| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpoex | Structured version Visualization version GIF version | ||
| Description: If the domain of an operation given by maps-to notation is a set, the operation is a set. (Contributed by Mario Carneiro, 20-Dec-2013.) |
| Ref | Expression |
|---|---|
| mpoex.1 | ⊢ 𝐴 ∈ V |
| mpoex.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| mpoex | ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpoex.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | mpoex.2 | . . 3 ⊢ 𝐵 ∈ V | |
| 3 | 2 | rgenw 3048 | . 2 ⊢ ∀𝑥 ∈ 𝐴 𝐵 ∈ V |
| 4 | eqid 2729 | . . 3 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | |
| 5 | 4 | mpoexxg 8017 | . 2 ⊢ ((𝐴 ∈ V ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ V) → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V) |
| 6 | 1, 3, 5 | mp2an 692 | 1 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ∀wral 3044 Vcvv 3438 ∈ cmpo 7355 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-oprab 7357 df-mpo 7358 df-1st 7931 df-2nd 7932 |
| This theorem is referenced by: mptmpoopabbrdOLD 8023 qexALT 12884 ruclem13 16170 vdwapfval 16902 prdsco 17391 imasvsca 17443 homffval 17615 comfffval 17623 comffval 17624 comfffn 17629 comfeq 17631 oppccofval 17641 monfval 17658 sectffval 17676 invffval 17684 cofu1st 17809 cofu2nd 17811 cofucl 17814 natfval 17875 fuccofval 17888 fucco 17891 coafval 17990 setcco 18009 catchomfval 18028 catccofval 18030 catcco 18031 estrcco 18055 xpcval 18102 xpchomfval 18104 xpccofval 18107 xpcco 18108 1stf1 18117 1stf2 18118 2ndf1 18120 2ndf2 18121 1stfcl 18122 2ndfcl 18123 prf1 18125 prf2fval 18126 prfcl 18128 prf1st 18129 prf2nd 18130 evlf2 18143 evlf1 18145 evlfcl 18147 curf1fval 18149 curf11 18151 curf12 18152 curf1cl 18153 curf2 18154 curfcl 18157 hof1fval 18178 hof2fval 18180 hofcl 18184 yonedalem3 18205 efmndplusg 18773 mgmnsgrpex 18824 sgrpnmndex 18825 grpsubfvalALT 18882 mulgfvalALT 18968 symgvalstruct 19295 lsmfval 19536 pj1fval 19592 dvrfval 20306 psrmulr 21868 psrvscafval 21874 evlslem2 22003 mamufval 22296 mvmulfval 22446 isphtpy 24897 pcofval 24927 q1pval 26077 r1pval 26080 mulsproplem9 28051 motplusg 28506 midf 28740 ismidb 28742 ttgval 28839 ebtwntg 28946 ecgrtg 28947 elntg 28948 wwlksnon 29815 wspthsnon 29816 clwwlknonmpo 30052 vsfval 30596 dipfval 30665 idlsrgmulr 33463 smatfval 33781 lmatval 33799 qqhval 33958 dya2iocuni 34270 sxbrsigalem5 34275 sitmval 34336 signswplusg 34542 reprval 34597 mclsrcl 35553 mclsval 35555 ldualfvs 39134 paddfval 39796 tgrpopr 40746 erngfplus 40801 erngfmul 40804 erngfplus-rN 40809 erngfmul-rN 40812 dvafvadd 41013 dvafvsca 41015 dvaabl 41023 dvhfvadd 41090 dvhfvsca 41099 djafvalN 41133 djhfval 41396 hlhilip 41947 mendplusgfval 43174 mendmulrfval 43176 mendvscafval 43179 mnringmulrd 44216 mnringmulrcld 44221 hoidmvval 46578 cznrng 48265 cznnring 48266 rngchomfvalALTV 48271 rngccofvalALTV 48274 rngccoALTV 48275 ringchomfvalALTV 48305 ringccofvalALTV 48308 ringccoALTV 48309 rrx2xpreen 48724 lines 48736 spheres 48751 funcf2lem2 49087 upfval 49181 swapfelvv 49268 swapf2fvala 49269 swapf1vala 49271 tposcurf1 49304 diag1f1lem 49311 fucoelvv 49325 fucofn2 49329 fucofvalne 49330 fuco112 49334 fuco111 49335 fuco21 49341 prcofelvv 49385 reldmprcof1 49386 reldmprcof2 49387 prcof1 49393 prcof2a 49394 prcof2 49395 functhinclem1 49449 thincciso 49458 functermc2 49514 incat 49606 setc1onsubc 49607 lanfn 49614 ranfn 49615 lanfval 49618 ranfval 49619 |
| Copyright terms: Public domain | W3C validator |