![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cvmliftlem2 | Structured version Visualization version GIF version |
Description: Lemma for cvmlift 34588. π = [(π β 1) / π, π / π] is a subset of [0, 1] for each π β (1...π). (Contributed by Mario Carneiro, 16-Feb-2015.) |
Ref | Expression |
---|---|
cvmliftlem.1 | β’ π = (π β π½ β¦ {π β (π« πΆ β {β }) β£ (βͺ π = (β‘πΉ β π) β§ βπ’ β π (βπ£ β (π β {π’})(π’ β© π£) = β β§ (πΉ βΎ π’) β ((πΆ βΎt π’)Homeo(π½ βΎt π))))}) |
cvmliftlem.b | β’ π΅ = βͺ πΆ |
cvmliftlem.x | β’ π = βͺ π½ |
cvmliftlem.f | β’ (π β πΉ β (πΆ CovMap π½)) |
cvmliftlem.g | β’ (π β πΊ β (II Cn π½)) |
cvmliftlem.p | β’ (π β π β π΅) |
cvmliftlem.e | β’ (π β (πΉβπ) = (πΊβ0)) |
cvmliftlem.n | β’ (π β π β β) |
cvmliftlem.t | β’ (π β π:(1...π)βΆβͺ π β π½ ({π} Γ (πβπ))) |
cvmliftlem.a | β’ (π β βπ β (1...π)(πΊ β (((π β 1) / π)[,](π / π))) β (1st β(πβπ))) |
cvmliftlem.l | β’ πΏ = (topGenβran (,)) |
cvmliftlem1.m | β’ ((π β§ π) β π β (1...π)) |
cvmliftlem3.3 | β’ π = (((π β 1) / π)[,](π / π)) |
Ref | Expression |
---|---|
cvmliftlem2 | β’ ((π β§ π) β π β (0[,]1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cvmliftlem3.3 | . 2 β’ π = (((π β 1) / π)[,](π / π)) | |
2 | 0red 11221 | . . 3 β’ ((π β§ π) β 0 β β) | |
3 | 1red 11219 | . . 3 β’ ((π β§ π) β 1 β β) | |
4 | cvmliftlem1.m | . . . . . . 7 β’ ((π β§ π) β π β (1...π)) | |
5 | elfznn 13534 | . . . . . . 7 β’ (π β (1...π) β π β β) | |
6 | 4, 5 | syl 17 | . . . . . 6 β’ ((π β§ π) β π β β) |
7 | 6 | nnred 12231 | . . . . 5 β’ ((π β§ π) β π β β) |
8 | peano2rem 11531 | . . . . 5 β’ (π β β β (π β 1) β β) | |
9 | 7, 8 | syl 17 | . . . 4 β’ ((π β§ π) β (π β 1) β β) |
10 | nnm1nn0 12517 | . . . . . 6 β’ (π β β β (π β 1) β β0) | |
11 | 6, 10 | syl 17 | . . . . 5 β’ ((π β§ π) β (π β 1) β β0) |
12 | 11 | nn0ge0d 12539 | . . . 4 β’ ((π β§ π) β 0 β€ (π β 1)) |
13 | cvmliftlem.n | . . . . . 6 β’ (π β π β β) | |
14 | 13 | adantr 479 | . . . . 5 β’ ((π β§ π) β π β β) |
15 | 14 | nnred 12231 | . . . 4 β’ ((π β§ π) β π β β) |
16 | 14 | nngt0d 12265 | . . . 4 β’ ((π β§ π) β 0 < π) |
17 | divge0 12087 | . . . 4 β’ ((((π β 1) β β β§ 0 β€ (π β 1)) β§ (π β β β§ 0 < π)) β 0 β€ ((π β 1) / π)) | |
18 | 9, 12, 15, 16, 17 | syl22anc 835 | . . 3 β’ ((π β§ π) β 0 β€ ((π β 1) / π)) |
19 | elfzle2 13509 | . . . . . 6 β’ (π β (1...π) β π β€ π) | |
20 | 4, 19 | syl 17 | . . . . 5 β’ ((π β§ π) β π β€ π) |
21 | 14 | nncnd 12232 | . . . . . 6 β’ ((π β§ π) β π β β) |
22 | 21 | mulridd 11235 | . . . . 5 β’ ((π β§ π) β (π Β· 1) = π) |
23 | 20, 22 | breqtrrd 5175 | . . . 4 β’ ((π β§ π) β π β€ (π Β· 1)) |
24 | ledivmul 12094 | . . . . 5 β’ ((π β β β§ 1 β β β§ (π β β β§ 0 < π)) β ((π / π) β€ 1 β π β€ (π Β· 1))) | |
25 | 7, 3, 15, 16, 24 | syl112anc 1372 | . . . 4 β’ ((π β§ π) β ((π / π) β€ 1 β π β€ (π Β· 1))) |
26 | 23, 25 | mpbird 256 | . . 3 β’ ((π β§ π) β (π / π) β€ 1) |
27 | iccss 13396 | . . 3 β’ (((0 β β β§ 1 β β) β§ (0 β€ ((π β 1) / π) β§ (π / π) β€ 1)) β (((π β 1) / π)[,](π / π)) β (0[,]1)) | |
28 | 2, 3, 18, 26, 27 | syl22anc 835 | . 2 β’ ((π β§ π) β (((π β 1) / π)[,](π / π)) β (0[,]1)) |
29 | 1, 28 | eqsstrid 4029 | 1 β’ ((π β§ π) β π β (0[,]1)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 394 = wceq 1539 β wcel 2104 βwral 3059 {crab 3430 β cdif 3944 β© cin 3946 β wss 3947 β c0 4321 π« cpw 4601 {csn 4627 βͺ cuni 4907 βͺ ciun 4996 class class class wbr 5147 β¦ cmpt 5230 Γ cxp 5673 β‘ccnv 5674 ran crn 5676 βΎ cres 5677 β cima 5678 βΆwf 6538 βcfv 6542 (class class class)co 7411 1st c1st 7975 βcr 11111 0cc0 11112 1c1 11113 Β· cmul 11117 < clt 11252 β€ cle 11253 β cmin 11448 / cdiv 11875 βcn 12216 β0cn0 12476 (,)cioo 13328 [,]cicc 13331 ...cfz 13488 βΎt crest 17370 topGenctg 17387 Cn ccn 22948 Homeochmeo 23477 IIcii 24615 CovMap ccvm 34544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-1st 7977 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-div 11876 df-nn 12217 df-n0 12477 df-z 12563 df-uz 12827 df-icc 13335 df-fz 13489 |
This theorem is referenced by: cvmliftlem3 34576 cvmliftlem6 34579 cvmliftlem8 34581 |
Copyright terms: Public domain | W3C validator |