Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mpoex | Structured version Visualization version GIF version |
Description: If the domain of an operation given by maps-to notation is a set, the operation is a set. (Contributed by Mario Carneiro, 20-Dec-2013.) |
Ref | Expression |
---|---|
mpoex.1 | ⊢ 𝐴 ∈ V |
mpoex.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
mpoex | ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpoex.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | mpoex.2 | . . 3 ⊢ 𝐵 ∈ V | |
3 | 2 | rgenw 3077 | . 2 ⊢ ∀𝑥 ∈ 𝐴 𝐵 ∈ V |
4 | eqid 2739 | . . 3 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | |
5 | 4 | mpoexxg 7902 | . 2 ⊢ ((𝐴 ∈ V ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ V) → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V) |
6 | 1, 3, 5 | mp2an 688 | 1 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2109 ∀wral 3065 Vcvv 3430 ∈ cmpo 7270 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-oprab 7272 df-mpo 7273 df-1st 7817 df-2nd 7818 |
This theorem is referenced by: qexALT 12686 ruclem13 15932 vdwapfval 16653 prdsco 17160 imasvsca 17212 homffval 17380 comfffval 17388 comffval 17389 comfffn 17394 comfeq 17396 oppccofval 17407 monfval 17425 sectffval 17443 invffval 17451 cofu1st 17579 cofu2nd 17581 cofucl 17584 natfval 17643 fuccofval 17657 fucco 17661 coafval 17760 setcco 17779 catchomfval 17798 catccofval 17800 catcco 17801 estrcco 17827 xpcval 17875 xpchomfval 17877 xpccofval 17880 xpcco 17881 1stf1 17890 1stf2 17891 2ndf1 17893 2ndf2 17894 1stfcl 17895 2ndfcl 17896 prf1 17898 prf2fval 17899 prfcl 17901 prf1st 17902 prf2nd 17903 evlf2 17917 evlf1 17919 evlfcl 17921 curf1fval 17923 curf11 17925 curf12 17926 curf1cl 17927 curf2 17928 curfcl 17931 hof1fval 17952 hof2fval 17954 hofcl 17958 yonedalem3 17979 efmndplusg 18500 mgmnsgrpex 18551 sgrpnmndex 18552 grpsubfvalALT 18605 mulgfvalALT 18684 symgvalstruct 18985 symgvalstructOLD 18986 lsmfval 19224 pj1fval 19281 dvrfval 19907 psrmulr 21134 psrvscafval 21140 evlslem2 21270 mamufval 21515 mvmulfval 21672 isphtpy 24125 pcofval 24154 q1pval 25299 r1pval 25302 motplusg 26884 midf 27118 ismidb 27120 ttgval 27217 ttgvalOLD 27218 ebtwntg 27331 ecgrtg 27332 elntg 27333 wwlksnon 28195 wspthsnon 28196 clwwlknonmpo 28432 vsfval 28974 dipfval 29043 idlsrgmulr 31631 smatfval 31724 lmatval 31742 qqhval 31903 dya2iocuni 32229 sxbrsigalem5 32234 sitmval 32295 signswplusg 32513 reprval 32569 mclsrcl 33502 mclsval 33504 ldualfvs 37129 paddfval 37790 tgrpopr 38740 erngfplus 38795 erngfmul 38798 erngfplus-rN 38803 erngfmul-rN 38806 dvafvadd 39007 dvafvsca 39009 dvaabl 39017 dvhfvadd 39084 dvhfvsca 39093 djafvalN 39127 djhfval 39390 hlhilip 39945 mendplusgfval 40990 mendmulrfval 40992 mendvscafval 40995 mnringmulrd 41792 mnringmulrcld 41799 hoidmvval 44069 cznrng 45465 cznnring 45466 rngchomfvalALTV 45494 rngccofvalALTV 45497 rngccoALTV 45498 ringchomfvalALTV 45557 ringccofvalALTV 45560 ringccoALTV 45561 rrx2xpreen 46017 lines 46029 spheres 46044 functhinclem1 46274 thincciso 46282 |
Copyright terms: Public domain | W3C validator |