Proof of Theorem cvmliftlem9
Step | Hyp | Ref
| Expression |
1 | | elfznn 13214 |
. . . 4
⊢ (𝑀 ∈ (1...𝑁) → 𝑀 ∈ ℕ) |
2 | | cvmliftlem.1 |
. . . . 5
⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 =
(◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) |
3 | | cvmliftlem.b |
. . . . 5
⊢ 𝐵 = ∪
𝐶 |
4 | | cvmliftlem.x |
. . . . 5
⊢ 𝑋 = ∪
𝐽 |
5 | | cvmliftlem.f |
. . . . 5
⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) |
6 | | cvmliftlem.g |
. . . . 5
⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) |
7 | | cvmliftlem.p |
. . . . 5
⊢ (𝜑 → 𝑃 ∈ 𝐵) |
8 | | cvmliftlem.e |
. . . . 5
⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘0)) |
9 | | cvmliftlem.n |
. . . . 5
⊢ (𝜑 → 𝑁 ∈ ℕ) |
10 | | cvmliftlem.t |
. . . . 5
⊢ (𝜑 → 𝑇:(1...𝑁)⟶∪
𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗))) |
11 | | cvmliftlem.a |
. . . . 5
⊢ (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇‘𝑘))) |
12 | | cvmliftlem.l |
. . . . 5
⊢ 𝐿 = (topGen‘ran
(,)) |
13 | | cvmliftlem.q |
. . . . 5
⊢ 𝑄 = seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ (◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘𝑧)))), (( I ↾ ℕ) ∪ {〈0,
{〈0, 𝑃〉}〉})) |
14 | | eqid 2738 |
. . . . 5
⊢ (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁)) = (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁)) |
15 | 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 | cvmliftlem5 33151 |
. . . 4
⊢ ((𝜑 ∧ 𝑀 ∈ ℕ) → (𝑄‘𝑀) = (𝑧 ∈ (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁)) ↦ (◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘𝑧)))) |
16 | 1, 15 | sylan2 592 |
. . 3
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → (𝑄‘𝑀) = (𝑧 ∈ (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁)) ↦ (◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘𝑧)))) |
17 | | simpr 484 |
. . . . 5
⊢ (((𝜑 ∧ 𝑀 ∈ (1...𝑁)) ∧ 𝑧 = ((𝑀 − 1) / 𝑁)) → 𝑧 = ((𝑀 − 1) / 𝑁)) |
18 | 17 | fveq2d 6760 |
. . . 4
⊢ (((𝜑 ∧ 𝑀 ∈ (1...𝑁)) ∧ 𝑧 = ((𝑀 − 1) / 𝑁)) → (𝐺‘𝑧) = (𝐺‘((𝑀 − 1) / 𝑁))) |
19 | 18 | fveq2d 6760 |
. . 3
⊢ (((𝜑 ∧ 𝑀 ∈ (1...𝑁)) ∧ 𝑧 = ((𝑀 − 1) / 𝑁)) → (◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘𝑧)) = (◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘((𝑀 − 1) / 𝑁)))) |
20 | 1 | adantl 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → 𝑀 ∈ ℕ) |
21 | 20 | nnred 11918 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → 𝑀 ∈ ℝ) |
22 | | peano2rem 11218 |
. . . . . . 7
⊢ (𝑀 ∈ ℝ → (𝑀 − 1) ∈
ℝ) |
23 | 21, 22 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → (𝑀 − 1) ∈ ℝ) |
24 | 9 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → 𝑁 ∈ ℕ) |
25 | 23, 24 | nndivred 11957 |
. . . . 5
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → ((𝑀 − 1) / 𝑁) ∈ ℝ) |
26 | 25 | rexrd 10956 |
. . . 4
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → ((𝑀 − 1) / 𝑁) ∈
ℝ*) |
27 | 21, 24 | nndivred 11957 |
. . . . 5
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → (𝑀 / 𝑁) ∈ ℝ) |
28 | 27 | rexrd 10956 |
. . . 4
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → (𝑀 / 𝑁) ∈
ℝ*) |
29 | 21 | ltm1d 11837 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → (𝑀 − 1) < 𝑀) |
30 | 24 | nnred 11918 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → 𝑁 ∈ ℝ) |
31 | 24 | nngt0d 11952 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → 0 < 𝑁) |
32 | | ltdiv1 11769 |
. . . . . . 7
⊢ (((𝑀 − 1) ∈ ℝ ∧
𝑀 ∈ ℝ ∧
(𝑁 ∈ ℝ ∧ 0
< 𝑁)) → ((𝑀 − 1) < 𝑀 ↔ ((𝑀 − 1) / 𝑁) < (𝑀 / 𝑁))) |
33 | 23, 21, 30, 31, 32 | syl112anc 1372 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → ((𝑀 − 1) < 𝑀 ↔ ((𝑀 − 1) / 𝑁) < (𝑀 / 𝑁))) |
34 | 29, 33 | mpbid 231 |
. . . . 5
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → ((𝑀 − 1) / 𝑁) < (𝑀 / 𝑁)) |
35 | 25, 27, 34 | ltled 11053 |
. . . 4
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → ((𝑀 − 1) / 𝑁) ≤ (𝑀 / 𝑁)) |
36 | | lbicc2 13125 |
. . . 4
⊢ ((((𝑀 − 1) / 𝑁) ∈ ℝ* ∧ (𝑀 / 𝑁) ∈ ℝ* ∧ ((𝑀 − 1) / 𝑁) ≤ (𝑀 / 𝑁)) → ((𝑀 − 1) / 𝑁) ∈ (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁))) |
37 | 26, 28, 35, 36 | syl3anc 1369 |
. . 3
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → ((𝑀 − 1) / 𝑁) ∈ (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁))) |
38 | | fvexd 6771 |
. . 3
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → (◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘((𝑀 − 1) / 𝑁))) ∈ V) |
39 | 16, 19, 37, 38 | fvmptd 6864 |
. 2
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → ((𝑄‘𝑀)‘((𝑀 − 1) / 𝑁)) = (◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘((𝑀 − 1) / 𝑁)))) |
40 | 5 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → 𝐹 ∈ (𝐶 CovMap 𝐽)) |
41 | | simpr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → 𝑀 ∈ (1...𝑁)) |
42 | 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 41 | cvmliftlem1 33147 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → (2nd ‘(𝑇‘𝑀)) ∈ (𝑆‘(1st ‘(𝑇‘𝑀)))) |
43 | 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 | cvmliftlem7 33153 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ (◡𝐹 “ {(𝐺‘((𝑀 − 1) / 𝑁))})) |
44 | | cvmcn 33124 |
. . . . . . . . . . 11
⊢ (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐹 ∈ (𝐶 Cn 𝐽)) |
45 | 3, 4 | cnf 22305 |
. . . . . . . . . . 11
⊢ (𝐹 ∈ (𝐶 Cn 𝐽) → 𝐹:𝐵⟶𝑋) |
46 | 40, 44, 45 | 3syl 18 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → 𝐹:𝐵⟶𝑋) |
47 | | ffn 6584 |
. . . . . . . . . 10
⊢ (𝐹:𝐵⟶𝑋 → 𝐹 Fn 𝐵) |
48 | | fniniseg 6919 |
. . . . . . . . . 10
⊢ (𝐹 Fn 𝐵 → (((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ (◡𝐹 “ {(𝐺‘((𝑀 − 1) / 𝑁))}) ↔ (((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝐵 ∧ (𝐹‘((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁))) = (𝐺‘((𝑀 − 1) / 𝑁))))) |
49 | 46, 47, 48 | 3syl 18 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → (((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ (◡𝐹 “ {(𝐺‘((𝑀 − 1) / 𝑁))}) ↔ (((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝐵 ∧ (𝐹‘((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁))) = (𝐺‘((𝑀 − 1) / 𝑁))))) |
50 | 43, 49 | mpbid 231 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → (((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝐵 ∧ (𝐹‘((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁))) = (𝐺‘((𝑀 − 1) / 𝑁)))) |
51 | 50 | simpld 494 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝐵) |
52 | 50 | simprd 495 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → (𝐹‘((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁))) = (𝐺‘((𝑀 − 1) / 𝑁))) |
53 | 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 41, 14, 37 | cvmliftlem3 33149 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → (𝐺‘((𝑀 − 1) / 𝑁)) ∈ (1st ‘(𝑇‘𝑀))) |
54 | 52, 53 | eqeltrd 2839 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → (𝐹‘((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁))) ∈ (1st ‘(𝑇‘𝑀))) |
55 | | eqid 2738 |
. . . . . . . 8
⊢
(℩𝑏
∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏) = (℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏) |
56 | 2, 3, 55 | cvmsiota 33139 |
. . . . . . 7
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ ((2nd ‘(𝑇‘𝑀)) ∈ (𝑆‘(1st ‘(𝑇‘𝑀))) ∧ ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝐵 ∧ (𝐹‘((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁))) ∈ (1st ‘(𝑇‘𝑀)))) → ((℩𝑏 ∈ (2nd
‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏) ∈ (2nd ‘(𝑇‘𝑀)) ∧ ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))) |
57 | 40, 42, 51, 54, 56 | syl13anc 1370 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → ((℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏) ∈ (2nd ‘(𝑇‘𝑀)) ∧ ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))) |
58 | 57 | simprd 495 |
. . . . 5
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)) |
59 | | fvres 6775 |
. . . . 5
⊢ (((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏) → ((𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁))) = (𝐹‘((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)))) |
60 | 58, 59 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → ((𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁))) = (𝐹‘((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)))) |
61 | 60, 52 | eqtrd 2778 |
. . 3
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → ((𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁))) = (𝐺‘((𝑀 − 1) / 𝑁))) |
62 | 57 | simpld 494 |
. . . . 5
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → (℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏) ∈ (2nd ‘(𝑇‘𝑀))) |
63 | 2 | cvmsf1o 33134 |
. . . . 5
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (2nd ‘(𝑇‘𝑀)) ∈ (𝑆‘(1st ‘(𝑇‘𝑀))) ∧ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏) ∈ (2nd ‘(𝑇‘𝑀))) → (𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)):(℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)–1-1-onto→(1st ‘(𝑇‘𝑀))) |
64 | 40, 42, 62, 63 | syl3anc 1369 |
. . . 4
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → (𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)):(℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)–1-1-onto→(1st ‘(𝑇‘𝑀))) |
65 | | f1ocnvfv 7131 |
. . . 4
⊢ (((𝐹 ↾ (℩𝑏 ∈ (2nd
‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)):(℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)–1-1-onto→(1st ‘(𝑇‘𝑀)) ∧ ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)) → (((𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁))) = (𝐺‘((𝑀 − 1) / 𝑁)) → (◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘((𝑀 − 1) / 𝑁))) = ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)))) |
66 | 64, 58, 65 | syl2anc 583 |
. . 3
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → (((𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁))) = (𝐺‘((𝑀 − 1) / 𝑁)) → (◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘((𝑀 − 1) / 𝑁))) = ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)))) |
67 | 61, 66 | mpd 15 |
. 2
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → (◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘((𝑀 − 1) / 𝑁))) = ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁))) |
68 | 39, 67 | eqtrd 2778 |
1
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → ((𝑄‘𝑀)‘((𝑀 − 1) / 𝑁)) = ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁))) |