Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmliftlem6 Structured version   Visualization version   GIF version

Theorem cvmliftlem6 35258
Description: Lemma for cvmlift 35267. Induction step for cvmliftlem7 35259. Assuming that 𝑄(𝑀 − 1) is defined at (𝑀 − 1) / 𝑁 and is a preimage of 𝐺((𝑀 − 1) / 𝑁), the next segment 𝑄(𝑀) is also defined and is a function on 𝑊 which is a lift 𝐺 for this segment. This follows explicitly from the definition 𝑄(𝑀) = (𝐹𝐼) ∘ 𝐺 since 𝐺 is in 1st ‘(𝐹𝑀) for the entire interval so that (𝐹𝐼) maps this into 𝐼 and 𝐹𝑄 maps back to 𝐺. (Contributed by Mario Carneiro, 16-Feb-2015.)
Hypotheses
Ref Expression
cvmliftlem.1 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
cvmliftlem.b 𝐵 = 𝐶
cvmliftlem.x 𝑋 = 𝐽
cvmliftlem.f (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
cvmliftlem.g (𝜑𝐺 ∈ (II Cn 𝐽))
cvmliftlem.p (𝜑𝑃𝐵)
cvmliftlem.e (𝜑 → (𝐹𝑃) = (𝐺‘0))
cvmliftlem.n (𝜑𝑁 ∈ ℕ)
cvmliftlem.t (𝜑𝑇:(1...𝑁)⟶ 𝑗𝐽 ({𝑗} × (𝑆𝑗)))
cvmliftlem.a (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇𝑘)))
cvmliftlem.l 𝐿 = (topGen‘ran (,))
cvmliftlem.q 𝑄 = seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧)))), (( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩}))
cvmliftlem5.3 𝑊 = (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁))
cvmliftlem6.1 ((𝜑𝜓) → 𝑀 ∈ (1...𝑁))
cvmliftlem6.2 ((𝜑𝜓) → ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ (𝐹 “ {(𝐺‘((𝑀 − 1) / 𝑁))}))
Assertion
Ref Expression
cvmliftlem6 ((𝜑𝜓) → ((𝑄𝑀):𝑊𝐵 ∧ (𝐹 ∘ (𝑄𝑀)) = (𝐺𝑊)))
Distinct variable groups:   𝑣,𝑏,𝑧,𝐵   𝑗,𝑏,𝑘,𝑚,𝑠,𝑢,𝑥,𝐹,𝑣,𝑧   𝑧,𝐿   𝑀,𝑏,𝑗,𝑘,𝑚,𝑠,𝑢,𝑣,𝑥,𝑧   𝑃,𝑏,𝑘,𝑚,𝑢,𝑣,𝑥,𝑧   𝐶,𝑏,𝑗,𝑘,𝑠,𝑢,𝑣,𝑧   𝜑,𝑗,𝑠,𝑥,𝑧   𝜓,𝑧   𝑁,𝑏,𝑘,𝑚,𝑢,𝑣,𝑥,𝑧   𝑆,𝑏,𝑗,𝑘,𝑠,𝑢,𝑣,𝑥,𝑧   𝑗,𝑋   𝐺,𝑏,𝑗,𝑘,𝑚,𝑠,𝑢,𝑣,𝑥,𝑧   𝑇,𝑏,𝑗,𝑘,𝑚,𝑠,𝑢,𝑣,𝑥,𝑧   𝐽,𝑏,𝑗,𝑘,𝑠,𝑢,𝑣,𝑥,𝑧   𝑄,𝑏,𝑘,𝑚,𝑢,𝑣,𝑥,𝑧   𝑘,𝑊,𝑚,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑣,𝑢,𝑘,𝑚,𝑏)   𝜓(𝑥,𝑣,𝑢,𝑗,𝑘,𝑚,𝑠,𝑏)   𝐵(𝑥,𝑢,𝑗,𝑘,𝑚,𝑠)   𝐶(𝑥,𝑚)   𝑃(𝑗,𝑠)   𝑄(𝑗,𝑠)   𝑆(𝑚)   𝐽(𝑚)   𝐿(𝑥,𝑣,𝑢,𝑗,𝑘,𝑚,𝑠,𝑏)   𝑁(𝑗,𝑠)   𝑊(𝑣,𝑢,𝑗,𝑠,𝑏)   𝑋(𝑥,𝑧,𝑣,𝑢,𝑘,𝑚,𝑠,𝑏)

Proof of Theorem cvmliftlem6
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 cvmliftlem.1 . . . . . . . . . . 11 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
2 cvmliftlem.b . . . . . . . . . . 11 𝐵 = 𝐶
3 cvmliftlem.x . . . . . . . . . . 11 𝑋 = 𝐽
4 cvmliftlem.f . . . . . . . . . . 11 (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
5 cvmliftlem.g . . . . . . . . . . 11 (𝜑𝐺 ∈ (II Cn 𝐽))
6 cvmliftlem.p . . . . . . . . . . 11 (𝜑𝑃𝐵)
7 cvmliftlem.e . . . . . . . . . . 11 (𝜑 → (𝐹𝑃) = (𝐺‘0))
8 cvmliftlem.n . . . . . . . . . . 11 (𝜑𝑁 ∈ ℕ)
9 cvmliftlem.t . . . . . . . . . . 11 (𝜑𝑇:(1...𝑁)⟶ 𝑗𝐽 ({𝑗} × (𝑆𝑗)))
10 cvmliftlem.a . . . . . . . . . . 11 (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇𝑘)))
11 cvmliftlem.l . . . . . . . . . . 11 𝐿 = (topGen‘ran (,))
12 cvmliftlem6.1 . . . . . . . . . . . 12 ((𝜑𝜓) → 𝑀 ∈ (1...𝑁))
1312adantrr 717 . . . . . . . . . . 11 ((𝜑 ∧ (𝜓𝑧𝑊)) → 𝑀 ∈ (1...𝑁))
141, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13cvmliftlem1 35253 . . . . . . . . . 10 ((𝜑 ∧ (𝜓𝑧𝑊)) → (2nd ‘(𝑇𝑀)) ∈ (𝑆‘(1st ‘(𝑇𝑀))))
151cvmsss 35235 . . . . . . . . . 10 ((2nd ‘(𝑇𝑀)) ∈ (𝑆‘(1st ‘(𝑇𝑀))) → (2nd ‘(𝑇𝑀)) ⊆ 𝐶)
1614, 15syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝜓𝑧𝑊)) → (2nd ‘(𝑇𝑀)) ⊆ 𝐶)
174adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝜓𝑧𝑊)) → 𝐹 ∈ (𝐶 CovMap 𝐽))
18 cvmliftlem6.2 . . . . . . . . . . . . . 14 ((𝜑𝜓) → ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ (𝐹 “ {(𝐺‘((𝑀 − 1) / 𝑁))}))
1918adantrr 717 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝜓𝑧𝑊)) → ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ (𝐹 “ {(𝐺‘((𝑀 − 1) / 𝑁))}))
20 cvmcn 35230 . . . . . . . . . . . . . . 15 (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐹 ∈ (𝐶 Cn 𝐽))
212, 3cnf 23182 . . . . . . . . . . . . . . 15 (𝐹 ∈ (𝐶 Cn 𝐽) → 𝐹:𝐵𝑋)
2217, 20, 213syl 18 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝜓𝑧𝑊)) → 𝐹:𝐵𝑋)
23 ffn 6705 . . . . . . . . . . . . . 14 (𝐹:𝐵𝑋𝐹 Fn 𝐵)
24 fniniseg 7049 . . . . . . . . . . . . . 14 (𝐹 Fn 𝐵 → (((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ (𝐹 “ {(𝐺‘((𝑀 − 1) / 𝑁))}) ↔ (((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝐵 ∧ (𝐹‘((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁))) = (𝐺‘((𝑀 − 1) / 𝑁)))))
2522, 23, 243syl 18 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝜓𝑧𝑊)) → (((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ (𝐹 “ {(𝐺‘((𝑀 − 1) / 𝑁))}) ↔ (((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝐵 ∧ (𝐹‘((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁))) = (𝐺‘((𝑀 − 1) / 𝑁)))))
2619, 25mpbid 232 . . . . . . . . . . . 12 ((𝜑 ∧ (𝜓𝑧𝑊)) → (((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝐵 ∧ (𝐹‘((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁))) = (𝐺‘((𝑀 − 1) / 𝑁))))
2726simpld 494 . . . . . . . . . . 11 ((𝜑 ∧ (𝜓𝑧𝑊)) → ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝐵)
2826simprd 495 . . . . . . . . . . . 12 ((𝜑 ∧ (𝜓𝑧𝑊)) → (𝐹‘((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁))) = (𝐺‘((𝑀 − 1) / 𝑁)))
29 cvmliftlem5.3 . . . . . . . . . . . . 13 𝑊 = (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁))
30 elfznn 13568 . . . . . . . . . . . . . . . . . . . 20 (𝑀 ∈ (1...𝑁) → 𝑀 ∈ ℕ)
3113, 30syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝜓𝑧𝑊)) → 𝑀 ∈ ℕ)
3231nnred 12253 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝜓𝑧𝑊)) → 𝑀 ∈ ℝ)
33 peano2rem 11548 . . . . . . . . . . . . . . . . . 18 (𝑀 ∈ ℝ → (𝑀 − 1) ∈ ℝ)
3432, 33syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝜓𝑧𝑊)) → (𝑀 − 1) ∈ ℝ)
358adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝜓𝑧𝑊)) → 𝑁 ∈ ℕ)
3634, 35nndivred 12292 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝜓𝑧𝑊)) → ((𝑀 − 1) / 𝑁) ∈ ℝ)
3736rexrd 11283 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝜓𝑧𝑊)) → ((𝑀 − 1) / 𝑁) ∈ ℝ*)
3832, 35nndivred 12292 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝜓𝑧𝑊)) → (𝑀 / 𝑁) ∈ ℝ)
3938rexrd 11283 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝜓𝑧𝑊)) → (𝑀 / 𝑁) ∈ ℝ*)
4032ltm1d 12172 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝜓𝑧𝑊)) → (𝑀 − 1) < 𝑀)
4135nnred 12253 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝜓𝑧𝑊)) → 𝑁 ∈ ℝ)
4235nngt0d 12287 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝜓𝑧𝑊)) → 0 < 𝑁)
43 ltdiv1 12104 . . . . . . . . . . . . . . . . . 18 (((𝑀 − 1) ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → ((𝑀 − 1) < 𝑀 ↔ ((𝑀 − 1) / 𝑁) < (𝑀 / 𝑁)))
4434, 32, 41, 42, 43syl112anc 1376 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝜓𝑧𝑊)) → ((𝑀 − 1) < 𝑀 ↔ ((𝑀 − 1) / 𝑁) < (𝑀 / 𝑁)))
4540, 44mpbid 232 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝜓𝑧𝑊)) → ((𝑀 − 1) / 𝑁) < (𝑀 / 𝑁))
4636, 38, 45ltled 11381 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝜓𝑧𝑊)) → ((𝑀 − 1) / 𝑁) ≤ (𝑀 / 𝑁))
47 lbicc2 13479 . . . . . . . . . . . . . . 15 ((((𝑀 − 1) / 𝑁) ∈ ℝ* ∧ (𝑀 / 𝑁) ∈ ℝ* ∧ ((𝑀 − 1) / 𝑁) ≤ (𝑀 / 𝑁)) → ((𝑀 − 1) / 𝑁) ∈ (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁)))
4837, 39, 46, 47syl3anc 1373 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝜓𝑧𝑊)) → ((𝑀 − 1) / 𝑁) ∈ (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁)))
4948, 29eleqtrrdi 2845 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝜓𝑧𝑊)) → ((𝑀 − 1) / 𝑁) ∈ 𝑊)
501, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 29, 49cvmliftlem3 35255 . . . . . . . . . . . 12 ((𝜑 ∧ (𝜓𝑧𝑊)) → (𝐺‘((𝑀 − 1) / 𝑁)) ∈ (1st ‘(𝑇𝑀)))
5128, 50eqeltrd 2834 . . . . . . . . . . 11 ((𝜑 ∧ (𝜓𝑧𝑊)) → (𝐹‘((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁))) ∈ (1st ‘(𝑇𝑀)))
52 eqid 2735 . . . . . . . . . . . 12 (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏) = (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)
531, 2, 52cvmsiota 35245 . . . . . . . . . . 11 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ ((2nd ‘(𝑇𝑀)) ∈ (𝑆‘(1st ‘(𝑇𝑀))) ∧ ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝐵 ∧ (𝐹‘((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁))) ∈ (1st ‘(𝑇𝑀)))) → ((𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏) ∈ (2nd ‘(𝑇𝑀)) ∧ ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)))
5417, 14, 27, 51, 53syl13anc 1374 . . . . . . . . . 10 ((𝜑 ∧ (𝜓𝑧𝑊)) → ((𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏) ∈ (2nd ‘(𝑇𝑀)) ∧ ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)))
5554simpld 494 . . . . . . . . 9 ((𝜑 ∧ (𝜓𝑧𝑊)) → (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏) ∈ (2nd ‘(𝑇𝑀)))
5616, 55sseldd 3959 . . . . . . . 8 ((𝜑 ∧ (𝜓𝑧𝑊)) → (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏) ∈ 𝐶)
57 elssuni 4913 . . . . . . . 8 ((𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏) ∈ 𝐶 → (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏) ⊆ 𝐶)
5856, 57syl 17 . . . . . . 7 ((𝜑 ∧ (𝜓𝑧𝑊)) → (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏) ⊆ 𝐶)
5958, 2sseqtrrdi 4000 . . . . . 6 ((𝜑 ∧ (𝜓𝑧𝑊)) → (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏) ⊆ 𝐵)
601cvmsf1o 35240 . . . . . . . . 9 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (2nd ‘(𝑇𝑀)) ∈ (𝑆‘(1st ‘(𝑇𝑀))) ∧ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏) ∈ (2nd ‘(𝑇𝑀))) → (𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)):(𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)–1-1-onto→(1st ‘(𝑇𝑀)))
6117, 14, 55, 60syl3anc 1373 . . . . . . . 8 ((𝜑 ∧ (𝜓𝑧𝑊)) → (𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)):(𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)–1-1-onto→(1st ‘(𝑇𝑀)))
62 f1ocnv 6829 . . . . . . . 8 ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)):(𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)–1-1-onto→(1st ‘(𝑇𝑀)) → (𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)):(1st ‘(𝑇𝑀))–1-1-onto→(𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))
63 f1of 6817 . . . . . . . 8 ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)):(1st ‘(𝑇𝑀))–1-1-onto→(𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏) → (𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)):(1st ‘(𝑇𝑀))⟶(𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))
6461, 62, 633syl 18 . . . . . . 7 ((𝜑 ∧ (𝜓𝑧𝑊)) → (𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)):(1st ‘(𝑇𝑀))⟶(𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))
65 simprr 772 . . . . . . . 8 ((𝜑 ∧ (𝜓𝑧𝑊)) → 𝑧𝑊)
661, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 29, 65cvmliftlem3 35255 . . . . . . 7 ((𝜑 ∧ (𝜓𝑧𝑊)) → (𝐺𝑧) ∈ (1st ‘(𝑇𝑀)))
6764, 66ffvelcdmd 7074 . . . . . 6 ((𝜑 ∧ (𝜓𝑧𝑊)) → ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧)) ∈ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))
6859, 67sseldd 3959 . . . . 5 ((𝜑 ∧ (𝜓𝑧𝑊)) → ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧)) ∈ 𝐵)
6968anassrs 467 . . . 4 (((𝜑𝜓) ∧ 𝑧𝑊) → ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧)) ∈ 𝐵)
7069fmpttd 7104 . . 3 ((𝜑𝜓) → (𝑧𝑊 ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧))):𝑊𝐵)
7112, 30syl 17 . . . . 5 ((𝜑𝜓) → 𝑀 ∈ ℕ)
72 cvmliftlem.q . . . . . 6 𝑄 = seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧)))), (( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩}))
731, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 72, 29cvmliftlem5 35257 . . . . 5 ((𝜑𝑀 ∈ ℕ) → (𝑄𝑀) = (𝑧𝑊 ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧))))
7471, 73syldan 591 . . . 4 ((𝜑𝜓) → (𝑄𝑀) = (𝑧𝑊 ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧))))
7574feq1d 6689 . . 3 ((𝜑𝜓) → ((𝑄𝑀):𝑊𝐵 ↔ (𝑧𝑊 ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧))):𝑊𝐵))
7670, 75mpbird 257 . 2 ((𝜑𝜓) → (𝑄𝑀):𝑊𝐵)
77 fvres 6894 . . . . . . 7 (𝑧𝑊 → ((𝐺𝑊)‘𝑧) = (𝐺𝑧))
7865, 77syl 17 . . . . . 6 ((𝜑 ∧ (𝜓𝑧𝑊)) → ((𝐺𝑊)‘𝑧) = (𝐺𝑧))
79 f1ocnvfv2 7269 . . . . . . 7 (((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)):(𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)–1-1-onto→(1st ‘(𝑇𝑀)) ∧ (𝐺𝑧) ∈ (1st ‘(𝑇𝑀))) → ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧))) = (𝐺𝑧))
8061, 66, 79syl2anc 584 . . . . . 6 ((𝜑 ∧ (𝜓𝑧𝑊)) → ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧))) = (𝐺𝑧))
81 fvres 6894 . . . . . . 7 (((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧)) ∈ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏) → ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧))) = (𝐹‘((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧))))
8267, 81syl 17 . . . . . 6 ((𝜑 ∧ (𝜓𝑧𝑊)) → ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧))) = (𝐹‘((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧))))
8378, 80, 823eqtr2rd 2777 . . . . 5 ((𝜑 ∧ (𝜓𝑧𝑊)) → (𝐹‘((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧))) = ((𝐺𝑊)‘𝑧))
8483anassrs 467 . . . 4 (((𝜑𝜓) ∧ 𝑧𝑊) → (𝐹‘((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧))) = ((𝐺𝑊)‘𝑧))
8584mpteq2dva 5214 . . 3 ((𝜑𝜓) → (𝑧𝑊 ↦ (𝐹‘((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧)))) = (𝑧𝑊 ↦ ((𝐺𝑊)‘𝑧)))
864, 20, 213syl 18 . . . . . 6 (𝜑𝐹:𝐵𝑋)
8786adantr 480 . . . . 5 ((𝜑𝜓) → 𝐹:𝐵𝑋)
8887feqmptd 6946 . . . 4 ((𝜑𝜓) → 𝐹 = (𝑦𝐵 ↦ (𝐹𝑦)))
89 fveq2 6875 . . . 4 (𝑦 = ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧)) → (𝐹𝑦) = (𝐹‘((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧))))
9069, 74, 88, 89fmptco 7118 . . 3 ((𝜑𝜓) → (𝐹 ∘ (𝑄𝑀)) = (𝑧𝑊 ↦ (𝐹‘((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧)))))
91 iiuni 24823 . . . . . . . 8 (0[,]1) = II
9291, 3cnf 23182 . . . . . . 7 (𝐺 ∈ (II Cn 𝐽) → 𝐺:(0[,]1)⟶𝑋)
935, 92syl 17 . . . . . 6 (𝜑𝐺:(0[,]1)⟶𝑋)
9493adantr 480 . . . . 5 ((𝜑𝜓) → 𝐺:(0[,]1)⟶𝑋)
951, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 29cvmliftlem2 35254 . . . . 5 ((𝜑𝜓) → 𝑊 ⊆ (0[,]1))
9694, 95fssresd 6744 . . . 4 ((𝜑𝜓) → (𝐺𝑊):𝑊𝑋)
9796feqmptd 6946 . . 3 ((𝜑𝜓) → (𝐺𝑊) = (𝑧𝑊 ↦ ((𝐺𝑊)‘𝑧)))
9885, 90, 973eqtr4d 2780 . 2 ((𝜑𝜓) → (𝐹 ∘ (𝑄𝑀)) = (𝐺𝑊))
9976, 98jca 511 1 ((𝜑𝜓) → ((𝑄𝑀):𝑊𝐵 ∧ (𝐹 ∘ (𝑄𝑀)) = (𝐺𝑊)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3051  {crab 3415  Vcvv 3459  cdif 3923  cun 3924  cin 3925  wss 3926  c0 4308  𝒫 cpw 4575  {csn 4601  cop 4607   cuni 4883   ciun 4967   class class class wbr 5119  cmpt 5201   I cid 5547   × cxp 5652  ccnv 5653  ran crn 5655  cres 5656  cima 5657  ccom 5658   Fn wfn 6525  wf 6526  1-1-ontowf1o 6529  cfv 6530  crio 7359  (class class class)co 7403  cmpo 7405  1st c1st 7984  2nd c2nd 7985  cr 11126  0cc0 11127  1c1 11128  *cxr 11266   < clt 11267  cle 11268  cmin 11464   / cdiv 11892  cn 12238  (,)cioo 13360  [,]cicc 13363  ...cfz 13522  seqcseq 14017  t crest 17432  topGenctg 17449   Cn ccn 23160  Homeochmeo 23689  IIcii 24817   CovMap ccvm 35223
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204  ax-pre-sup 11205
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7860  df-1st 7986  df-2nd 7987  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-er 8717  df-map 8840  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-fi 9421  df-sup 9452  df-inf 9453  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-div 11893  df-nn 12239  df-2 12301  df-3 12302  df-n0 12500  df-z 12587  df-uz 12851  df-q 12963  df-rp 13007  df-xneg 13126  df-xadd 13127  df-xmul 13128  df-icc 13367  df-fz 13523  df-seq 14018  df-exp 14078  df-cj 15116  df-re 15117  df-im 15118  df-sqrt 15252  df-abs 15253  df-rest 17434  df-topgen 17455  df-psmet 21305  df-xmet 21306  df-met 21307  df-bl 21308  df-mopn 21309  df-top 22830  df-topon 22847  df-bases 22882  df-cn 23163  df-hmeo 23691  df-ii 24819  df-cvm 35224
This theorem is referenced by:  cvmliftlem7  35259  cvmliftlem10  35262  cvmliftlem13  35264
  Copyright terms: Public domain W3C validator