Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cvmliftlem2 | Structured version Visualization version GIF version |
Description: Lemma for cvmlift 33261. 𝑊 = [(𝑘 − 1) / 𝑁, 𝑘 / 𝑁] is a subset of [0, 1] for each 𝑀 ∈ (1...𝑁). (Contributed by Mario Carneiro, 16-Feb-2015.) |
Ref | Expression |
---|---|
cvmliftlem.1 | ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) |
cvmliftlem.b | ⊢ 𝐵 = ∪ 𝐶 |
cvmliftlem.x | ⊢ 𝑋 = ∪ 𝐽 |
cvmliftlem.f | ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) |
cvmliftlem.g | ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) |
cvmliftlem.p | ⊢ (𝜑 → 𝑃 ∈ 𝐵) |
cvmliftlem.e | ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘0)) |
cvmliftlem.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
cvmliftlem.t | ⊢ (𝜑 → 𝑇:(1...𝑁)⟶∪ 𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗))) |
cvmliftlem.a | ⊢ (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇‘𝑘))) |
cvmliftlem.l | ⊢ 𝐿 = (topGen‘ran (,)) |
cvmliftlem1.m | ⊢ ((𝜑 ∧ 𝜓) → 𝑀 ∈ (1...𝑁)) |
cvmliftlem3.3 | ⊢ 𝑊 = (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁)) |
Ref | Expression |
---|---|
cvmliftlem2 | ⊢ ((𝜑 ∧ 𝜓) → 𝑊 ⊆ (0[,]1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cvmliftlem3.3 | . 2 ⊢ 𝑊 = (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁)) | |
2 | 0red 10978 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 0 ∈ ℝ) | |
3 | 1red 10976 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 1 ∈ ℝ) | |
4 | cvmliftlem1.m | . . . . . . 7 ⊢ ((𝜑 ∧ 𝜓) → 𝑀 ∈ (1...𝑁)) | |
5 | elfznn 13285 | . . . . . . 7 ⊢ (𝑀 ∈ (1...𝑁) → 𝑀 ∈ ℕ) | |
6 | 4, 5 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ 𝜓) → 𝑀 ∈ ℕ) |
7 | 6 | nnred 11988 | . . . . 5 ⊢ ((𝜑 ∧ 𝜓) → 𝑀 ∈ ℝ) |
8 | peano2rem 11288 | . . . . 5 ⊢ (𝑀 ∈ ℝ → (𝑀 − 1) ∈ ℝ) | |
9 | 7, 8 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → (𝑀 − 1) ∈ ℝ) |
10 | nnm1nn0 12274 | . . . . . 6 ⊢ (𝑀 ∈ ℕ → (𝑀 − 1) ∈ ℕ0) | |
11 | 6, 10 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝜓) → (𝑀 − 1) ∈ ℕ0) |
12 | 11 | nn0ge0d 12296 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 0 ≤ (𝑀 − 1)) |
13 | cvmliftlem.n | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
14 | 13 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝜓) → 𝑁 ∈ ℕ) |
15 | 14 | nnred 11988 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝑁 ∈ ℝ) |
16 | 14 | nngt0d 12022 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 0 < 𝑁) |
17 | divge0 11844 | . . . 4 ⊢ ((((𝑀 − 1) ∈ ℝ ∧ 0 ≤ (𝑀 − 1)) ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → 0 ≤ ((𝑀 − 1) / 𝑁)) | |
18 | 9, 12, 15, 16, 17 | syl22anc 836 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 0 ≤ ((𝑀 − 1) / 𝑁)) |
19 | elfzle2 13260 | . . . . . 6 ⊢ (𝑀 ∈ (1...𝑁) → 𝑀 ≤ 𝑁) | |
20 | 4, 19 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝜓) → 𝑀 ≤ 𝑁) |
21 | 14 | nncnd 11989 | . . . . . 6 ⊢ ((𝜑 ∧ 𝜓) → 𝑁 ∈ ℂ) |
22 | 21 | mulid1d 10992 | . . . . 5 ⊢ ((𝜑 ∧ 𝜓) → (𝑁 · 1) = 𝑁) |
23 | 20, 22 | breqtrrd 5102 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝑀 ≤ (𝑁 · 1)) |
24 | ledivmul 11851 | . . . . 5 ⊢ ((𝑀 ∈ ℝ ∧ 1 ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → ((𝑀 / 𝑁) ≤ 1 ↔ 𝑀 ≤ (𝑁 · 1))) | |
25 | 7, 3, 15, 16, 24 | syl112anc 1373 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → ((𝑀 / 𝑁) ≤ 1 ↔ 𝑀 ≤ (𝑁 · 1))) |
26 | 23, 25 | mpbird 256 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝑀 / 𝑁) ≤ 1) |
27 | iccss 13147 | . . 3 ⊢ (((0 ∈ ℝ ∧ 1 ∈ ℝ) ∧ (0 ≤ ((𝑀 − 1) / 𝑁) ∧ (𝑀 / 𝑁) ≤ 1)) → (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁)) ⊆ (0[,]1)) | |
28 | 2, 3, 18, 26, 27 | syl22anc 836 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁)) ⊆ (0[,]1)) |
29 | 1, 28 | eqsstrid 3969 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝑊 ⊆ (0[,]1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 {crab 3068 ∖ cdif 3884 ∩ cin 3886 ⊆ wss 3887 ∅c0 4256 𝒫 cpw 4533 {csn 4561 ∪ cuni 4839 ∪ ciun 4924 class class class wbr 5074 ↦ cmpt 5157 × cxp 5587 ◡ccnv 5588 ran crn 5590 ↾ cres 5591 “ cima 5592 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 1st c1st 7829 ℝcr 10870 0cc0 10871 1c1 10872 · cmul 10876 < clt 11009 ≤ cle 11010 − cmin 11205 / cdiv 11632 ℕcn 11973 ℕ0cn0 12233 (,)cioo 13079 [,]cicc 13082 ...cfz 13239 ↾t crest 17131 topGenctg 17148 Cn ccn 22375 Homeochmeo 22904 IIcii 24038 CovMap ccvm 33217 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-n0 12234 df-z 12320 df-uz 12583 df-icc 13086 df-fz 13240 |
This theorem is referenced by: cvmliftlem3 33249 cvmliftlem6 33252 cvmliftlem8 33254 |
Copyright terms: Public domain | W3C validator |