| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cvmliftlem2 | Structured version Visualization version GIF version | ||
| Description: Lemma for cvmlift 35271. 𝑊 = [(𝑘 − 1) / 𝑁, 𝑘 / 𝑁] is a subset of [0, 1] for each 𝑀 ∈ (1...𝑁). (Contributed by Mario Carneiro, 16-Feb-2015.) |
| Ref | Expression |
|---|---|
| cvmliftlem.1 | ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) |
| cvmliftlem.b | ⊢ 𝐵 = ∪ 𝐶 |
| cvmliftlem.x | ⊢ 𝑋 = ∪ 𝐽 |
| cvmliftlem.f | ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) |
| cvmliftlem.g | ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) |
| cvmliftlem.p | ⊢ (𝜑 → 𝑃 ∈ 𝐵) |
| cvmliftlem.e | ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘0)) |
| cvmliftlem.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| cvmliftlem.t | ⊢ (𝜑 → 𝑇:(1...𝑁)⟶∪ 𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗))) |
| cvmliftlem.a | ⊢ (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇‘𝑘))) |
| cvmliftlem.l | ⊢ 𝐿 = (topGen‘ran (,)) |
| cvmliftlem1.m | ⊢ ((𝜑 ∧ 𝜓) → 𝑀 ∈ (1...𝑁)) |
| cvmliftlem3.3 | ⊢ 𝑊 = (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁)) |
| Ref | Expression |
|---|---|
| cvmliftlem2 | ⊢ ((𝜑 ∧ 𝜓) → 𝑊 ⊆ (0[,]1)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cvmliftlem3.3 | . 2 ⊢ 𝑊 = (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁)) | |
| 2 | 0red 11137 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 0 ∈ ℝ) | |
| 3 | 1red 11135 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 1 ∈ ℝ) | |
| 4 | cvmliftlem1.m | . . . . . . 7 ⊢ ((𝜑 ∧ 𝜓) → 𝑀 ∈ (1...𝑁)) | |
| 5 | elfznn 13474 | . . . . . . 7 ⊢ (𝑀 ∈ (1...𝑁) → 𝑀 ∈ ℕ) | |
| 6 | 4, 5 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ 𝜓) → 𝑀 ∈ ℕ) |
| 7 | 6 | nnred 12161 | . . . . 5 ⊢ ((𝜑 ∧ 𝜓) → 𝑀 ∈ ℝ) |
| 8 | peano2rem 11449 | . . . . 5 ⊢ (𝑀 ∈ ℝ → (𝑀 − 1) ∈ ℝ) | |
| 9 | 7, 8 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → (𝑀 − 1) ∈ ℝ) |
| 10 | nnm1nn0 12443 | . . . . . 6 ⊢ (𝑀 ∈ ℕ → (𝑀 − 1) ∈ ℕ0) | |
| 11 | 6, 10 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝜓) → (𝑀 − 1) ∈ ℕ0) |
| 12 | 11 | nn0ge0d 12466 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 0 ≤ (𝑀 − 1)) |
| 13 | cvmliftlem.n | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
| 14 | 13 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝜓) → 𝑁 ∈ ℕ) |
| 15 | 14 | nnred 12161 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝑁 ∈ ℝ) |
| 16 | 14 | nngt0d 12195 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 0 < 𝑁) |
| 17 | divge0 12012 | . . . 4 ⊢ ((((𝑀 − 1) ∈ ℝ ∧ 0 ≤ (𝑀 − 1)) ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → 0 ≤ ((𝑀 − 1) / 𝑁)) | |
| 18 | 9, 12, 15, 16, 17 | syl22anc 838 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 0 ≤ ((𝑀 − 1) / 𝑁)) |
| 19 | elfzle2 13449 | . . . . . 6 ⊢ (𝑀 ∈ (1...𝑁) → 𝑀 ≤ 𝑁) | |
| 20 | 4, 19 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝜓) → 𝑀 ≤ 𝑁) |
| 21 | 14 | nncnd 12162 | . . . . . 6 ⊢ ((𝜑 ∧ 𝜓) → 𝑁 ∈ ℂ) |
| 22 | 21 | mulridd 11151 | . . . . 5 ⊢ ((𝜑 ∧ 𝜓) → (𝑁 · 1) = 𝑁) |
| 23 | 20, 22 | breqtrrd 5123 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝑀 ≤ (𝑁 · 1)) |
| 24 | ledivmul 12019 | . . . . 5 ⊢ ((𝑀 ∈ ℝ ∧ 1 ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → ((𝑀 / 𝑁) ≤ 1 ↔ 𝑀 ≤ (𝑁 · 1))) | |
| 25 | 7, 3, 15, 16, 24 | syl112anc 1376 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → ((𝑀 / 𝑁) ≤ 1 ↔ 𝑀 ≤ (𝑁 · 1))) |
| 26 | 23, 25 | mpbird 257 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝑀 / 𝑁) ≤ 1) |
| 27 | iccss 13335 | . . 3 ⊢ (((0 ∈ ℝ ∧ 1 ∈ ℝ) ∧ (0 ≤ ((𝑀 − 1) / 𝑁) ∧ (𝑀 / 𝑁) ≤ 1)) → (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁)) ⊆ (0[,]1)) | |
| 28 | 2, 3, 18, 26, 27 | syl22anc 838 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁)) ⊆ (0[,]1)) |
| 29 | 1, 28 | eqsstrid 3976 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝑊 ⊆ (0[,]1)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 {crab 3396 ∖ cdif 3902 ∩ cin 3904 ⊆ wss 3905 ∅c0 4286 𝒫 cpw 4553 {csn 4579 ∪ cuni 4861 ∪ ciun 4944 class class class wbr 5095 ↦ cmpt 5176 × cxp 5621 ◡ccnv 5622 ran crn 5624 ↾ cres 5625 “ cima 5626 ⟶wf 6482 ‘cfv 6486 (class class class)co 7353 1st c1st 7929 ℝcr 11027 0cc0 11028 1c1 11029 · cmul 11033 < clt 11168 ≤ cle 11169 − cmin 11365 / cdiv 11795 ℕcn 12146 ℕ0cn0 12402 (,)cioo 13266 [,]cicc 13269 ...cfz 13428 ↾t crest 17342 topGenctg 17359 Cn ccn 23127 Homeochmeo 23656 IIcii 24784 CovMap ccvm 35227 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-n0 12403 df-z 12490 df-uz 12754 df-icc 13273 df-fz 13429 |
| This theorem is referenced by: cvmliftlem3 35259 cvmliftlem6 35262 cvmliftlem8 35264 |
| Copyright terms: Public domain | W3C validator |