110 1stfcl 18111 2ndfcl 18112 prf1 18114 prf2fval 18115 prfcl 18117 prf1st 18118 prf2nd 18119 evlf2 18132 evlf1 18134 evlfcl 18136 curf1fval 18138 curf11 18140 curf12 18141 curf1cl 18142 curf2 18143 curfcl 18146 hof1fval 18167 hof2fval 18169 hofcl 18173 yonedalem3 18194 efmndplusg 18796 mgmnsgrpex 18847 sgrpnmndex 18848 grpsubfvalALT 18905 mulgfvalALT 18991 symgvalstruct 19317 lsmfval 19558 pj1fval 19614 dvrfval 20329 psrmulr 21889 psrvscafval 21895 evlslem2 22025 mamufval 22327 mvmulfval 22477 isphtpy 24927 pcofval 24957 q1pval 26107 r1pval 26110 mulsproplem9 28083 motplusg 28540 midf 28774 ismidb 28776 ttgval 28873 ebtwntg 28981 ecgrtg 28982 elntg 28983 wwlksnon 29850 wspthsnon 29851 clwwlknonmpo 30090 vsfval 30634 dipfval 30703 idlsrgmulr 33516 smatfval 33880 lmatval 33898 qqhval 34057 dya2iocuni 34368 sxbrsigalem5 34373 sitmval 34434 signswplusg 34640 reprval 34695 mclsrcl 35677 mclsval 35679 ldualfvs 39308 paddfval 39969 tgrpopr 40919 erngfplus 40974 erngfmul 40977 erngfplus-rN 40982 erngfmul-rN 40985 dvafvadd 41186 dvafvsca 41188 dvaabl 41196 dvhfvadd 41263 dvhfvsca 41272 djafvalN 41306 djhfval 41569 hlhilip 42120 mendplusgfval 43338 mendmulrfval 43340 mendvscafval 43343 mnringmulrd 44380 mnringmulrcld 44385 hoidmvval 46737 cznrng 48423 cznnring 48424 rngchomfvalALTV 48429 rngccofvalALTV 48432 rngccoALTV 48433 ringchomfvalALTV 48463 ringccofvalALTV 48466 ringccoALTV 48467 rrx2xpreen 48881 lines 48893 spheres 48908 funcf2lem2 49243 upfval 49337 swapfelvv 49424 swapf2fvala 49425 swapf1vala 49427 tposcurf1 49460 diag1f1lem 49467 fucoelvv 49481 fucofn2 49485 fucofvalne 49486 fuco112 49490 fuco111 49491 fuco21 49497 prcofelvv 49541 reldmprcof1 49542 reldmprcof2 49543 prcof1 49549 prcof2a 49550 prcof2 49551 functhinclem1 49605 thincciso 49614 functermc2 49670 incat 49762 setc1onsubc 49763 lanfn 49770 ranfn 49771 lanfval 49774 ranfval 49775 |
| Copyright terms: Public domain | W3C validator |