Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmliftlem9 Structured version   Visualization version   GIF version

Theorem cvmliftlem9 35265
Description: Lemma for cvmlift 35271. The 𝑄(𝑀) functions are defined on almost disjoint intervals, but they overlap at the edges. Here we show that at these points the 𝑄 functions agree on their common domain. (Contributed by Mario Carneiro, 14-Feb-2015.)
Hypotheses
Ref Expression
cvmliftlem.1 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
cvmliftlem.b 𝐵 = 𝐶
cvmliftlem.x 𝑋 = 𝐽
cvmliftlem.f (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
cvmliftlem.g (𝜑𝐺 ∈ (II Cn 𝐽))
cvmliftlem.p (𝜑𝑃𝐵)
cvmliftlem.e (𝜑 → (𝐹𝑃) = (𝐺‘0))
cvmliftlem.n (𝜑𝑁 ∈ ℕ)
cvmliftlem.t (𝜑𝑇:(1...𝑁)⟶ 𝑗𝐽 ({𝑗} × (𝑆𝑗)))
cvmliftlem.a (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇𝑘)))
cvmliftlem.l 𝐿 = (topGen‘ran (,))
cvmliftlem.q 𝑄 = seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧)))), (( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩}))
Assertion
Ref Expression
cvmliftlem9 ((𝜑𝑀 ∈ (1...𝑁)) → ((𝑄𝑀)‘((𝑀 − 1) / 𝑁)) = ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)))
Distinct variable groups:   𝑣,𝑏,𝑧,𝐵   𝑗,𝑏,𝑘,𝑚,𝑠,𝑢,𝑥,𝐹,𝑣,𝑧   𝑧,𝐿   𝑀,𝑏,𝑗,𝑘,𝑚,𝑠,𝑢,𝑣,𝑥,𝑧   𝑃,𝑏,𝑘,𝑚,𝑢,𝑣,𝑥,𝑧   𝐶,𝑏,𝑗,𝑘,𝑠,𝑢,𝑣,𝑧   𝜑,𝑗,𝑠,𝑥,𝑧   𝑁,𝑏,𝑘,𝑚,𝑢,𝑣,𝑥,𝑧   𝑆,𝑏,𝑗,𝑘,𝑠,𝑢,𝑣,𝑥,𝑧   𝑗,𝑋   𝐺,𝑏,𝑗,𝑘,𝑚,𝑠,𝑢,𝑣,𝑥,𝑧   𝑇,𝑏,𝑗,𝑘,𝑚,𝑠,𝑢,𝑣,𝑥,𝑧   𝐽,𝑏,𝑗,𝑘,𝑠,𝑢,𝑣,𝑥,𝑧   𝑄,𝑏,𝑘,𝑚,𝑢,𝑣,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑣,𝑢,𝑘,𝑚,𝑏)   𝐵(𝑥,𝑢,𝑗,𝑘,𝑚,𝑠)   𝐶(𝑥,𝑚)   𝑃(𝑗,𝑠)   𝑄(𝑗,𝑠)   𝑆(𝑚)   𝐽(𝑚)   𝐿(𝑥,𝑣,𝑢,𝑗,𝑘,𝑚,𝑠,𝑏)   𝑁(𝑗,𝑠)   𝑋(𝑥,𝑧,𝑣,𝑢,𝑘,𝑚,𝑠,𝑏)

Proof of Theorem cvmliftlem9
StepHypRef Expression
1 elfznn 13474 . . . 4 (𝑀 ∈ (1...𝑁) → 𝑀 ∈ ℕ)
2 cvmliftlem.1 . . . . 5 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
3 cvmliftlem.b . . . . 5 𝐵 = 𝐶
4 cvmliftlem.x . . . . 5 𝑋 = 𝐽
5 cvmliftlem.f . . . . 5 (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
6 cvmliftlem.g . . . . 5 (𝜑𝐺 ∈ (II Cn 𝐽))
7 cvmliftlem.p . . . . 5 (𝜑𝑃𝐵)
8 cvmliftlem.e . . . . 5 (𝜑 → (𝐹𝑃) = (𝐺‘0))
9 cvmliftlem.n . . . . 5 (𝜑𝑁 ∈ ℕ)
10 cvmliftlem.t . . . . 5 (𝜑𝑇:(1...𝑁)⟶ 𝑗𝐽 ({𝑗} × (𝑆𝑗)))
11 cvmliftlem.a . . . . 5 (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇𝑘)))
12 cvmliftlem.l . . . . 5 𝐿 = (topGen‘ran (,))
13 cvmliftlem.q . . . . 5 𝑄 = seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧)))), (( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩}))
14 eqid 2729 . . . . 5 (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁)) = (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁))
152, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14cvmliftlem5 35261 . . . 4 ((𝜑𝑀 ∈ ℕ) → (𝑄𝑀) = (𝑧 ∈ (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧))))
161, 15sylan2 593 . . 3 ((𝜑𝑀 ∈ (1...𝑁)) → (𝑄𝑀) = (𝑧 ∈ (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧))))
17 simpr 484 . . . . 5 (((𝜑𝑀 ∈ (1...𝑁)) ∧ 𝑧 = ((𝑀 − 1) / 𝑁)) → 𝑧 = ((𝑀 − 1) / 𝑁))
1817fveq2d 6830 . . . 4 (((𝜑𝑀 ∈ (1...𝑁)) ∧ 𝑧 = ((𝑀 − 1) / 𝑁)) → (𝐺𝑧) = (𝐺‘((𝑀 − 1) / 𝑁)))
1918fveq2d 6830 . . 3 (((𝜑𝑀 ∈ (1...𝑁)) ∧ 𝑧 = ((𝑀 − 1) / 𝑁)) → ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧)) = ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘((𝑀 − 1) / 𝑁))))
201adantl 481 . . . . . . . 8 ((𝜑𝑀 ∈ (1...𝑁)) → 𝑀 ∈ ℕ)
2120nnred 12161 . . . . . . 7 ((𝜑𝑀 ∈ (1...𝑁)) → 𝑀 ∈ ℝ)
22 peano2rem 11449 . . . . . . 7 (𝑀 ∈ ℝ → (𝑀 − 1) ∈ ℝ)
2321, 22syl 17 . . . . . 6 ((𝜑𝑀 ∈ (1...𝑁)) → (𝑀 − 1) ∈ ℝ)
249adantr 480 . . . . . 6 ((𝜑𝑀 ∈ (1...𝑁)) → 𝑁 ∈ ℕ)
2523, 24nndivred 12200 . . . . 5 ((𝜑𝑀 ∈ (1...𝑁)) → ((𝑀 − 1) / 𝑁) ∈ ℝ)
2625rexrd 11184 . . . 4 ((𝜑𝑀 ∈ (1...𝑁)) → ((𝑀 − 1) / 𝑁) ∈ ℝ*)
2721, 24nndivred 12200 . . . . 5 ((𝜑𝑀 ∈ (1...𝑁)) → (𝑀 / 𝑁) ∈ ℝ)
2827rexrd 11184 . . . 4 ((𝜑𝑀 ∈ (1...𝑁)) → (𝑀 / 𝑁) ∈ ℝ*)
2921ltm1d 12075 . . . . . 6 ((𝜑𝑀 ∈ (1...𝑁)) → (𝑀 − 1) < 𝑀)
3024nnred 12161 . . . . . . 7 ((𝜑𝑀 ∈ (1...𝑁)) → 𝑁 ∈ ℝ)
3124nngt0d 12195 . . . . . . 7 ((𝜑𝑀 ∈ (1...𝑁)) → 0 < 𝑁)
32 ltdiv1 12007 . . . . . . 7 (((𝑀 − 1) ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → ((𝑀 − 1) < 𝑀 ↔ ((𝑀 − 1) / 𝑁) < (𝑀 / 𝑁)))
3323, 21, 30, 31, 32syl112anc 1376 . . . . . 6 ((𝜑𝑀 ∈ (1...𝑁)) → ((𝑀 − 1) < 𝑀 ↔ ((𝑀 − 1) / 𝑁) < (𝑀 / 𝑁)))
3429, 33mpbid 232 . . . . 5 ((𝜑𝑀 ∈ (1...𝑁)) → ((𝑀 − 1) / 𝑁) < (𝑀 / 𝑁))
3525, 27, 34ltled 11282 . . . 4 ((𝜑𝑀 ∈ (1...𝑁)) → ((𝑀 − 1) / 𝑁) ≤ (𝑀 / 𝑁))
36 lbicc2 13385 . . . 4 ((((𝑀 − 1) / 𝑁) ∈ ℝ* ∧ (𝑀 / 𝑁) ∈ ℝ* ∧ ((𝑀 − 1) / 𝑁) ≤ (𝑀 / 𝑁)) → ((𝑀 − 1) / 𝑁) ∈ (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁)))
3726, 28, 35, 36syl3anc 1373 . . 3 ((𝜑𝑀 ∈ (1...𝑁)) → ((𝑀 − 1) / 𝑁) ∈ (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁)))
38 fvexd 6841 . . 3 ((𝜑𝑀 ∈ (1...𝑁)) → ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘((𝑀 − 1) / 𝑁))) ∈ V)
3916, 19, 37, 38fvmptd 6941 . 2 ((𝜑𝑀 ∈ (1...𝑁)) → ((𝑄𝑀)‘((𝑀 − 1) / 𝑁)) = ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘((𝑀 − 1) / 𝑁))))
405adantr 480 . . . . . . 7 ((𝜑𝑀 ∈ (1...𝑁)) → 𝐹 ∈ (𝐶 CovMap 𝐽))
41 simpr 484 . . . . . . . 8 ((𝜑𝑀 ∈ (1...𝑁)) → 𝑀 ∈ (1...𝑁))
422, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 41cvmliftlem1 35257 . . . . . . 7 ((𝜑𝑀 ∈ (1...𝑁)) → (2nd ‘(𝑇𝑀)) ∈ (𝑆‘(1st ‘(𝑇𝑀))))
432, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14cvmliftlem7 35263 . . . . . . . . 9 ((𝜑𝑀 ∈ (1...𝑁)) → ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ (𝐹 “ {(𝐺‘((𝑀 − 1) / 𝑁))}))
44 cvmcn 35234 . . . . . . . . . . 11 (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐹 ∈ (𝐶 Cn 𝐽))
453, 4cnf 23149 . . . . . . . . . . 11 (𝐹 ∈ (𝐶 Cn 𝐽) → 𝐹:𝐵𝑋)
4640, 44, 453syl 18 . . . . . . . . . 10 ((𝜑𝑀 ∈ (1...𝑁)) → 𝐹:𝐵𝑋)
47 ffn 6656 . . . . . . . . . 10 (𝐹:𝐵𝑋𝐹 Fn 𝐵)
48 fniniseg 6998 . . . . . . . . . 10 (𝐹 Fn 𝐵 → (((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ (𝐹 “ {(𝐺‘((𝑀 − 1) / 𝑁))}) ↔ (((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝐵 ∧ (𝐹‘((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁))) = (𝐺‘((𝑀 − 1) / 𝑁)))))
4946, 47, 483syl 18 . . . . . . . . 9 ((𝜑𝑀 ∈ (1...𝑁)) → (((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ (𝐹 “ {(𝐺‘((𝑀 − 1) / 𝑁))}) ↔ (((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝐵 ∧ (𝐹‘((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁))) = (𝐺‘((𝑀 − 1) / 𝑁)))))
5043, 49mpbid 232 . . . . . . . 8 ((𝜑𝑀 ∈ (1...𝑁)) → (((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝐵 ∧ (𝐹‘((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁))) = (𝐺‘((𝑀 − 1) / 𝑁))))
5150simpld 494 . . . . . . 7 ((𝜑𝑀 ∈ (1...𝑁)) → ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝐵)
5250simprd 495 . . . . . . . 8 ((𝜑𝑀 ∈ (1...𝑁)) → (𝐹‘((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁))) = (𝐺‘((𝑀 − 1) / 𝑁)))
532, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 41, 14, 37cvmliftlem3 35259 . . . . . . . 8 ((𝜑𝑀 ∈ (1...𝑁)) → (𝐺‘((𝑀 − 1) / 𝑁)) ∈ (1st ‘(𝑇𝑀)))
5452, 53eqeltrd 2828 . . . . . . 7 ((𝜑𝑀 ∈ (1...𝑁)) → (𝐹‘((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁))) ∈ (1st ‘(𝑇𝑀)))
55 eqid 2729 . . . . . . . 8 (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏) = (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)
562, 3, 55cvmsiota 35249 . . . . . . 7 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ ((2nd ‘(𝑇𝑀)) ∈ (𝑆‘(1st ‘(𝑇𝑀))) ∧ ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝐵 ∧ (𝐹‘((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁))) ∈ (1st ‘(𝑇𝑀)))) → ((𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏) ∈ (2nd ‘(𝑇𝑀)) ∧ ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)))
5740, 42, 51, 54, 56syl13anc 1374 . . . . . 6 ((𝜑𝑀 ∈ (1...𝑁)) → ((𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏) ∈ (2nd ‘(𝑇𝑀)) ∧ ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)))
5857simprd 495 . . . . 5 ((𝜑𝑀 ∈ (1...𝑁)) → ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))
59 fvres 6845 . . . . 5 (((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏) → ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁))) = (𝐹‘((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁))))
6058, 59syl 17 . . . 4 ((𝜑𝑀 ∈ (1...𝑁)) → ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁))) = (𝐹‘((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁))))
6160, 52eqtrd 2764 . . 3 ((𝜑𝑀 ∈ (1...𝑁)) → ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁))) = (𝐺‘((𝑀 − 1) / 𝑁)))
6257simpld 494 . . . . 5 ((𝜑𝑀 ∈ (1...𝑁)) → (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏) ∈ (2nd ‘(𝑇𝑀)))
632cvmsf1o 35244 . . . . 5 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (2nd ‘(𝑇𝑀)) ∈ (𝑆‘(1st ‘(𝑇𝑀))) ∧ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏) ∈ (2nd ‘(𝑇𝑀))) → (𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)):(𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)–1-1-onto→(1st ‘(𝑇𝑀)))
6440, 42, 62, 63syl3anc 1373 . . . 4 ((𝜑𝑀 ∈ (1...𝑁)) → (𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)):(𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)–1-1-onto→(1st ‘(𝑇𝑀)))
65 f1ocnvfv 7219 . . . 4 (((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)):(𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)–1-1-onto→(1st ‘(𝑇𝑀)) ∧ ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)) → (((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁))) = (𝐺‘((𝑀 − 1) / 𝑁)) → ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘((𝑀 − 1) / 𝑁))) = ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁))))
6664, 58, 65syl2anc 584 . . 3 ((𝜑𝑀 ∈ (1...𝑁)) → (((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁))) = (𝐺‘((𝑀 − 1) / 𝑁)) → ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘((𝑀 − 1) / 𝑁))) = ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁))))
6761, 66mpd 15 . 2 ((𝜑𝑀 ∈ (1...𝑁)) → ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘((𝑀 − 1) / 𝑁))) = ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)))
6839, 67eqtrd 2764 1 ((𝜑𝑀 ∈ (1...𝑁)) → ((𝑄𝑀)‘((𝑀 − 1) / 𝑁)) = ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  {crab 3396  Vcvv 3438  cdif 3902  cun 3903  cin 3904  wss 3905  c0 4286  𝒫 cpw 4553  {csn 4579  cop 4585   cuni 4861   ciun 4944   class class class wbr 5095  cmpt 5176   I cid 5517   × cxp 5621  ccnv 5622  ran crn 5624  cres 5625  cima 5626   Fn wfn 6481  wf 6482  1-1-ontowf1o 6485  cfv 6486  crio 7309  (class class class)co 7353  cmpo 7355  1st c1st 7929  2nd c2nd 7930  cr 11027  0cc0 11028  1c1 11029  *cxr 11167   < clt 11168  cle 11169  cmin 11365   / cdiv 11795  cn 12146  (,)cioo 13266  [,]cicc 13269  ...cfz 13428  seqcseq 13926  t crest 17342  topGenctg 17359   Cn ccn 23127  Homeochmeo 23656  IIcii 24784   CovMap ccvm 35227
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fi 9320  df-sup 9351  df-inf 9352  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-n0 12403  df-z 12490  df-uz 12754  df-q 12868  df-rp 12912  df-xneg 13032  df-xadd 13033  df-xmul 13034  df-icc 13273  df-fz 13429  df-seq 13927  df-exp 13987  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-rest 17344  df-topgen 17365  df-psmet 21271  df-xmet 21272  df-met 21273  df-bl 21274  df-mopn 21275  df-top 22797  df-topon 22814  df-bases 22849  df-cn 23130  df-hmeo 23658  df-ii 24786  df-cvm 35228
This theorem is referenced by:  cvmliftlem10  35266  cvmliftlem13  35268
  Copyright terms: Public domain W3C validator