Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cvmliftlem2 | Structured version Visualization version GIF version |
Description: Lemma for cvmlift 32974. 𝑊 = [(𝑘 − 1) / 𝑁, 𝑘 / 𝑁] is a subset of [0, 1] for each 𝑀 ∈ (1...𝑁). (Contributed by Mario Carneiro, 16-Feb-2015.) |
Ref | Expression |
---|---|
cvmliftlem.1 | ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) |
cvmliftlem.b | ⊢ 𝐵 = ∪ 𝐶 |
cvmliftlem.x | ⊢ 𝑋 = ∪ 𝐽 |
cvmliftlem.f | ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) |
cvmliftlem.g | ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) |
cvmliftlem.p | ⊢ (𝜑 → 𝑃 ∈ 𝐵) |
cvmliftlem.e | ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘0)) |
cvmliftlem.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
cvmliftlem.t | ⊢ (𝜑 → 𝑇:(1...𝑁)⟶∪ 𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗))) |
cvmliftlem.a | ⊢ (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇‘𝑘))) |
cvmliftlem.l | ⊢ 𝐿 = (topGen‘ran (,)) |
cvmliftlem1.m | ⊢ ((𝜑 ∧ 𝜓) → 𝑀 ∈ (1...𝑁)) |
cvmliftlem3.3 | ⊢ 𝑊 = (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁)) |
Ref | Expression |
---|---|
cvmliftlem2 | ⊢ ((𝜑 ∧ 𝜓) → 𝑊 ⊆ (0[,]1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cvmliftlem3.3 | . 2 ⊢ 𝑊 = (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁)) | |
2 | 0red 10836 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 0 ∈ ℝ) | |
3 | 1red 10834 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 1 ∈ ℝ) | |
4 | cvmliftlem1.m | . . . . . . 7 ⊢ ((𝜑 ∧ 𝜓) → 𝑀 ∈ (1...𝑁)) | |
5 | elfznn 13141 | . . . . . . 7 ⊢ (𝑀 ∈ (1...𝑁) → 𝑀 ∈ ℕ) | |
6 | 4, 5 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ 𝜓) → 𝑀 ∈ ℕ) |
7 | 6 | nnred 11845 | . . . . 5 ⊢ ((𝜑 ∧ 𝜓) → 𝑀 ∈ ℝ) |
8 | peano2rem 11145 | . . . . 5 ⊢ (𝑀 ∈ ℝ → (𝑀 − 1) ∈ ℝ) | |
9 | 7, 8 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → (𝑀 − 1) ∈ ℝ) |
10 | nnm1nn0 12131 | . . . . . 6 ⊢ (𝑀 ∈ ℕ → (𝑀 − 1) ∈ ℕ0) | |
11 | 6, 10 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝜓) → (𝑀 − 1) ∈ ℕ0) |
12 | 11 | nn0ge0d 12153 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 0 ≤ (𝑀 − 1)) |
13 | cvmliftlem.n | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
14 | 13 | adantr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝜓) → 𝑁 ∈ ℕ) |
15 | 14 | nnred 11845 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝑁 ∈ ℝ) |
16 | 14 | nngt0d 11879 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 0 < 𝑁) |
17 | divge0 11701 | . . . 4 ⊢ ((((𝑀 − 1) ∈ ℝ ∧ 0 ≤ (𝑀 − 1)) ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → 0 ≤ ((𝑀 − 1) / 𝑁)) | |
18 | 9, 12, 15, 16, 17 | syl22anc 839 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 0 ≤ ((𝑀 − 1) / 𝑁)) |
19 | elfzle2 13116 | . . . . . 6 ⊢ (𝑀 ∈ (1...𝑁) → 𝑀 ≤ 𝑁) | |
20 | 4, 19 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝜓) → 𝑀 ≤ 𝑁) |
21 | 14 | nncnd 11846 | . . . . . 6 ⊢ ((𝜑 ∧ 𝜓) → 𝑁 ∈ ℂ) |
22 | 21 | mulid1d 10850 | . . . . 5 ⊢ ((𝜑 ∧ 𝜓) → (𝑁 · 1) = 𝑁) |
23 | 20, 22 | breqtrrd 5081 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝑀 ≤ (𝑁 · 1)) |
24 | ledivmul 11708 | . . . . 5 ⊢ ((𝑀 ∈ ℝ ∧ 1 ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → ((𝑀 / 𝑁) ≤ 1 ↔ 𝑀 ≤ (𝑁 · 1))) | |
25 | 7, 3, 15, 16, 24 | syl112anc 1376 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → ((𝑀 / 𝑁) ≤ 1 ↔ 𝑀 ≤ (𝑁 · 1))) |
26 | 23, 25 | mpbird 260 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝑀 / 𝑁) ≤ 1) |
27 | iccss 13003 | . . 3 ⊢ (((0 ∈ ℝ ∧ 1 ∈ ℝ) ∧ (0 ≤ ((𝑀 − 1) / 𝑁) ∧ (𝑀 / 𝑁) ≤ 1)) → (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁)) ⊆ (0[,]1)) | |
28 | 2, 3, 18, 26, 27 | syl22anc 839 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁)) ⊆ (0[,]1)) |
29 | 1, 28 | eqsstrid 3949 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝑊 ⊆ (0[,]1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1543 ∈ wcel 2110 ∀wral 3061 {crab 3065 ∖ cdif 3863 ∩ cin 3865 ⊆ wss 3866 ∅c0 4237 𝒫 cpw 4513 {csn 4541 ∪ cuni 4819 ∪ ciun 4904 class class class wbr 5053 ↦ cmpt 5135 × cxp 5549 ◡ccnv 5550 ran crn 5552 ↾ cres 5553 “ cima 5554 ⟶wf 6376 ‘cfv 6380 (class class class)co 7213 1st c1st 7759 ℝcr 10728 0cc0 10729 1c1 10730 · cmul 10734 < clt 10867 ≤ cle 10868 − cmin 11062 / cdiv 11489 ℕcn 11830 ℕ0cn0 12090 (,)cioo 12935 [,]cicc 12938 ...cfz 13095 ↾t crest 16925 topGenctg 16942 Cn ccn 22121 Homeochmeo 22650 IIcii 23772 CovMap ccvm 32930 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-1st 7761 df-2nd 7762 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-er 8391 df-en 8627 df-dom 8628 df-sdom 8629 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-div 11490 df-nn 11831 df-n0 12091 df-z 12177 df-uz 12439 df-icc 12942 df-fz 13096 |
This theorem is referenced by: cvmliftlem3 32962 cvmliftlem6 32965 cvmliftlem8 32967 |
Copyright terms: Public domain | W3C validator |