| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpoex | Structured version Visualization version GIF version | ||
| Description: If the domain of an operation given by maps-to notation is a set, the operation is a set. (Contributed by Mario Carneiro, 20-Dec-2013.) |
| Ref | Expression |
|---|---|
| mpoex.1 | ⊢ 𝐴 ∈ V |
| mpoex.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| mpoex | ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpoex.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | mpoex.2 | . . 3 ⊢ 𝐵 ∈ V | |
| 3 | 2 | rgenw 3051 | . 2 ⊢ ∀𝑥 ∈ 𝐴 𝐵 ∈ V |
| 4 | eqid 2731 | . . 3 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | |
| 5 | 4 | mpoexxg 8002 | . 2 ⊢ ((𝐴 ∈ V ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ V) → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V) |
| 6 | 1, 3, 5 | mp2an 692 | 1 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 ∀wral 3047 Vcvv 3436 ∈ cmpo 7343 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-oprab 7345 df-mpo 7346 df-1st 7916 df-2nd 7917 |
| This theorem is referenced by: mptmpoopabbrdOLD 8008 qexALT 12857 ruclem13 16146 vdwapfval 16878 prdsco 17367 imasvsca 17419 homffval 17591 comfffval 17599 comffval 17600 comfffn 17605 comfeq 17607 oppccofval 17617 monfval 17634 sectffval 17652 invffval 17660 cofu1st 17785 cofu2nd 17787 cofucl 17790 natfval 17851 fuccofval 17864 fucco 17867 coafval 17966 setcco 17985 catchomfval 18004 catccofval 18006 catcco 18007 estrcco 18031 xpcval 18078 xpchomfval 18080 xpccofval 18083 xpcco 18084 1stf1 18093 1stf2 18094 2ndf1 18096 2ndf2 18097 1stfcl 18098 2ndfcl 18099 prf1 18101 prf2fval 18102 prfcl 18104 prf1st 18105 prf2nd 18106 evlf2 18119 evlf1 18121 evlfcl 18123 curf1fval 18125 curf11 18127 curf12 18128 curf1cl 18129 curf2 18130 curfcl 18133 hof1fval 18154 hof2fval 18156 hofcl 18160 yonedalem3 18181 efmndplusg 18783 mgmnsgrpex 18834 sgrpnmndex 18835 grpsubfvalALT 18892 mulgfvalALT 18978 symgvalstruct 19304 lsmfval 19545 pj1fval 19601 dvrfval 20315 psrmulr 21874 psrvscafval 21880 evlslem2 22009 mamufval 22302 mvmulfval 22452 isphtpy 24902 pcofval 24932 q1pval 26082 r1pval 26085 mulsproplem9 28058 motplusg 28515 midf 28749 ismidb 28751 ttgval 28848 ebtwntg 28955 ecgrtg 28956 elntg 28957 wwlksnon 29824 wspthsnon 29825 clwwlknonmpo 30061 vsfval 30605 dipfval 30674 idlsrgmulr 33464 smatfval 33800 lmatval 33818 qqhval 33977 dya2iocuni 34288 sxbrsigalem5 34293 sitmval 34354 signswplusg 34560 reprval 34615 mclsrcl 35597 mclsval 35599 ldualfvs 39175 paddfval 39836 tgrpopr 40786 erngfplus 40841 erngfmul 40844 erngfplus-rN 40849 erngfmul-rN 40852 dvafvadd 41053 dvafvsca 41055 dvaabl 41063 dvhfvadd 41130 dvhfvsca 41139 djafvalN 41173 djhfval 41436 hlhilip 41987 mendplusgfval 43214 mendmulrfval 43216 mendvscafval 43219 mnringmulrd 44256 mnringmulrcld 44261 hoidmvval 46615 cznrng 48292 cznnring 48293 rngchomfvalALTV 48298 rngccofvalALTV 48301 rngccoALTV 48302 ringchomfvalALTV 48332 ringccofvalALTV 48335 ringccoALTV 48336 rrx2xpreen 48751 lines 48763 spheres 48778 funcf2lem2 49114 upfval 49208 swapfelvv 49295 swapf2fvala 49296 swapf1vala 49298 tposcurf1 49331 diag1f1lem 49338 fucoelvv 49352 fucofn2 49356 fucofvalne 49357 fuco112 49361 fuco111 49362 fuco21 49368 prcofelvv 49412 reldmprcof1 49413 reldmprcof2 49414 prcof1 49420 prcof2a 49421 prcof2 49422 functhinclem1 49476 thincciso 49485 functermc2 49541 incat 49633 setc1onsubc 49634 lanfn 49641 ranfn 49642 lanfval 49645 ranfval 49646 |
| Copyright terms: Public domain | W3C validator |