Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmliftlem2 Structured version   Visualization version   GIF version

Theorem cvmliftlem2 35291
Description: Lemma for cvmlift 35304. 𝑊 = [(𝑘 − 1) / 𝑁, 𝑘 / 𝑁] is a subset of [0, 1] for each 𝑀 ∈ (1...𝑁). (Contributed by Mario Carneiro, 16-Feb-2015.)
Hypotheses
Ref Expression
cvmliftlem.1 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
cvmliftlem.b 𝐵 = 𝐶
cvmliftlem.x 𝑋 = 𝐽
cvmliftlem.f (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
cvmliftlem.g (𝜑𝐺 ∈ (II Cn 𝐽))
cvmliftlem.p (𝜑𝑃𝐵)
cvmliftlem.e (𝜑 → (𝐹𝑃) = (𝐺‘0))
cvmliftlem.n (𝜑𝑁 ∈ ℕ)
cvmliftlem.t (𝜑𝑇:(1...𝑁)⟶ 𝑗𝐽 ({𝑗} × (𝑆𝑗)))
cvmliftlem.a (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇𝑘)))
cvmliftlem.l 𝐿 = (topGen‘ran (,))
cvmliftlem1.m ((𝜑𝜓) → 𝑀 ∈ (1...𝑁))
cvmliftlem3.3 𝑊 = (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁))
Assertion
Ref Expression
cvmliftlem2 ((𝜑𝜓) → 𝑊 ⊆ (0[,]1))
Distinct variable groups:   𝑣,𝐵   𝑗,𝑘,𝑠,𝑢,𝑣,𝐹   𝑗,𝑀,𝑘,𝑠,𝑢,𝑣   𝑃,𝑘,𝑢,𝑣   𝐶,𝑗,𝑘,𝑠,𝑢,𝑣   𝜑,𝑗,𝑠   𝑘,𝑁,𝑢,𝑣   𝑆,𝑗,𝑘,𝑠,𝑢,𝑣   𝑗,𝑋   𝑗,𝐺,𝑘,𝑠,𝑢,𝑣   𝑇,𝑗,𝑘,𝑠,𝑢,𝑣   𝑗,𝐽,𝑘,𝑠,𝑢,𝑣   𝑘,𝑊
Allowed substitution hints:   𝜑(𝑣,𝑢,𝑘)   𝜓(𝑣,𝑢,𝑗,𝑘,𝑠)   𝐵(𝑢,𝑗,𝑘,𝑠)   𝑃(𝑗,𝑠)   𝐿(𝑣,𝑢,𝑗,𝑘,𝑠)   𝑁(𝑗,𝑠)   𝑊(𝑣,𝑢,𝑗,𝑠)   𝑋(𝑣,𝑢,𝑘,𝑠)

Proof of Theorem cvmliftlem2
StepHypRef Expression
1 cvmliftlem3.3 . 2 𝑊 = (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁))
2 0red 11264 . . 3 ((𝜑𝜓) → 0 ∈ ℝ)
3 1red 11262 . . 3 ((𝜑𝜓) → 1 ∈ ℝ)
4 cvmliftlem1.m . . . . . . 7 ((𝜑𝜓) → 𝑀 ∈ (1...𝑁))
5 elfznn 13593 . . . . . . 7 (𝑀 ∈ (1...𝑁) → 𝑀 ∈ ℕ)
64, 5syl 17 . . . . . 6 ((𝜑𝜓) → 𝑀 ∈ ℕ)
76nnred 12281 . . . . 5 ((𝜑𝜓) → 𝑀 ∈ ℝ)
8 peano2rem 11576 . . . . 5 (𝑀 ∈ ℝ → (𝑀 − 1) ∈ ℝ)
97, 8syl 17 . . . 4 ((𝜑𝜓) → (𝑀 − 1) ∈ ℝ)
10 nnm1nn0 12567 . . . . . 6 (𝑀 ∈ ℕ → (𝑀 − 1) ∈ ℕ0)
116, 10syl 17 . . . . 5 ((𝜑𝜓) → (𝑀 − 1) ∈ ℕ0)
1211nn0ge0d 12590 . . . 4 ((𝜑𝜓) → 0 ≤ (𝑀 − 1))
13 cvmliftlem.n . . . . . 6 (𝜑𝑁 ∈ ℕ)
1413adantr 480 . . . . 5 ((𝜑𝜓) → 𝑁 ∈ ℕ)
1514nnred 12281 . . . 4 ((𝜑𝜓) → 𝑁 ∈ ℝ)
1614nngt0d 12315 . . . 4 ((𝜑𝜓) → 0 < 𝑁)
17 divge0 12137 . . . 4 ((((𝑀 − 1) ∈ ℝ ∧ 0 ≤ (𝑀 − 1)) ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → 0 ≤ ((𝑀 − 1) / 𝑁))
189, 12, 15, 16, 17syl22anc 839 . . 3 ((𝜑𝜓) → 0 ≤ ((𝑀 − 1) / 𝑁))
19 elfzle2 13568 . . . . . 6 (𝑀 ∈ (1...𝑁) → 𝑀𝑁)
204, 19syl 17 . . . . 5 ((𝜑𝜓) → 𝑀𝑁)
2114nncnd 12282 . . . . . 6 ((𝜑𝜓) → 𝑁 ∈ ℂ)
2221mulridd 11278 . . . . 5 ((𝜑𝜓) → (𝑁 · 1) = 𝑁)
2320, 22breqtrrd 5171 . . . 4 ((𝜑𝜓) → 𝑀 ≤ (𝑁 · 1))
24 ledivmul 12144 . . . . 5 ((𝑀 ∈ ℝ ∧ 1 ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → ((𝑀 / 𝑁) ≤ 1 ↔ 𝑀 ≤ (𝑁 · 1)))
257, 3, 15, 16, 24syl112anc 1376 . . . 4 ((𝜑𝜓) → ((𝑀 / 𝑁) ≤ 1 ↔ 𝑀 ≤ (𝑁 · 1)))
2623, 25mpbird 257 . . 3 ((𝜑𝜓) → (𝑀 / 𝑁) ≤ 1)
27 iccss 13455 . . 3 (((0 ∈ ℝ ∧ 1 ∈ ℝ) ∧ (0 ≤ ((𝑀 − 1) / 𝑁) ∧ (𝑀 / 𝑁) ≤ 1)) → (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁)) ⊆ (0[,]1))
282, 3, 18, 26, 27syl22anc 839 . 2 ((𝜑𝜓) → (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁)) ⊆ (0[,]1))
291, 28eqsstrid 4022 1 ((𝜑𝜓) → 𝑊 ⊆ (0[,]1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3061  {crab 3436  cdif 3948  cin 3950  wss 3951  c0 4333  𝒫 cpw 4600  {csn 4626   cuni 4907   ciun 4991   class class class wbr 5143  cmpt 5225   × cxp 5683  ccnv 5684  ran crn 5686  cres 5687  cima 5688  wf 6557  cfv 6561  (class class class)co 7431  1st c1st 8012  cr 11154  0cc0 11155  1c1 11156   · cmul 11160   < clt 11295  cle 11296  cmin 11492   / cdiv 11920  cn 12266  0cn0 12526  (,)cioo 13387  [,]cicc 13390  ...cfz 13547  t crest 17465  topGenctg 17482   Cn ccn 23232  Homeochmeo 23761  IIcii 24901   CovMap ccvm 35260
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-n0 12527  df-z 12614  df-uz 12879  df-icc 13394  df-fz 13548
This theorem is referenced by:  cvmliftlem3  35292  cvmliftlem6  35295  cvmliftlem8  35297
  Copyright terms: Public domain W3C validator