Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmliftlem2 Structured version   Visualization version   GIF version

Theorem cvmliftlem2 35280
Description: Lemma for cvmlift 35293. 𝑊 = [(𝑘 − 1) / 𝑁, 𝑘 / 𝑁] is a subset of [0, 1] for each 𝑀 ∈ (1...𝑁). (Contributed by Mario Carneiro, 16-Feb-2015.)
Hypotheses
Ref Expression
cvmliftlem.1 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
cvmliftlem.b 𝐵 = 𝐶
cvmliftlem.x 𝑋 = 𝐽
cvmliftlem.f (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
cvmliftlem.g (𝜑𝐺 ∈ (II Cn 𝐽))
cvmliftlem.p (𝜑𝑃𝐵)
cvmliftlem.e (𝜑 → (𝐹𝑃) = (𝐺‘0))
cvmliftlem.n (𝜑𝑁 ∈ ℕ)
cvmliftlem.t (𝜑𝑇:(1...𝑁)⟶ 𝑗𝐽 ({𝑗} × (𝑆𝑗)))
cvmliftlem.a (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇𝑘)))
cvmliftlem.l 𝐿 = (topGen‘ran (,))
cvmliftlem1.m ((𝜑𝜓) → 𝑀 ∈ (1...𝑁))
cvmliftlem3.3 𝑊 = (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁))
Assertion
Ref Expression
cvmliftlem2 ((𝜑𝜓) → 𝑊 ⊆ (0[,]1))
Distinct variable groups:   𝑣,𝐵   𝑗,𝑘,𝑠,𝑢,𝑣,𝐹   𝑗,𝑀,𝑘,𝑠,𝑢,𝑣   𝑃,𝑘,𝑢,𝑣   𝐶,𝑗,𝑘,𝑠,𝑢,𝑣   𝜑,𝑗,𝑠   𝑘,𝑁,𝑢,𝑣   𝑆,𝑗,𝑘,𝑠,𝑢,𝑣   𝑗,𝑋   𝑗,𝐺,𝑘,𝑠,𝑢,𝑣   𝑇,𝑗,𝑘,𝑠,𝑢,𝑣   𝑗,𝐽,𝑘,𝑠,𝑢,𝑣   𝑘,𝑊
Allowed substitution hints:   𝜑(𝑣,𝑢,𝑘)   𝜓(𝑣,𝑢,𝑗,𝑘,𝑠)   𝐵(𝑢,𝑗,𝑘,𝑠)   𝑃(𝑗,𝑠)   𝐿(𝑣,𝑢,𝑗,𝑘,𝑠)   𝑁(𝑗,𝑠)   𝑊(𝑣,𝑢,𝑗,𝑠)   𝑋(𝑣,𝑢,𝑘,𝑠)

Proof of Theorem cvmliftlem2
StepHypRef Expression
1 cvmliftlem3.3 . 2 𝑊 = (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁))
2 0red 11184 . . 3 ((𝜑𝜓) → 0 ∈ ℝ)
3 1red 11182 . . 3 ((𝜑𝜓) → 1 ∈ ℝ)
4 cvmliftlem1.m . . . . . . 7 ((𝜑𝜓) → 𝑀 ∈ (1...𝑁))
5 elfznn 13521 . . . . . . 7 (𝑀 ∈ (1...𝑁) → 𝑀 ∈ ℕ)
64, 5syl 17 . . . . . 6 ((𝜑𝜓) → 𝑀 ∈ ℕ)
76nnred 12208 . . . . 5 ((𝜑𝜓) → 𝑀 ∈ ℝ)
8 peano2rem 11496 . . . . 5 (𝑀 ∈ ℝ → (𝑀 − 1) ∈ ℝ)
97, 8syl 17 . . . 4 ((𝜑𝜓) → (𝑀 − 1) ∈ ℝ)
10 nnm1nn0 12490 . . . . . 6 (𝑀 ∈ ℕ → (𝑀 − 1) ∈ ℕ0)
116, 10syl 17 . . . . 5 ((𝜑𝜓) → (𝑀 − 1) ∈ ℕ0)
1211nn0ge0d 12513 . . . 4 ((𝜑𝜓) → 0 ≤ (𝑀 − 1))
13 cvmliftlem.n . . . . . 6 (𝜑𝑁 ∈ ℕ)
1413adantr 480 . . . . 5 ((𝜑𝜓) → 𝑁 ∈ ℕ)
1514nnred 12208 . . . 4 ((𝜑𝜓) → 𝑁 ∈ ℝ)
1614nngt0d 12242 . . . 4 ((𝜑𝜓) → 0 < 𝑁)
17 divge0 12059 . . . 4 ((((𝑀 − 1) ∈ ℝ ∧ 0 ≤ (𝑀 − 1)) ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → 0 ≤ ((𝑀 − 1) / 𝑁))
189, 12, 15, 16, 17syl22anc 838 . . 3 ((𝜑𝜓) → 0 ≤ ((𝑀 − 1) / 𝑁))
19 elfzle2 13496 . . . . . 6 (𝑀 ∈ (1...𝑁) → 𝑀𝑁)
204, 19syl 17 . . . . 5 ((𝜑𝜓) → 𝑀𝑁)
2114nncnd 12209 . . . . . 6 ((𝜑𝜓) → 𝑁 ∈ ℂ)
2221mulridd 11198 . . . . 5 ((𝜑𝜓) → (𝑁 · 1) = 𝑁)
2320, 22breqtrrd 5138 . . . 4 ((𝜑𝜓) → 𝑀 ≤ (𝑁 · 1))
24 ledivmul 12066 . . . . 5 ((𝑀 ∈ ℝ ∧ 1 ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → ((𝑀 / 𝑁) ≤ 1 ↔ 𝑀 ≤ (𝑁 · 1)))
257, 3, 15, 16, 24syl112anc 1376 . . . 4 ((𝜑𝜓) → ((𝑀 / 𝑁) ≤ 1 ↔ 𝑀 ≤ (𝑁 · 1)))
2623, 25mpbird 257 . . 3 ((𝜑𝜓) → (𝑀 / 𝑁) ≤ 1)
27 iccss 13382 . . 3 (((0 ∈ ℝ ∧ 1 ∈ ℝ) ∧ (0 ≤ ((𝑀 − 1) / 𝑁) ∧ (𝑀 / 𝑁) ≤ 1)) → (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁)) ⊆ (0[,]1))
282, 3, 18, 26, 27syl22anc 838 . 2 ((𝜑𝜓) → (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁)) ⊆ (0[,]1))
291, 28eqsstrid 3988 1 ((𝜑𝜓) → 𝑊 ⊆ (0[,]1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3045  {crab 3408  cdif 3914  cin 3916  wss 3917  c0 4299  𝒫 cpw 4566  {csn 4592   cuni 4874   ciun 4958   class class class wbr 5110  cmpt 5191   × cxp 5639  ccnv 5640  ran crn 5642  cres 5643  cima 5644  wf 6510  cfv 6514  (class class class)co 7390  1st c1st 7969  cr 11074  0cc0 11075  1c1 11076   · cmul 11080   < clt 11215  cle 11216  cmin 11412   / cdiv 11842  cn 12193  0cn0 12449  (,)cioo 13313  [,]cicc 13316  ...cfz 13475  t crest 17390  topGenctg 17407   Cn ccn 23118  Homeochmeo 23647  IIcii 24775   CovMap ccvm 35249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-n0 12450  df-z 12537  df-uz 12801  df-icc 13320  df-fz 13476
This theorem is referenced by:  cvmliftlem3  35281  cvmliftlem6  35284  cvmliftlem8  35286
  Copyright terms: Public domain W3C validator