Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmliftlem2 Structured version   Visualization version   GIF version

Theorem cvmliftlem2 32961
Description: Lemma for cvmlift 32974. 𝑊 = [(𝑘 − 1) / 𝑁, 𝑘 / 𝑁] is a subset of [0, 1] for each 𝑀 ∈ (1...𝑁). (Contributed by Mario Carneiro, 16-Feb-2015.)
Hypotheses
Ref Expression
cvmliftlem.1 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
cvmliftlem.b 𝐵 = 𝐶
cvmliftlem.x 𝑋 = 𝐽
cvmliftlem.f (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
cvmliftlem.g (𝜑𝐺 ∈ (II Cn 𝐽))
cvmliftlem.p (𝜑𝑃𝐵)
cvmliftlem.e (𝜑 → (𝐹𝑃) = (𝐺‘0))
cvmliftlem.n (𝜑𝑁 ∈ ℕ)
cvmliftlem.t (𝜑𝑇:(1...𝑁)⟶ 𝑗𝐽 ({𝑗} × (𝑆𝑗)))
cvmliftlem.a (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇𝑘)))
cvmliftlem.l 𝐿 = (topGen‘ran (,))
cvmliftlem1.m ((𝜑𝜓) → 𝑀 ∈ (1...𝑁))
cvmliftlem3.3 𝑊 = (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁))
Assertion
Ref Expression
cvmliftlem2 ((𝜑𝜓) → 𝑊 ⊆ (0[,]1))
Distinct variable groups:   𝑣,𝐵   𝑗,𝑘,𝑠,𝑢,𝑣,𝐹   𝑗,𝑀,𝑘,𝑠,𝑢,𝑣   𝑃,𝑘,𝑢,𝑣   𝐶,𝑗,𝑘,𝑠,𝑢,𝑣   𝜑,𝑗,𝑠   𝑘,𝑁,𝑢,𝑣   𝑆,𝑗,𝑘,𝑠,𝑢,𝑣   𝑗,𝑋   𝑗,𝐺,𝑘,𝑠,𝑢,𝑣   𝑇,𝑗,𝑘,𝑠,𝑢,𝑣   𝑗,𝐽,𝑘,𝑠,𝑢,𝑣   𝑘,𝑊
Allowed substitution hints:   𝜑(𝑣,𝑢,𝑘)   𝜓(𝑣,𝑢,𝑗,𝑘,𝑠)   𝐵(𝑢,𝑗,𝑘,𝑠)   𝑃(𝑗,𝑠)   𝐿(𝑣,𝑢,𝑗,𝑘,𝑠)   𝑁(𝑗,𝑠)   𝑊(𝑣,𝑢,𝑗,𝑠)   𝑋(𝑣,𝑢,𝑘,𝑠)

Proof of Theorem cvmliftlem2
StepHypRef Expression
1 cvmliftlem3.3 . 2 𝑊 = (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁))
2 0red 10836 . . 3 ((𝜑𝜓) → 0 ∈ ℝ)
3 1red 10834 . . 3 ((𝜑𝜓) → 1 ∈ ℝ)
4 cvmliftlem1.m . . . . . . 7 ((𝜑𝜓) → 𝑀 ∈ (1...𝑁))
5 elfznn 13141 . . . . . . 7 (𝑀 ∈ (1...𝑁) → 𝑀 ∈ ℕ)
64, 5syl 17 . . . . . 6 ((𝜑𝜓) → 𝑀 ∈ ℕ)
76nnred 11845 . . . . 5 ((𝜑𝜓) → 𝑀 ∈ ℝ)
8 peano2rem 11145 . . . . 5 (𝑀 ∈ ℝ → (𝑀 − 1) ∈ ℝ)
97, 8syl 17 . . . 4 ((𝜑𝜓) → (𝑀 − 1) ∈ ℝ)
10 nnm1nn0 12131 . . . . . 6 (𝑀 ∈ ℕ → (𝑀 − 1) ∈ ℕ0)
116, 10syl 17 . . . . 5 ((𝜑𝜓) → (𝑀 − 1) ∈ ℕ0)
1211nn0ge0d 12153 . . . 4 ((𝜑𝜓) → 0 ≤ (𝑀 − 1))
13 cvmliftlem.n . . . . . 6 (𝜑𝑁 ∈ ℕ)
1413adantr 484 . . . . 5 ((𝜑𝜓) → 𝑁 ∈ ℕ)
1514nnred 11845 . . . 4 ((𝜑𝜓) → 𝑁 ∈ ℝ)
1614nngt0d 11879 . . . 4 ((𝜑𝜓) → 0 < 𝑁)
17 divge0 11701 . . . 4 ((((𝑀 − 1) ∈ ℝ ∧ 0 ≤ (𝑀 − 1)) ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → 0 ≤ ((𝑀 − 1) / 𝑁))
189, 12, 15, 16, 17syl22anc 839 . . 3 ((𝜑𝜓) → 0 ≤ ((𝑀 − 1) / 𝑁))
19 elfzle2 13116 . . . . . 6 (𝑀 ∈ (1...𝑁) → 𝑀𝑁)
204, 19syl 17 . . . . 5 ((𝜑𝜓) → 𝑀𝑁)
2114nncnd 11846 . . . . . 6 ((𝜑𝜓) → 𝑁 ∈ ℂ)
2221mulid1d 10850 . . . . 5 ((𝜑𝜓) → (𝑁 · 1) = 𝑁)
2320, 22breqtrrd 5081 . . . 4 ((𝜑𝜓) → 𝑀 ≤ (𝑁 · 1))
24 ledivmul 11708 . . . . 5 ((𝑀 ∈ ℝ ∧ 1 ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → ((𝑀 / 𝑁) ≤ 1 ↔ 𝑀 ≤ (𝑁 · 1)))
257, 3, 15, 16, 24syl112anc 1376 . . . 4 ((𝜑𝜓) → ((𝑀 / 𝑁) ≤ 1 ↔ 𝑀 ≤ (𝑁 · 1)))
2623, 25mpbird 260 . . 3 ((𝜑𝜓) → (𝑀 / 𝑁) ≤ 1)
27 iccss 13003 . . 3 (((0 ∈ ℝ ∧ 1 ∈ ℝ) ∧ (0 ≤ ((𝑀 − 1) / 𝑁) ∧ (𝑀 / 𝑁) ≤ 1)) → (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁)) ⊆ (0[,]1))
282, 3, 18, 26, 27syl22anc 839 . 2 ((𝜑𝜓) → (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁)) ⊆ (0[,]1))
291, 28eqsstrid 3949 1 ((𝜑𝜓) → 𝑊 ⊆ (0[,]1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wcel 2110  wral 3061  {crab 3065  cdif 3863  cin 3865  wss 3866  c0 4237  𝒫 cpw 4513  {csn 4541   cuni 4819   ciun 4904   class class class wbr 5053  cmpt 5135   × cxp 5549  ccnv 5550  ran crn 5552  cres 5553  cima 5554  wf 6376  cfv 6380  (class class class)co 7213  1st c1st 7759  cr 10728  0cc0 10729  1c1 10730   · cmul 10734   < clt 10867  cle 10868  cmin 11062   / cdiv 11489  cn 11830  0cn0 12090  (,)cioo 12935  [,]cicc 12938  ...cfz 13095  t crest 16925  topGenctg 16942   Cn ccn 22121  Homeochmeo 22650  IIcii 23772   CovMap ccvm 32930
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-nn 11831  df-n0 12091  df-z 12177  df-uz 12439  df-icc 12942  df-fz 13096
This theorem is referenced by:  cvmliftlem3  32962  cvmliftlem6  32965  cvmliftlem8  32967
  Copyright terms: Public domain W3C validator