MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  curf1 Structured version   Visualization version   GIF version

Theorem curf1 17467
Description: Value of the object part of the curry functor. (Contributed by Mario Carneiro, 12-Jan-2017.)
Hypotheses
Ref Expression
curfval.g 𝐺 = (⟨𝐶, 𝐷⟩ curryF 𝐹)
curfval.a 𝐴 = (Base‘𝐶)
curfval.c (𝜑𝐶 ∈ Cat)
curfval.d (𝜑𝐷 ∈ Cat)
curfval.f (𝜑𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸))
curfval.b 𝐵 = (Base‘𝐷)
curf1.x (𝜑𝑋𝐴)
curf1.k 𝐾 = ((1st𝐺)‘𝑋)
curf1.j 𝐽 = (Hom ‘𝐷)
curf1.1 1 = (Id‘𝐶)
Assertion
Ref Expression
curf1 (𝜑𝐾 = ⟨(𝑦𝐵 ↦ (𝑋(1st𝐹)𝑦)), (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔)))⟩)
Distinct variable groups:   𝑦,𝑔,𝑧, 1   𝑦,𝐴   𝐵,𝑔,𝑦,𝑧   𝐶,𝑔,𝑦,𝑧   𝐷,𝑔,𝑦,𝑧   𝜑,𝑔,𝑦,𝑧   𝑔,𝐸,𝑦,𝑧   𝑔,𝐽   𝑔,𝐾,𝑦,𝑧   𝑔,𝑋,𝑦,𝑧   𝑔,𝐹,𝑦,𝑧
Allowed substitution hints:   𝐴(𝑧,𝑔)   𝐺(𝑦,𝑧,𝑔)   𝐽(𝑦,𝑧)

Proof of Theorem curf1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 curf1.k . 2 𝐾 = ((1st𝐺)‘𝑋)
2 curfval.g . . . 4 𝐺 = (⟨𝐶, 𝐷⟩ curryF 𝐹)
3 curfval.a . . . 4 𝐴 = (Base‘𝐶)
4 curfval.c . . . 4 (𝜑𝐶 ∈ Cat)
5 curfval.d . . . 4 (𝜑𝐷 ∈ Cat)
6 curfval.f . . . 4 (𝜑𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸))
7 curfval.b . . . 4 𝐵 = (Base‘𝐷)
8 curf1.j . . . 4 𝐽 = (Hom ‘𝐷)
9 curf1.1 . . . 4 1 = (Id‘𝐶)
102, 3, 4, 5, 6, 7, 8, 9curf1fval 17466 . . 3 (𝜑 → (1st𝐺) = (𝑥𝐴 ↦ ⟨(𝑦𝐵 ↦ (𝑥(1st𝐹)𝑦)), (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩))
11 simpr 488 . . . . . 6 ((𝜑𝑥 = 𝑋) → 𝑥 = 𝑋)
1211oveq1d 7150 . . . . 5 ((𝜑𝑥 = 𝑋) → (𝑥(1st𝐹)𝑦) = (𝑋(1st𝐹)𝑦))
1312mpteq2dv 5126 . . . 4 ((𝜑𝑥 = 𝑋) → (𝑦𝐵 ↦ (𝑥(1st𝐹)𝑦)) = (𝑦𝐵 ↦ (𝑋(1st𝐹)𝑦)))
14 simp1r 1195 . . . . . . . . 9 (((𝜑𝑥 = 𝑋) ∧ 𝑦𝐵𝑧𝐵) → 𝑥 = 𝑋)
1514opeq1d 4771 . . . . . . . 8 (((𝜑𝑥 = 𝑋) ∧ 𝑦𝐵𝑧𝐵) → ⟨𝑥, 𝑦⟩ = ⟨𝑋, 𝑦⟩)
1614opeq1d 4771 . . . . . . . 8 (((𝜑𝑥 = 𝑋) ∧ 𝑦𝐵𝑧𝐵) → ⟨𝑥, 𝑧⟩ = ⟨𝑋, 𝑧⟩)
1715, 16oveq12d 7153 . . . . . . 7 (((𝜑𝑥 = 𝑋) ∧ 𝑦𝐵𝑧𝐵) → (⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩) = (⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩))
1814fveq2d 6649 . . . . . . 7 (((𝜑𝑥 = 𝑋) ∧ 𝑦𝐵𝑧𝐵) → ( 1𝑥) = ( 1𝑋))
19 eqidd 2799 . . . . . . 7 (((𝜑𝑥 = 𝑋) ∧ 𝑦𝐵𝑧𝐵) → 𝑔 = 𝑔)
2017, 18, 19oveq123d 7156 . . . . . 6 (((𝜑𝑥 = 𝑋) ∧ 𝑦𝐵𝑧𝐵) → (( 1𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔) = (( 1𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔))
2120mpteq2dv 5126 . . . . 5 (((𝜑𝑥 = 𝑋) ∧ 𝑦𝐵𝑧𝐵) → (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)) = (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔)))
2221mpoeq3dva 7210 . . . 4 ((𝜑𝑥 = 𝑋) → (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔))) = (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔))))
2313, 22opeq12d 4773 . . 3 ((𝜑𝑥 = 𝑋) → ⟨(𝑦𝐵 ↦ (𝑥(1st𝐹)𝑦)), (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩ = ⟨(𝑦𝐵 ↦ (𝑋(1st𝐹)𝑦)), (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔)))⟩)
24 curf1.x . . 3 (𝜑𝑋𝐴)
25 opex 5321 . . . 4 ⟨(𝑦𝐵 ↦ (𝑋(1st𝐹)𝑦)), (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔)))⟩ ∈ V
2625a1i 11 . . 3 (𝜑 → ⟨(𝑦𝐵 ↦ (𝑋(1st𝐹)𝑦)), (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔)))⟩ ∈ V)
2710, 23, 24, 26fvmptd 6752 . 2 (𝜑 → ((1st𝐺)‘𝑋) = ⟨(𝑦𝐵 ↦ (𝑋(1st𝐹)𝑦)), (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔)))⟩)
281, 27syl5eq 2845 1 (𝜑𝐾 = ⟨(𝑦𝐵 ↦ (𝑋(1st𝐹)𝑦)), (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔)))⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  Vcvv 3441  cop 4531  cmpt 5110  cfv 6324  (class class class)co 7135  cmpo 7137  1st c1st 7669  2nd c2nd 7670  Basecbs 16475  Hom chom 16568  Catccat 16927  Idccid 16928   Func cfunc 17116   ×c cxpc 17410   curryF ccurf 17452
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-1st 7671  df-2nd 7672  df-curf 17456
This theorem is referenced by:  curf11  17468  curf12  17469  curf1cl  17470  curf2ndf  17489
  Copyright terms: Public domain W3C validator