MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  curf1 Structured version   Visualization version   GIF version

Theorem curf1 18186
Description: Value of the object part of the curry functor. (Contributed by Mario Carneiro, 12-Jan-2017.)
Hypotheses
Ref Expression
curfval.g 𝐺 = (⟨𝐶, 𝐷⟩ curryF 𝐹)
curfval.a 𝐴 = (Base‘𝐶)
curfval.c (𝜑𝐶 ∈ Cat)
curfval.d (𝜑𝐷 ∈ Cat)
curfval.f (𝜑𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸))
curfval.b 𝐵 = (Base‘𝐷)
curf1.x (𝜑𝑋𝐴)
curf1.k 𝐾 = ((1st𝐺)‘𝑋)
curf1.j 𝐽 = (Hom ‘𝐷)
curf1.1 1 = (Id‘𝐶)
Assertion
Ref Expression
curf1 (𝜑𝐾 = ⟨(𝑦𝐵 ↦ (𝑋(1st𝐹)𝑦)), (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔)))⟩)
Distinct variable groups:   𝑦,𝑔,𝑧, 1   𝑦,𝐴   𝐵,𝑔,𝑦,𝑧   𝐶,𝑔,𝑦,𝑧   𝐷,𝑔,𝑦,𝑧   𝜑,𝑔,𝑦,𝑧   𝑔,𝐸,𝑦,𝑧   𝑔,𝐽   𝑔,𝐾,𝑦,𝑧   𝑔,𝑋,𝑦,𝑧   𝑔,𝐹,𝑦,𝑧
Allowed substitution hints:   𝐴(𝑧,𝑔)   𝐺(𝑦,𝑧,𝑔)   𝐽(𝑦,𝑧)

Proof of Theorem curf1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 curf1.k . 2 𝐾 = ((1st𝐺)‘𝑋)
2 curfval.g . . . 4 𝐺 = (⟨𝐶, 𝐷⟩ curryF 𝐹)
3 curfval.a . . . 4 𝐴 = (Base‘𝐶)
4 curfval.c . . . 4 (𝜑𝐶 ∈ Cat)
5 curfval.d . . . 4 (𝜑𝐷 ∈ Cat)
6 curfval.f . . . 4 (𝜑𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸))
7 curfval.b . . . 4 𝐵 = (Base‘𝐷)
8 curf1.j . . . 4 𝐽 = (Hom ‘𝐷)
9 curf1.1 . . . 4 1 = (Id‘𝐶)
102, 3, 4, 5, 6, 7, 8, 9curf1fval 18185 . . 3 (𝜑 → (1st𝐺) = (𝑥𝐴 ↦ ⟨(𝑦𝐵 ↦ (𝑥(1st𝐹)𝑦)), (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩))
11 simpr 484 . . . . . 6 ((𝜑𝑥 = 𝑋) → 𝑥 = 𝑋)
1211oveq1d 7402 . . . . 5 ((𝜑𝑥 = 𝑋) → (𝑥(1st𝐹)𝑦) = (𝑋(1st𝐹)𝑦))
1312mpteq2dv 5201 . . . 4 ((𝜑𝑥 = 𝑋) → (𝑦𝐵 ↦ (𝑥(1st𝐹)𝑦)) = (𝑦𝐵 ↦ (𝑋(1st𝐹)𝑦)))
14 simp1r 1199 . . . . . . . . 9 (((𝜑𝑥 = 𝑋) ∧ 𝑦𝐵𝑧𝐵) → 𝑥 = 𝑋)
1514opeq1d 4843 . . . . . . . 8 (((𝜑𝑥 = 𝑋) ∧ 𝑦𝐵𝑧𝐵) → ⟨𝑥, 𝑦⟩ = ⟨𝑋, 𝑦⟩)
1614opeq1d 4843 . . . . . . . 8 (((𝜑𝑥 = 𝑋) ∧ 𝑦𝐵𝑧𝐵) → ⟨𝑥, 𝑧⟩ = ⟨𝑋, 𝑧⟩)
1715, 16oveq12d 7405 . . . . . . 7 (((𝜑𝑥 = 𝑋) ∧ 𝑦𝐵𝑧𝐵) → (⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩) = (⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩))
1814fveq2d 6862 . . . . . . 7 (((𝜑𝑥 = 𝑋) ∧ 𝑦𝐵𝑧𝐵) → ( 1𝑥) = ( 1𝑋))
19 eqidd 2730 . . . . . . 7 (((𝜑𝑥 = 𝑋) ∧ 𝑦𝐵𝑧𝐵) → 𝑔 = 𝑔)
2017, 18, 19oveq123d 7408 . . . . . 6 (((𝜑𝑥 = 𝑋) ∧ 𝑦𝐵𝑧𝐵) → (( 1𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔) = (( 1𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔))
2120mpteq2dv 5201 . . . . 5 (((𝜑𝑥 = 𝑋) ∧ 𝑦𝐵𝑧𝐵) → (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)) = (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔)))
2221mpoeq3dva 7466 . . . 4 ((𝜑𝑥 = 𝑋) → (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔))) = (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔))))
2313, 22opeq12d 4845 . . 3 ((𝜑𝑥 = 𝑋) → ⟨(𝑦𝐵 ↦ (𝑥(1st𝐹)𝑦)), (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩ = ⟨(𝑦𝐵 ↦ (𝑋(1st𝐹)𝑦)), (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔)))⟩)
24 curf1.x . . 3 (𝜑𝑋𝐴)
25 opex 5424 . . . 4 ⟨(𝑦𝐵 ↦ (𝑋(1st𝐹)𝑦)), (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔)))⟩ ∈ V
2625a1i 11 . . 3 (𝜑 → ⟨(𝑦𝐵 ↦ (𝑋(1st𝐹)𝑦)), (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔)))⟩ ∈ V)
2710, 23, 24, 26fvmptd 6975 . 2 (𝜑 → ((1st𝐺)‘𝑋) = ⟨(𝑦𝐵 ↦ (𝑋(1st𝐹)𝑦)), (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔)))⟩)
281, 27eqtrid 2776 1 (𝜑𝐾 = ⟨(𝑦𝐵 ↦ (𝑋(1st𝐹)𝑦)), (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔)))⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3447  cop 4595  cmpt 5188  cfv 6511  (class class class)co 7387  cmpo 7389  1st c1st 7966  2nd c2nd 7967  Basecbs 17179  Hom chom 17231  Catccat 17625  Idccid 17626   Func cfunc 17816   ×c cxpc 18129   curryF ccurf 18171
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-curf 18175
This theorem is referenced by:  curf11  18187  curf12  18188  curf1cl  18189  curf2ndf  18208  tposcurf1  49288  postcofval  49353
  Copyright terms: Public domain W3C validator