| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cvmliftlem2 | Structured version Visualization version GIF version | ||
| Description: Lemma for cvmlift 35293. 𝑊 = [(𝑘 − 1) / 𝑁, 𝑘 / 𝑁] is a subset of [0, 1] for each 𝑀 ∈ (1...𝑁). (Contributed by Mario Carneiro, 16-Feb-2015.) |
| Ref | Expression |
|---|---|
| cvmliftlem.1 | ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) |
| cvmliftlem.b | ⊢ 𝐵 = ∪ 𝐶 |
| cvmliftlem.x | ⊢ 𝑋 = ∪ 𝐽 |
| cvmliftlem.f | ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) |
| cvmliftlem.g | ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) |
| cvmliftlem.p | ⊢ (𝜑 → 𝑃 ∈ 𝐵) |
| cvmliftlem.e | ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘0)) |
| cvmliftlem.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| cvmliftlem.t | ⊢ (𝜑 → 𝑇:(1...𝑁)⟶∪ 𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗))) |
| cvmliftlem.a | ⊢ (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇‘𝑘))) |
| cvmliftlem.l | ⊢ 𝐿 = (topGen‘ran (,)) |
| cvmliftlem1.m | ⊢ ((𝜑 ∧ 𝜓) → 𝑀 ∈ (1...𝑁)) |
| cvmliftlem3.3 | ⊢ 𝑊 = (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁)) |
| Ref | Expression |
|---|---|
| cvmliftlem2 | ⊢ ((𝜑 ∧ 𝜓) → 𝑊 ⊆ (0[,]1)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cvmliftlem3.3 | . 2 ⊢ 𝑊 = (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁)) | |
| 2 | 0red 11184 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 0 ∈ ℝ) | |
| 3 | 1red 11182 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 1 ∈ ℝ) | |
| 4 | cvmliftlem1.m | . . . . . . 7 ⊢ ((𝜑 ∧ 𝜓) → 𝑀 ∈ (1...𝑁)) | |
| 5 | elfznn 13521 | . . . . . . 7 ⊢ (𝑀 ∈ (1...𝑁) → 𝑀 ∈ ℕ) | |
| 6 | 4, 5 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ 𝜓) → 𝑀 ∈ ℕ) |
| 7 | 6 | nnred 12208 | . . . . 5 ⊢ ((𝜑 ∧ 𝜓) → 𝑀 ∈ ℝ) |
| 8 | peano2rem 11496 | . . . . 5 ⊢ (𝑀 ∈ ℝ → (𝑀 − 1) ∈ ℝ) | |
| 9 | 7, 8 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → (𝑀 − 1) ∈ ℝ) |
| 10 | nnm1nn0 12490 | . . . . . 6 ⊢ (𝑀 ∈ ℕ → (𝑀 − 1) ∈ ℕ0) | |
| 11 | 6, 10 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝜓) → (𝑀 − 1) ∈ ℕ0) |
| 12 | 11 | nn0ge0d 12513 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 0 ≤ (𝑀 − 1)) |
| 13 | cvmliftlem.n | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
| 14 | 13 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝜓) → 𝑁 ∈ ℕ) |
| 15 | 14 | nnred 12208 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝑁 ∈ ℝ) |
| 16 | 14 | nngt0d 12242 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 0 < 𝑁) |
| 17 | divge0 12059 | . . . 4 ⊢ ((((𝑀 − 1) ∈ ℝ ∧ 0 ≤ (𝑀 − 1)) ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → 0 ≤ ((𝑀 − 1) / 𝑁)) | |
| 18 | 9, 12, 15, 16, 17 | syl22anc 838 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 0 ≤ ((𝑀 − 1) / 𝑁)) |
| 19 | elfzle2 13496 | . . . . . 6 ⊢ (𝑀 ∈ (1...𝑁) → 𝑀 ≤ 𝑁) | |
| 20 | 4, 19 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝜓) → 𝑀 ≤ 𝑁) |
| 21 | 14 | nncnd 12209 | . . . . . 6 ⊢ ((𝜑 ∧ 𝜓) → 𝑁 ∈ ℂ) |
| 22 | 21 | mulridd 11198 | . . . . 5 ⊢ ((𝜑 ∧ 𝜓) → (𝑁 · 1) = 𝑁) |
| 23 | 20, 22 | breqtrrd 5138 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝑀 ≤ (𝑁 · 1)) |
| 24 | ledivmul 12066 | . . . . 5 ⊢ ((𝑀 ∈ ℝ ∧ 1 ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → ((𝑀 / 𝑁) ≤ 1 ↔ 𝑀 ≤ (𝑁 · 1))) | |
| 25 | 7, 3, 15, 16, 24 | syl112anc 1376 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → ((𝑀 / 𝑁) ≤ 1 ↔ 𝑀 ≤ (𝑁 · 1))) |
| 26 | 23, 25 | mpbird 257 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝑀 / 𝑁) ≤ 1) |
| 27 | iccss 13382 | . . 3 ⊢ (((0 ∈ ℝ ∧ 1 ∈ ℝ) ∧ (0 ≤ ((𝑀 − 1) / 𝑁) ∧ (𝑀 / 𝑁) ≤ 1)) → (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁)) ⊆ (0[,]1)) | |
| 28 | 2, 3, 18, 26, 27 | syl22anc 838 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁)) ⊆ (0[,]1)) |
| 29 | 1, 28 | eqsstrid 3988 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝑊 ⊆ (0[,]1)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3045 {crab 3408 ∖ cdif 3914 ∩ cin 3916 ⊆ wss 3917 ∅c0 4299 𝒫 cpw 4566 {csn 4592 ∪ cuni 4874 ∪ ciun 4958 class class class wbr 5110 ↦ cmpt 5191 × cxp 5639 ◡ccnv 5640 ran crn 5642 ↾ cres 5643 “ cima 5644 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 1st c1st 7969 ℝcr 11074 0cc0 11075 1c1 11076 · cmul 11080 < clt 11215 ≤ cle 11216 − cmin 11412 / cdiv 11842 ℕcn 12193 ℕ0cn0 12449 (,)cioo 13313 [,]cicc 13316 ...cfz 13475 ↾t crest 17390 topGenctg 17407 Cn ccn 23118 Homeochmeo 23647 IIcii 24775 CovMap ccvm 35249 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-n0 12450 df-z 12537 df-uz 12801 df-icc 13320 df-fz 13476 |
| This theorem is referenced by: cvmliftlem3 35281 cvmliftlem6 35284 cvmliftlem8 35286 |
| Copyright terms: Public domain | W3C validator |