Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmliftlem2 Structured version   Visualization version   GIF version

Theorem cvmliftlem2 35273
Description: Lemma for cvmlift 35286. 𝑊 = [(𝑘 − 1) / 𝑁, 𝑘 / 𝑁] is a subset of [0, 1] for each 𝑀 ∈ (1...𝑁). (Contributed by Mario Carneiro, 16-Feb-2015.)
Hypotheses
Ref Expression
cvmliftlem.1 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
cvmliftlem.b 𝐵 = 𝐶
cvmliftlem.x 𝑋 = 𝐽
cvmliftlem.f (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
cvmliftlem.g (𝜑𝐺 ∈ (II Cn 𝐽))
cvmliftlem.p (𝜑𝑃𝐵)
cvmliftlem.e (𝜑 → (𝐹𝑃) = (𝐺‘0))
cvmliftlem.n (𝜑𝑁 ∈ ℕ)
cvmliftlem.t (𝜑𝑇:(1...𝑁)⟶ 𝑗𝐽 ({𝑗} × (𝑆𝑗)))
cvmliftlem.a (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇𝑘)))
cvmliftlem.l 𝐿 = (topGen‘ran (,))
cvmliftlem1.m ((𝜑𝜓) → 𝑀 ∈ (1...𝑁))
cvmliftlem3.3 𝑊 = (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁))
Assertion
Ref Expression
cvmliftlem2 ((𝜑𝜓) → 𝑊 ⊆ (0[,]1))
Distinct variable groups:   𝑣,𝐵   𝑗,𝑘,𝑠,𝑢,𝑣,𝐹   𝑗,𝑀,𝑘,𝑠,𝑢,𝑣   𝑃,𝑘,𝑢,𝑣   𝐶,𝑗,𝑘,𝑠,𝑢,𝑣   𝜑,𝑗,𝑠   𝑘,𝑁,𝑢,𝑣   𝑆,𝑗,𝑘,𝑠,𝑢,𝑣   𝑗,𝑋   𝑗,𝐺,𝑘,𝑠,𝑢,𝑣   𝑇,𝑗,𝑘,𝑠,𝑢,𝑣   𝑗,𝐽,𝑘,𝑠,𝑢,𝑣   𝑘,𝑊
Allowed substitution hints:   𝜑(𝑣,𝑢,𝑘)   𝜓(𝑣,𝑢,𝑗,𝑘,𝑠)   𝐵(𝑢,𝑗,𝑘,𝑠)   𝑃(𝑗,𝑠)   𝐿(𝑣,𝑢,𝑗,𝑘,𝑠)   𝑁(𝑗,𝑠)   𝑊(𝑣,𝑢,𝑗,𝑠)   𝑋(𝑣,𝑢,𝑘,𝑠)

Proof of Theorem cvmliftlem2
StepHypRef Expression
1 cvmliftlem3.3 . 2 𝑊 = (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁))
2 0red 11177 . . 3 ((𝜑𝜓) → 0 ∈ ℝ)
3 1red 11175 . . 3 ((𝜑𝜓) → 1 ∈ ℝ)
4 cvmliftlem1.m . . . . . . 7 ((𝜑𝜓) → 𝑀 ∈ (1...𝑁))
5 elfznn 13514 . . . . . . 7 (𝑀 ∈ (1...𝑁) → 𝑀 ∈ ℕ)
64, 5syl 17 . . . . . 6 ((𝜑𝜓) → 𝑀 ∈ ℕ)
76nnred 12201 . . . . 5 ((𝜑𝜓) → 𝑀 ∈ ℝ)
8 peano2rem 11489 . . . . 5 (𝑀 ∈ ℝ → (𝑀 − 1) ∈ ℝ)
97, 8syl 17 . . . 4 ((𝜑𝜓) → (𝑀 − 1) ∈ ℝ)
10 nnm1nn0 12483 . . . . . 6 (𝑀 ∈ ℕ → (𝑀 − 1) ∈ ℕ0)
116, 10syl 17 . . . . 5 ((𝜑𝜓) → (𝑀 − 1) ∈ ℕ0)
1211nn0ge0d 12506 . . . 4 ((𝜑𝜓) → 0 ≤ (𝑀 − 1))
13 cvmliftlem.n . . . . . 6 (𝜑𝑁 ∈ ℕ)
1413adantr 480 . . . . 5 ((𝜑𝜓) → 𝑁 ∈ ℕ)
1514nnred 12201 . . . 4 ((𝜑𝜓) → 𝑁 ∈ ℝ)
1614nngt0d 12235 . . . 4 ((𝜑𝜓) → 0 < 𝑁)
17 divge0 12052 . . . 4 ((((𝑀 − 1) ∈ ℝ ∧ 0 ≤ (𝑀 − 1)) ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → 0 ≤ ((𝑀 − 1) / 𝑁))
189, 12, 15, 16, 17syl22anc 838 . . 3 ((𝜑𝜓) → 0 ≤ ((𝑀 − 1) / 𝑁))
19 elfzle2 13489 . . . . . 6 (𝑀 ∈ (1...𝑁) → 𝑀𝑁)
204, 19syl 17 . . . . 5 ((𝜑𝜓) → 𝑀𝑁)
2114nncnd 12202 . . . . . 6 ((𝜑𝜓) → 𝑁 ∈ ℂ)
2221mulridd 11191 . . . . 5 ((𝜑𝜓) → (𝑁 · 1) = 𝑁)
2320, 22breqtrrd 5135 . . . 4 ((𝜑𝜓) → 𝑀 ≤ (𝑁 · 1))
24 ledivmul 12059 . . . . 5 ((𝑀 ∈ ℝ ∧ 1 ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → ((𝑀 / 𝑁) ≤ 1 ↔ 𝑀 ≤ (𝑁 · 1)))
257, 3, 15, 16, 24syl112anc 1376 . . . 4 ((𝜑𝜓) → ((𝑀 / 𝑁) ≤ 1 ↔ 𝑀 ≤ (𝑁 · 1)))
2623, 25mpbird 257 . . 3 ((𝜑𝜓) → (𝑀 / 𝑁) ≤ 1)
27 iccss 13375 . . 3 (((0 ∈ ℝ ∧ 1 ∈ ℝ) ∧ (0 ≤ ((𝑀 − 1) / 𝑁) ∧ (𝑀 / 𝑁) ≤ 1)) → (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁)) ⊆ (0[,]1))
282, 3, 18, 26, 27syl22anc 838 . 2 ((𝜑𝜓) → (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁)) ⊆ (0[,]1))
291, 28eqsstrid 3985 1 ((𝜑𝜓) → 𝑊 ⊆ (0[,]1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  {crab 3405  cdif 3911  cin 3913  wss 3914  c0 4296  𝒫 cpw 4563  {csn 4589   cuni 4871   ciun 4955   class class class wbr 5107  cmpt 5188   × cxp 5636  ccnv 5637  ran crn 5639  cres 5640  cima 5641  wf 6507  cfv 6511  (class class class)co 7387  1st c1st 7966  cr 11067  0cc0 11068  1c1 11069   · cmul 11073   < clt 11208  cle 11209  cmin 11405   / cdiv 11835  cn 12186  0cn0 12442  (,)cioo 13306  [,]cicc 13309  ...cfz 13468  t crest 17383  topGenctg 17400   Cn ccn 23111  Homeochmeo 23640  IIcii 24768   CovMap ccvm 35242
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-n0 12443  df-z 12530  df-uz 12794  df-icc 13313  df-fz 13469
This theorem is referenced by:  cvmliftlem3  35274  cvmliftlem6  35277  cvmliftlem8  35279
  Copyright terms: Public domain W3C validator