Step | Hyp | Ref
| Expression |
1 | | cvmliftlem.1 |
. . . . . . . . . . 11
⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 =
(◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) |
2 | | cvmliftlem.b |
. . . . . . . . . . 11
⊢ 𝐵 = ∪
𝐶 |
3 | | cvmliftlem.x |
. . . . . . . . . . 11
⊢ 𝑋 = ∪
𝐽 |
4 | | cvmliftlem.f |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) |
5 | | cvmliftlem.g |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) |
6 | | cvmliftlem.p |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑃 ∈ 𝐵) |
7 | | cvmliftlem.e |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘0)) |
8 | | cvmliftlem.n |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑁 ∈ ℕ) |
9 | | cvmliftlem.t |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑇:(1...𝑁)⟶∪
𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗))) |
10 | | cvmliftlem.a |
. . . . . . . . . . 11
⊢ (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇‘𝑘))) |
11 | | cvmliftlem.l |
. . . . . . . . . . 11
⊢ 𝐿 = (topGen‘ran
(,)) |
12 | | cvmliftlem6.1 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝜓) → 𝑀 ∈ (1...𝑁)) |
13 | 12 | adantrr 713 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝜓 ∧ 𝑧 ∈ 𝑊)) → 𝑀 ∈ (1...𝑁)) |
14 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 13 | cvmliftlem1 33147 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝜓 ∧ 𝑧 ∈ 𝑊)) → (2nd ‘(𝑇‘𝑀)) ∈ (𝑆‘(1st ‘(𝑇‘𝑀)))) |
15 | 1 | cvmsss 33129 |
. . . . . . . . . 10
⊢
((2nd ‘(𝑇‘𝑀)) ∈ (𝑆‘(1st ‘(𝑇‘𝑀))) → (2nd ‘(𝑇‘𝑀)) ⊆ 𝐶) |
16 | 14, 15 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝜓 ∧ 𝑧 ∈ 𝑊)) → (2nd ‘(𝑇‘𝑀)) ⊆ 𝐶) |
17 | 4 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝜓 ∧ 𝑧 ∈ 𝑊)) → 𝐹 ∈ (𝐶 CovMap 𝐽)) |
18 | | cvmliftlem6.2 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝜓) → ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ (◡𝐹 “ {(𝐺‘((𝑀 − 1) / 𝑁))})) |
19 | 18 | adantrr 713 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝜓 ∧ 𝑧 ∈ 𝑊)) → ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ (◡𝐹 “ {(𝐺‘((𝑀 − 1) / 𝑁))})) |
20 | | cvmcn 33124 |
. . . . . . . . . . . . . . 15
⊢ (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐹 ∈ (𝐶 Cn 𝐽)) |
21 | 2, 3 | cnf 22305 |
. . . . . . . . . . . . . . 15
⊢ (𝐹 ∈ (𝐶 Cn 𝐽) → 𝐹:𝐵⟶𝑋) |
22 | 17, 20, 21 | 3syl 18 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝜓 ∧ 𝑧 ∈ 𝑊)) → 𝐹:𝐵⟶𝑋) |
23 | | ffn 6584 |
. . . . . . . . . . . . . 14
⊢ (𝐹:𝐵⟶𝑋 → 𝐹 Fn 𝐵) |
24 | | fniniseg 6919 |
. . . . . . . . . . . . . 14
⊢ (𝐹 Fn 𝐵 → (((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ (◡𝐹 “ {(𝐺‘((𝑀 − 1) / 𝑁))}) ↔ (((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝐵 ∧ (𝐹‘((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁))) = (𝐺‘((𝑀 − 1) / 𝑁))))) |
25 | 22, 23, 24 | 3syl 18 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝜓 ∧ 𝑧 ∈ 𝑊)) → (((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ (◡𝐹 “ {(𝐺‘((𝑀 − 1) / 𝑁))}) ↔ (((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝐵 ∧ (𝐹‘((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁))) = (𝐺‘((𝑀 − 1) / 𝑁))))) |
26 | 19, 25 | mpbid 231 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝜓 ∧ 𝑧 ∈ 𝑊)) → (((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝐵 ∧ (𝐹‘((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁))) = (𝐺‘((𝑀 − 1) / 𝑁)))) |
27 | 26 | simpld 494 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝜓 ∧ 𝑧 ∈ 𝑊)) → ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝐵) |
28 | 26 | simprd 495 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝜓 ∧ 𝑧 ∈ 𝑊)) → (𝐹‘((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁))) = (𝐺‘((𝑀 − 1) / 𝑁))) |
29 | | cvmliftlem5.3 |
. . . . . . . . . . . . 13
⊢ 𝑊 = (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁)) |
30 | | elfznn 13214 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑀 ∈ (1...𝑁) → 𝑀 ∈ ℕ) |
31 | 13, 30 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝜓 ∧ 𝑧 ∈ 𝑊)) → 𝑀 ∈ ℕ) |
32 | 31 | nnred 11918 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝜓 ∧ 𝑧 ∈ 𝑊)) → 𝑀 ∈ ℝ) |
33 | | peano2rem 11218 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑀 ∈ ℝ → (𝑀 − 1) ∈
ℝ) |
34 | 32, 33 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝜓 ∧ 𝑧 ∈ 𝑊)) → (𝑀 − 1) ∈ ℝ) |
35 | 8 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝜓 ∧ 𝑧 ∈ 𝑊)) → 𝑁 ∈ ℕ) |
36 | 34, 35 | nndivred 11957 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝜓 ∧ 𝑧 ∈ 𝑊)) → ((𝑀 − 1) / 𝑁) ∈ ℝ) |
37 | 36 | rexrd 10956 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝜓 ∧ 𝑧 ∈ 𝑊)) → ((𝑀 − 1) / 𝑁) ∈
ℝ*) |
38 | 32, 35 | nndivred 11957 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝜓 ∧ 𝑧 ∈ 𝑊)) → (𝑀 / 𝑁) ∈ ℝ) |
39 | 38 | rexrd 10956 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝜓 ∧ 𝑧 ∈ 𝑊)) → (𝑀 / 𝑁) ∈
ℝ*) |
40 | 32 | ltm1d 11837 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝜓 ∧ 𝑧 ∈ 𝑊)) → (𝑀 − 1) < 𝑀) |
41 | 35 | nnred 11918 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝜓 ∧ 𝑧 ∈ 𝑊)) → 𝑁 ∈ ℝ) |
42 | 35 | nngt0d 11952 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝜓 ∧ 𝑧 ∈ 𝑊)) → 0 < 𝑁) |
43 | | ltdiv1 11769 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑀 − 1) ∈ ℝ ∧
𝑀 ∈ ℝ ∧
(𝑁 ∈ ℝ ∧ 0
< 𝑁)) → ((𝑀 − 1) < 𝑀 ↔ ((𝑀 − 1) / 𝑁) < (𝑀 / 𝑁))) |
44 | 34, 32, 41, 42, 43 | syl112anc 1372 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝜓 ∧ 𝑧 ∈ 𝑊)) → ((𝑀 − 1) < 𝑀 ↔ ((𝑀 − 1) / 𝑁) < (𝑀 / 𝑁))) |
45 | 40, 44 | mpbid 231 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝜓 ∧ 𝑧 ∈ 𝑊)) → ((𝑀 − 1) / 𝑁) < (𝑀 / 𝑁)) |
46 | 36, 38, 45 | ltled 11053 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝜓 ∧ 𝑧 ∈ 𝑊)) → ((𝑀 − 1) / 𝑁) ≤ (𝑀 / 𝑁)) |
47 | | lbicc2 13125 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑀 − 1) / 𝑁) ∈ ℝ* ∧ (𝑀 / 𝑁) ∈ ℝ* ∧ ((𝑀 − 1) / 𝑁) ≤ (𝑀 / 𝑁)) → ((𝑀 − 1) / 𝑁) ∈ (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁))) |
48 | 37, 39, 46, 47 | syl3anc 1369 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝜓 ∧ 𝑧 ∈ 𝑊)) → ((𝑀 − 1) / 𝑁) ∈ (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁))) |
49 | 48, 29 | eleqtrrdi 2850 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝜓 ∧ 𝑧 ∈ 𝑊)) → ((𝑀 − 1) / 𝑁) ∈ 𝑊) |
50 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 13, 29, 49 | cvmliftlem3 33149 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝜓 ∧ 𝑧 ∈ 𝑊)) → (𝐺‘((𝑀 − 1) / 𝑁)) ∈ (1st ‘(𝑇‘𝑀))) |
51 | 28, 50 | eqeltrd 2839 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝜓 ∧ 𝑧 ∈ 𝑊)) → (𝐹‘((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁))) ∈ (1st ‘(𝑇‘𝑀))) |
52 | | eqid 2738 |
. . . . . . . . . . . 12
⊢
(℩𝑏
∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏) = (℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏) |
53 | 1, 2, 52 | cvmsiota 33139 |
. . . . . . . . . . 11
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ ((2nd ‘(𝑇‘𝑀)) ∈ (𝑆‘(1st ‘(𝑇‘𝑀))) ∧ ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝐵 ∧ (𝐹‘((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁))) ∈ (1st ‘(𝑇‘𝑀)))) → ((℩𝑏 ∈ (2nd
‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏) ∈ (2nd ‘(𝑇‘𝑀)) ∧ ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))) |
54 | 17, 14, 27, 51, 53 | syl13anc 1370 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝜓 ∧ 𝑧 ∈ 𝑊)) → ((℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏) ∈ (2nd ‘(𝑇‘𝑀)) ∧ ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))) |
55 | 54 | simpld 494 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝜓 ∧ 𝑧 ∈ 𝑊)) → (℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏) ∈ (2nd ‘(𝑇‘𝑀))) |
56 | 16, 55 | sseldd 3918 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝜓 ∧ 𝑧 ∈ 𝑊)) → (℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏) ∈ 𝐶) |
57 | | elssuni 4868 |
. . . . . . . 8
⊢
((℩𝑏
∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏) ∈ 𝐶 → (℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏) ⊆ ∪ 𝐶) |
58 | 56, 57 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝜓 ∧ 𝑧 ∈ 𝑊)) → (℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏) ⊆ ∪ 𝐶) |
59 | 58, 2 | sseqtrrdi 3968 |
. . . . . 6
⊢ ((𝜑 ∧ (𝜓 ∧ 𝑧 ∈ 𝑊)) → (℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏) ⊆ 𝐵) |
60 | 1 | cvmsf1o 33134 |
. . . . . . . . 9
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (2nd ‘(𝑇‘𝑀)) ∈ (𝑆‘(1st ‘(𝑇‘𝑀))) ∧ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏) ∈ (2nd ‘(𝑇‘𝑀))) → (𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)):(℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)–1-1-onto→(1st ‘(𝑇‘𝑀))) |
61 | 17, 14, 55, 60 | syl3anc 1369 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝜓 ∧ 𝑧 ∈ 𝑊)) → (𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)):(℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)–1-1-onto→(1st ‘(𝑇‘𝑀))) |
62 | | f1ocnv 6712 |
. . . . . . . 8
⊢ ((𝐹 ↾ (℩𝑏 ∈ (2nd
‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)):(℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)–1-1-onto→(1st ‘(𝑇‘𝑀)) → ◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)):(1st ‘(𝑇‘𝑀))–1-1-onto→(℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)) |
63 | | f1of 6700 |
. . . . . . . 8
⊢ (◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)):(1st ‘(𝑇‘𝑀))–1-1-onto→(℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏) → ◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)):(1st ‘(𝑇‘𝑀))⟶(℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)) |
64 | 61, 62, 63 | 3syl 18 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝜓 ∧ 𝑧 ∈ 𝑊)) → ◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)):(1st ‘(𝑇‘𝑀))⟶(℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)) |
65 | | simprr 769 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝜓 ∧ 𝑧 ∈ 𝑊)) → 𝑧 ∈ 𝑊) |
66 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 13, 29, 65 | cvmliftlem3 33149 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝜓 ∧ 𝑧 ∈ 𝑊)) → (𝐺‘𝑧) ∈ (1st ‘(𝑇‘𝑀))) |
67 | 64, 66 | ffvelrnd 6944 |
. . . . . 6
⊢ ((𝜑 ∧ (𝜓 ∧ 𝑧 ∈ 𝑊)) → (◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘𝑧)) ∈ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)) |
68 | 59, 67 | sseldd 3918 |
. . . . 5
⊢ ((𝜑 ∧ (𝜓 ∧ 𝑧 ∈ 𝑊)) → (◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘𝑧)) ∈ 𝐵) |
69 | 68 | anassrs 467 |
. . . 4
⊢ (((𝜑 ∧ 𝜓) ∧ 𝑧 ∈ 𝑊) → (◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘𝑧)) ∈ 𝐵) |
70 | 69 | fmpttd 6971 |
. . 3
⊢ ((𝜑 ∧ 𝜓) → (𝑧 ∈ 𝑊 ↦ (◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘𝑧))):𝑊⟶𝐵) |
71 | 12, 30 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ 𝜓) → 𝑀 ∈ ℕ) |
72 | | cvmliftlem.q |
. . . . . 6
⊢ 𝑄 = seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ (◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘𝑧)))), (( I ↾ ℕ) ∪ {〈0,
{〈0, 𝑃〉}〉})) |
73 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 72, 29 | cvmliftlem5 33151 |
. . . . 5
⊢ ((𝜑 ∧ 𝑀 ∈ ℕ) → (𝑄‘𝑀) = (𝑧 ∈ 𝑊 ↦ (◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘𝑧)))) |
74 | 71, 73 | syldan 590 |
. . . 4
⊢ ((𝜑 ∧ 𝜓) → (𝑄‘𝑀) = (𝑧 ∈ 𝑊 ↦ (◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘𝑧)))) |
75 | 74 | feq1d 6569 |
. . 3
⊢ ((𝜑 ∧ 𝜓) → ((𝑄‘𝑀):𝑊⟶𝐵 ↔ (𝑧 ∈ 𝑊 ↦ (◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘𝑧))):𝑊⟶𝐵)) |
76 | 70, 75 | mpbird 256 |
. 2
⊢ ((𝜑 ∧ 𝜓) → (𝑄‘𝑀):𝑊⟶𝐵) |
77 | | fvres 6775 |
. . . . . . 7
⊢ (𝑧 ∈ 𝑊 → ((𝐺 ↾ 𝑊)‘𝑧) = (𝐺‘𝑧)) |
78 | 65, 77 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ (𝜓 ∧ 𝑧 ∈ 𝑊)) → ((𝐺 ↾ 𝑊)‘𝑧) = (𝐺‘𝑧)) |
79 | | f1ocnvfv2 7130 |
. . . . . . 7
⊢ (((𝐹 ↾ (℩𝑏 ∈ (2nd
‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)):(℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)–1-1-onto→(1st ‘(𝑇‘𝑀)) ∧ (𝐺‘𝑧) ∈ (1st ‘(𝑇‘𝑀))) → ((𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘𝑧))) = (𝐺‘𝑧)) |
80 | 61, 66, 79 | syl2anc 583 |
. . . . . 6
⊢ ((𝜑 ∧ (𝜓 ∧ 𝑧 ∈ 𝑊)) → ((𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘𝑧))) = (𝐺‘𝑧)) |
81 | | fvres 6775 |
. . . . . . 7
⊢ ((◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘𝑧)) ∈ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏) → ((𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘𝑧))) = (𝐹‘(◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘𝑧)))) |
82 | 67, 81 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ (𝜓 ∧ 𝑧 ∈ 𝑊)) → ((𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘𝑧))) = (𝐹‘(◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘𝑧)))) |
83 | 78, 80, 82 | 3eqtr2rd 2785 |
. . . . 5
⊢ ((𝜑 ∧ (𝜓 ∧ 𝑧 ∈ 𝑊)) → (𝐹‘(◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘𝑧))) = ((𝐺 ↾ 𝑊)‘𝑧)) |
84 | 83 | anassrs 467 |
. . . 4
⊢ (((𝜑 ∧ 𝜓) ∧ 𝑧 ∈ 𝑊) → (𝐹‘(◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘𝑧))) = ((𝐺 ↾ 𝑊)‘𝑧)) |
85 | 84 | mpteq2dva 5170 |
. . 3
⊢ ((𝜑 ∧ 𝜓) → (𝑧 ∈ 𝑊 ↦ (𝐹‘(◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘𝑧)))) = (𝑧 ∈ 𝑊 ↦ ((𝐺 ↾ 𝑊)‘𝑧))) |
86 | 4, 20, 21 | 3syl 18 |
. . . . . 6
⊢ (𝜑 → 𝐹:𝐵⟶𝑋) |
87 | 86 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝜓) → 𝐹:𝐵⟶𝑋) |
88 | 87 | feqmptd 6819 |
. . . 4
⊢ ((𝜑 ∧ 𝜓) → 𝐹 = (𝑦 ∈ 𝐵 ↦ (𝐹‘𝑦))) |
89 | | fveq2 6756 |
. . . 4
⊢ (𝑦 = (◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘𝑧)) → (𝐹‘𝑦) = (𝐹‘(◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘𝑧)))) |
90 | 69, 74, 88, 89 | fmptco 6983 |
. . 3
⊢ ((𝜑 ∧ 𝜓) → (𝐹 ∘ (𝑄‘𝑀)) = (𝑧 ∈ 𝑊 ↦ (𝐹‘(◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘𝑧))))) |
91 | | iiuni 23950 |
. . . . . . . 8
⊢ (0[,]1) =
∪ II |
92 | 91, 3 | cnf 22305 |
. . . . . . 7
⊢ (𝐺 ∈ (II Cn 𝐽) → 𝐺:(0[,]1)⟶𝑋) |
93 | 5, 92 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝐺:(0[,]1)⟶𝑋) |
94 | 93 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝜓) → 𝐺:(0[,]1)⟶𝑋) |
95 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 29 | cvmliftlem2 33148 |
. . . . 5
⊢ ((𝜑 ∧ 𝜓) → 𝑊 ⊆ (0[,]1)) |
96 | 94, 95 | fssresd 6625 |
. . . 4
⊢ ((𝜑 ∧ 𝜓) → (𝐺 ↾ 𝑊):𝑊⟶𝑋) |
97 | 96 | feqmptd 6819 |
. . 3
⊢ ((𝜑 ∧ 𝜓) → (𝐺 ↾ 𝑊) = (𝑧 ∈ 𝑊 ↦ ((𝐺 ↾ 𝑊)‘𝑧))) |
98 | 85, 90, 97 | 3eqtr4d 2788 |
. 2
⊢ ((𝜑 ∧ 𝜓) → (𝐹 ∘ (𝑄‘𝑀)) = (𝐺 ↾ 𝑊)) |
99 | 76, 98 | jca 511 |
1
⊢ ((𝜑 ∧ 𝜓) → ((𝑄‘𝑀):𝑊⟶𝐵 ∧ (𝐹 ∘ (𝑄‘𝑀)) = (𝐺 ↾ 𝑊))) |