| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpoex | Structured version Visualization version GIF version | ||
| Description: If the domain of an operation given by maps-to notation is a set, the operation is a set. (Contributed by Mario Carneiro, 20-Dec-2013.) |
| Ref | Expression |
|---|---|
| mpoex.1 | ⊢ 𝐴 ∈ V |
| mpoex.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| mpoex | ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpoex.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | mpoex.2 | . . 3 ⊢ 𝐵 ∈ V | |
| 3 | 2 | rgenw 3048 | . 2 ⊢ ∀𝑥 ∈ 𝐴 𝐵 ∈ V |
| 4 | eqid 2729 | . . 3 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | |
| 5 | 4 | mpoexxg 8054 | . 2 ⊢ ((𝐴 ∈ V ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ V) → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V) |
| 6 | 1, 3, 5 | mp2an 692 | 1 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ∀wral 3044 Vcvv 3447 ∈ cmpo 7389 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 |
| This theorem is referenced by: mptmpoopabbrdOLD 8060 qexALT 12923 ruclem13 16210 vdwapfval 16942 prdsco 17431 imasvsca 17483 homffval 17651 comfffval 17659 comffval 17660 comfffn 17665 comfeq 17667 oppccofval 17677 monfval 17694 sectffval 17712 invffval 17720 cofu1st 17845 cofu2nd 17847 cofucl 17850 natfval 17911 fuccofval 17924 fucco 17927 coafval 18026 setcco 18045 catchomfval 18064 catccofval 18066 catcco 18067 estrcco 18091 xpcval 18138 xpchomfval 18140 xpccofval 18143 xpcco 18144 1stf1 18153 1stf2 18154 2ndf1 18156 2ndf2 18157 1stfcl 18158 2ndfcl 18159 prf1 18161 prf2fval 18162 prfcl 18164 prf1st 18165 prf2nd 18166 evlf2 18179 evlf1 18181 evlfcl 18183 curf1fval 18185 curf11 18187 curf12 18188 curf1cl 18189 curf2 18190 curfcl 18193 hof1fval 18214 hof2fval 18216 hofcl 18220 yonedalem3 18241 efmndplusg 18807 mgmnsgrpex 18858 sgrpnmndex 18859 grpsubfvalALT 18916 mulgfvalALT 19002 symgvalstruct 19327 lsmfval 19568 pj1fval 19624 dvrfval 20311 psrmulr 21851 psrvscafval 21857 evlslem2 21986 mamufval 22279 mvmulfval 22429 isphtpy 24880 pcofval 24910 q1pval 26060 r1pval 26063 mulsproplem9 28027 motplusg 28469 midf 28703 ismidb 28705 ttgval 28802 ebtwntg 28909 ecgrtg 28910 elntg 28911 wwlksnon 29781 wspthsnon 29782 clwwlknonmpo 30018 vsfval 30562 dipfval 30631 idlsrgmulr 33478 smatfval 33785 lmatval 33803 qqhval 33962 dya2iocuni 34274 sxbrsigalem5 34279 sitmval 34340 signswplusg 34546 reprval 34601 mclsrcl 35548 mclsval 35550 ldualfvs 39129 paddfval 39791 tgrpopr 40741 erngfplus 40796 erngfmul 40799 erngfplus-rN 40804 erngfmul-rN 40807 dvafvadd 41008 dvafvsca 41010 dvaabl 41018 dvhfvadd 41085 dvhfvsca 41094 djafvalN 41128 djhfval 41391 hlhilip 41942 mendplusgfval 43170 mendmulrfval 43172 mendvscafval 43175 mnringmulrd 44212 mnringmulrcld 44217 hoidmvval 46575 cznrng 48249 cznnring 48250 rngchomfvalALTV 48255 rngccofvalALTV 48258 rngccoALTV 48259 ringchomfvalALTV 48289 ringccofvalALTV 48292 ringccoALTV 48293 rrx2xpreen 48708 lines 48720 spheres 48735 funcf2lem2 49071 upfval 49165 swapfelvv 49252 swapf2fvala 49253 swapf1vala 49255 tposcurf1 49288 diag1f1lem 49295 fucoelvv 49309 fucofn2 49313 fucofvalne 49314 fuco112 49318 fuco111 49319 fuco21 49325 prcofelvv 49369 reldmprcof1 49370 reldmprcof2 49371 prcof1 49377 prcof2a 49378 prcof2 49379 functhinclem1 49433 thincciso 49442 functermc2 49498 incat 49590 setc1onsubc 49591 lanfn 49598 ranfn 49599 lanfval 49602 ranfval 49603 |
| Copyright terms: Public domain | W3C validator |