MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  curf1 Structured version   Visualization version   GIF version

Theorem curf1 17469
Description: Value of the object part of the curry functor. (Contributed by Mario Carneiro, 12-Jan-2017.)
Hypotheses
Ref Expression
curfval.g 𝐺 = (⟨𝐶, 𝐷⟩ curryF 𝐹)
curfval.a 𝐴 = (Base‘𝐶)
curfval.c (𝜑𝐶 ∈ Cat)
curfval.d (𝜑𝐷 ∈ Cat)
curfval.f (𝜑𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸))
curfval.b 𝐵 = (Base‘𝐷)
curf1.x (𝜑𝑋𝐴)
curf1.k 𝐾 = ((1st𝐺)‘𝑋)
curf1.j 𝐽 = (Hom ‘𝐷)
curf1.1 1 = (Id‘𝐶)
Assertion
Ref Expression
curf1 (𝜑𝐾 = ⟨(𝑦𝐵 ↦ (𝑋(1st𝐹)𝑦)), (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔)))⟩)
Distinct variable groups:   𝑦,𝑔,𝑧, 1   𝑦,𝐴   𝐵,𝑔,𝑦,𝑧   𝐶,𝑔,𝑦,𝑧   𝐷,𝑔,𝑦,𝑧   𝜑,𝑔,𝑦,𝑧   𝑔,𝐸,𝑦,𝑧   𝑔,𝐽   𝑔,𝐾,𝑦,𝑧   𝑔,𝑋,𝑦,𝑧   𝑔,𝐹,𝑦,𝑧
Allowed substitution hints:   𝐴(𝑧,𝑔)   𝐺(𝑦,𝑧,𝑔)   𝐽(𝑦,𝑧)

Proof of Theorem curf1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 curf1.k . 2 𝐾 = ((1st𝐺)‘𝑋)
2 curfval.g . . . 4 𝐺 = (⟨𝐶, 𝐷⟩ curryF 𝐹)
3 curfval.a . . . 4 𝐴 = (Base‘𝐶)
4 curfval.c . . . 4 (𝜑𝐶 ∈ Cat)
5 curfval.d . . . 4 (𝜑𝐷 ∈ Cat)
6 curfval.f . . . 4 (𝜑𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸))
7 curfval.b . . . 4 𝐵 = (Base‘𝐷)
8 curf1.j . . . 4 𝐽 = (Hom ‘𝐷)
9 curf1.1 . . . 4 1 = (Id‘𝐶)
102, 3, 4, 5, 6, 7, 8, 9curf1fval 17468 . . 3 (𝜑 → (1st𝐺) = (𝑥𝐴 ↦ ⟨(𝑦𝐵 ↦ (𝑥(1st𝐹)𝑦)), (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩))
11 simpr 487 . . . . . 6 ((𝜑𝑥 = 𝑋) → 𝑥 = 𝑋)
1211oveq1d 7165 . . . . 5 ((𝜑𝑥 = 𝑋) → (𝑥(1st𝐹)𝑦) = (𝑋(1st𝐹)𝑦))
1312mpteq2dv 5155 . . . 4 ((𝜑𝑥 = 𝑋) → (𝑦𝐵 ↦ (𝑥(1st𝐹)𝑦)) = (𝑦𝐵 ↦ (𝑋(1st𝐹)𝑦)))
14 simp1r 1194 . . . . . . . . 9 (((𝜑𝑥 = 𝑋) ∧ 𝑦𝐵𝑧𝐵) → 𝑥 = 𝑋)
1514opeq1d 4803 . . . . . . . 8 (((𝜑𝑥 = 𝑋) ∧ 𝑦𝐵𝑧𝐵) → ⟨𝑥, 𝑦⟩ = ⟨𝑋, 𝑦⟩)
1614opeq1d 4803 . . . . . . . 8 (((𝜑𝑥 = 𝑋) ∧ 𝑦𝐵𝑧𝐵) → ⟨𝑥, 𝑧⟩ = ⟨𝑋, 𝑧⟩)
1715, 16oveq12d 7168 . . . . . . 7 (((𝜑𝑥 = 𝑋) ∧ 𝑦𝐵𝑧𝐵) → (⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩) = (⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩))
1814fveq2d 6669 . . . . . . 7 (((𝜑𝑥 = 𝑋) ∧ 𝑦𝐵𝑧𝐵) → ( 1𝑥) = ( 1𝑋))
19 eqidd 2822 . . . . . . 7 (((𝜑𝑥 = 𝑋) ∧ 𝑦𝐵𝑧𝐵) → 𝑔 = 𝑔)
2017, 18, 19oveq123d 7171 . . . . . 6 (((𝜑𝑥 = 𝑋) ∧ 𝑦𝐵𝑧𝐵) → (( 1𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔) = (( 1𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔))
2120mpteq2dv 5155 . . . . 5 (((𝜑𝑥 = 𝑋) ∧ 𝑦𝐵𝑧𝐵) → (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)) = (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔)))
2221mpoeq3dva 7225 . . . 4 ((𝜑𝑥 = 𝑋) → (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔))) = (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔))))
2313, 22opeq12d 4805 . . 3 ((𝜑𝑥 = 𝑋) → ⟨(𝑦𝐵 ↦ (𝑥(1st𝐹)𝑦)), (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩ = ⟨(𝑦𝐵 ↦ (𝑋(1st𝐹)𝑦)), (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔)))⟩)
24 curf1.x . . 3 (𝜑𝑋𝐴)
25 opex 5349 . . . 4 ⟨(𝑦𝐵 ↦ (𝑋(1st𝐹)𝑦)), (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔)))⟩ ∈ V
2625a1i 11 . . 3 (𝜑 → ⟨(𝑦𝐵 ↦ (𝑋(1st𝐹)𝑦)), (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔)))⟩ ∈ V)
2710, 23, 24, 26fvmptd 6770 . 2 (𝜑 → ((1st𝐺)‘𝑋) = ⟨(𝑦𝐵 ↦ (𝑋(1st𝐹)𝑦)), (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔)))⟩)
281, 27syl5eq 2868 1 (𝜑𝐾 = ⟨(𝑦𝐵 ↦ (𝑋(1st𝐹)𝑦)), (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔)))⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1533  wcel 2110  Vcvv 3495  cop 4567  cmpt 5139  cfv 6350  (class class class)co 7150  cmpo 7152  1st c1st 7681  2nd c2nd 7682  Basecbs 16477  Hom chom 16570  Catccat 16929  Idccid 16930   Func cfunc 17118   ×c cxpc 17412   curryF ccurf 17454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4833  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-id 5455  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-ov 7153  df-oprab 7154  df-mpo 7155  df-1st 7683  df-2nd 7684  df-curf 17458
This theorem is referenced by:  curf11  17470  curf12  17471  curf1cl  17472  curf2ndf  17491
  Copyright terms: Public domain W3C validator