| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpoex | Structured version Visualization version GIF version | ||
| Description: If the domain of an operation given by maps-to notation is a set, the operation is a set. (Contributed by Mario Carneiro, 20-Dec-2013.) |
| Ref | Expression |
|---|---|
| mpoex.1 | ⊢ 𝐴 ∈ V |
| mpoex.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| mpoex | ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpoex.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | mpoex.2 | . . 3 ⊢ 𝐵 ∈ V | |
| 3 | 2 | rgenw 3048 | . 2 ⊢ ∀𝑥 ∈ 𝐴 𝐵 ∈ V |
| 4 | eqid 2729 | . . 3 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | |
| 5 | 4 | mpoexxg 8033 | . 2 ⊢ ((𝐴 ∈ V ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ V) → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V) |
| 6 | 1, 3, 5 | mp2an 692 | 1 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ∀wral 3044 Vcvv 3444 ∈ cmpo 7371 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-oprab 7373 df-mpo 7374 df-1st 7947 df-2nd 7948 |
| This theorem is referenced by: mptmpoopabbrdOLD 8039 qexALT 12899 ruclem13 16186 vdwapfval 16918 prdsco 17407 imasvsca 17459 homffval 17627 comfffval 17635 comffval 17636 comfffn 17641 comfeq 17643 oppccofval 17653 monfval 17670 sectffval 17688 invffval 17696 cofu1st 17821 cofu2nd 17823 cofucl 17826 natfval 17887 fuccofval 17900 fucco 17903 coafval 18002 setcco 18021 catchomfval 18040 catccofval 18042 catcco 18043 estrcco 18067 xpcval 18114 xpchomfval 18116 xpccofval 18119 xpcco 18120 1stf1 18129 1stf2 18130 2ndf1 18132 2ndf2 18133 1stfcl 18134 2ndfcl 18135 prf1 18137 prf2fval 18138 prfcl 18140 prf1st 18141 prf2nd 18142 evlf2 18155 evlf1 18157 evlfcl 18159 curf1fval 18161 curf11 18163 curf12 18164 curf1cl 18165 curf2 18166 curfcl 18169 hof1fval 18190 hof2fval 18192 hofcl 18196 yonedalem3 18217 efmndplusg 18783 mgmnsgrpex 18834 sgrpnmndex 18835 grpsubfvalALT 18892 mulgfvalALT 18978 symgvalstruct 19303 lsmfval 19544 pj1fval 19600 dvrfval 20287 psrmulr 21827 psrvscafval 21833 evlslem2 21962 mamufval 22255 mvmulfval 22405 isphtpy 24856 pcofval 24886 q1pval 26036 r1pval 26039 mulsproplem9 28003 motplusg 28445 midf 28679 ismidb 28681 ttgval 28778 ebtwntg 28885 ecgrtg 28886 elntg 28887 wwlksnon 29754 wspthsnon 29755 clwwlknonmpo 29991 vsfval 30535 dipfval 30604 idlsrgmulr 33451 smatfval 33758 lmatval 33776 qqhval 33935 dya2iocuni 34247 sxbrsigalem5 34252 sitmval 34313 signswplusg 34519 reprval 34574 mclsrcl 35521 mclsval 35523 ldualfvs 39102 paddfval 39764 tgrpopr 40714 erngfplus 40769 erngfmul 40772 erngfplus-rN 40777 erngfmul-rN 40780 dvafvadd 40981 dvafvsca 40983 dvaabl 40991 dvhfvadd 41058 dvhfvsca 41067 djafvalN 41101 djhfval 41364 hlhilip 41915 mendplusgfval 43143 mendmulrfval 43145 mendvscafval 43148 mnringmulrd 44185 mnringmulrcld 44190 hoidmvval 46548 cznrng 48222 cznnring 48223 rngchomfvalALTV 48228 rngccofvalALTV 48231 rngccoALTV 48232 ringchomfvalALTV 48262 ringccofvalALTV 48265 ringccoALTV 48266 rrx2xpreen 48681 lines 48693 spheres 48708 funcf2lem2 49044 upfval 49138 swapfelvv 49225 swapf2fvala 49226 swapf1vala 49228 tposcurf1 49261 diag1f1lem 49268 fucoelvv 49282 fucofn2 49286 fucofvalne 49287 fuco112 49291 fuco111 49292 fuco21 49298 prcofelvv 49342 reldmprcof1 49343 reldmprcof2 49344 prcof1 49350 prcof2a 49351 prcof2 49352 functhinclem1 49406 thincciso 49415 functermc2 49471 incat 49563 setc1onsubc 49564 lanfn 49571 ranfn 49572 lanfval 49575 ranfval 49576 |
| Copyright terms: Public domain | W3C validator |