Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmliftlem6 Structured version   Visualization version   GIF version

Theorem cvmliftlem6 35284
Description: Lemma for cvmlift 35293. Induction step for cvmliftlem7 35285. Assuming that 𝑄(𝑀 − 1) is defined at (𝑀 − 1) / 𝑁 and is a preimage of 𝐺((𝑀 − 1) / 𝑁), the next segment 𝑄(𝑀) is also defined and is a function on 𝑊 which is a lift 𝐺 for this segment. This follows explicitly from the definition 𝑄(𝑀) = (𝐹𝐼) ∘ 𝐺 since 𝐺 is in 1st ‘(𝐹𝑀) for the entire interval so that (𝐹𝐼) maps this into 𝐼 and 𝐹𝑄 maps back to 𝐺. (Contributed by Mario Carneiro, 16-Feb-2015.)
Hypotheses
Ref Expression
cvmliftlem.1 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
cvmliftlem.b 𝐵 = 𝐶
cvmliftlem.x 𝑋 = 𝐽
cvmliftlem.f (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
cvmliftlem.g (𝜑𝐺 ∈ (II Cn 𝐽))
cvmliftlem.p (𝜑𝑃𝐵)
cvmliftlem.e (𝜑 → (𝐹𝑃) = (𝐺‘0))
cvmliftlem.n (𝜑𝑁 ∈ ℕ)
cvmliftlem.t (𝜑𝑇:(1...𝑁)⟶ 𝑗𝐽 ({𝑗} × (𝑆𝑗)))
cvmliftlem.a (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇𝑘)))
cvmliftlem.l 𝐿 = (topGen‘ran (,))
cvmliftlem.q 𝑄 = seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧)))), (( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩}))
cvmliftlem5.3 𝑊 = (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁))
cvmliftlem6.1 ((𝜑𝜓) → 𝑀 ∈ (1...𝑁))
cvmliftlem6.2 ((𝜑𝜓) → ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ (𝐹 “ {(𝐺‘((𝑀 − 1) / 𝑁))}))
Assertion
Ref Expression
cvmliftlem6 ((𝜑𝜓) → ((𝑄𝑀):𝑊𝐵 ∧ (𝐹 ∘ (𝑄𝑀)) = (𝐺𝑊)))
Distinct variable groups:   𝑣,𝑏,𝑧,𝐵   𝑗,𝑏,𝑘,𝑚,𝑠,𝑢,𝑥,𝐹,𝑣,𝑧   𝑧,𝐿   𝑀,𝑏,𝑗,𝑘,𝑚,𝑠,𝑢,𝑣,𝑥,𝑧   𝑃,𝑏,𝑘,𝑚,𝑢,𝑣,𝑥,𝑧   𝐶,𝑏,𝑗,𝑘,𝑠,𝑢,𝑣,𝑧   𝜑,𝑗,𝑠,𝑥,𝑧   𝜓,𝑧   𝑁,𝑏,𝑘,𝑚,𝑢,𝑣,𝑥,𝑧   𝑆,𝑏,𝑗,𝑘,𝑠,𝑢,𝑣,𝑥,𝑧   𝑗,𝑋   𝐺,𝑏,𝑗,𝑘,𝑚,𝑠,𝑢,𝑣,𝑥,𝑧   𝑇,𝑏,𝑗,𝑘,𝑚,𝑠,𝑢,𝑣,𝑥,𝑧   𝐽,𝑏,𝑗,𝑘,𝑠,𝑢,𝑣,𝑥,𝑧   𝑄,𝑏,𝑘,𝑚,𝑢,𝑣,𝑥,𝑧   𝑘,𝑊,𝑚,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑣,𝑢,𝑘,𝑚,𝑏)   𝜓(𝑥,𝑣,𝑢,𝑗,𝑘,𝑚,𝑠,𝑏)   𝐵(𝑥,𝑢,𝑗,𝑘,𝑚,𝑠)   𝐶(𝑥,𝑚)   𝑃(𝑗,𝑠)   𝑄(𝑗,𝑠)   𝑆(𝑚)   𝐽(𝑚)   𝐿(𝑥,𝑣,𝑢,𝑗,𝑘,𝑚,𝑠,𝑏)   𝑁(𝑗,𝑠)   𝑊(𝑣,𝑢,𝑗,𝑠,𝑏)   𝑋(𝑥,𝑧,𝑣,𝑢,𝑘,𝑚,𝑠,𝑏)

Proof of Theorem cvmliftlem6
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 cvmliftlem.1 . . . . . . . . . . 11 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
2 cvmliftlem.b . . . . . . . . . . 11 𝐵 = 𝐶
3 cvmliftlem.x . . . . . . . . . . 11 𝑋 = 𝐽
4 cvmliftlem.f . . . . . . . . . . 11 (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
5 cvmliftlem.g . . . . . . . . . . 11 (𝜑𝐺 ∈ (II Cn 𝐽))
6 cvmliftlem.p . . . . . . . . . . 11 (𝜑𝑃𝐵)
7 cvmliftlem.e . . . . . . . . . . 11 (𝜑 → (𝐹𝑃) = (𝐺‘0))
8 cvmliftlem.n . . . . . . . . . . 11 (𝜑𝑁 ∈ ℕ)
9 cvmliftlem.t . . . . . . . . . . 11 (𝜑𝑇:(1...𝑁)⟶ 𝑗𝐽 ({𝑗} × (𝑆𝑗)))
10 cvmliftlem.a . . . . . . . . . . 11 (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇𝑘)))
11 cvmliftlem.l . . . . . . . . . . 11 𝐿 = (topGen‘ran (,))
12 cvmliftlem6.1 . . . . . . . . . . . 12 ((𝜑𝜓) → 𝑀 ∈ (1...𝑁))
1312adantrr 717 . . . . . . . . . . 11 ((𝜑 ∧ (𝜓𝑧𝑊)) → 𝑀 ∈ (1...𝑁))
141, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13cvmliftlem1 35279 . . . . . . . . . 10 ((𝜑 ∧ (𝜓𝑧𝑊)) → (2nd ‘(𝑇𝑀)) ∈ (𝑆‘(1st ‘(𝑇𝑀))))
151cvmsss 35261 . . . . . . . . . 10 ((2nd ‘(𝑇𝑀)) ∈ (𝑆‘(1st ‘(𝑇𝑀))) → (2nd ‘(𝑇𝑀)) ⊆ 𝐶)
1614, 15syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝜓𝑧𝑊)) → (2nd ‘(𝑇𝑀)) ⊆ 𝐶)
174adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝜓𝑧𝑊)) → 𝐹 ∈ (𝐶 CovMap 𝐽))
18 cvmliftlem6.2 . . . . . . . . . . . . . 14 ((𝜑𝜓) → ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ (𝐹 “ {(𝐺‘((𝑀 − 1) / 𝑁))}))
1918adantrr 717 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝜓𝑧𝑊)) → ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ (𝐹 “ {(𝐺‘((𝑀 − 1) / 𝑁))}))
20 cvmcn 35256 . . . . . . . . . . . . . . 15 (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐹 ∈ (𝐶 Cn 𝐽))
212, 3cnf 23140 . . . . . . . . . . . . . . 15 (𝐹 ∈ (𝐶 Cn 𝐽) → 𝐹:𝐵𝑋)
2217, 20, 213syl 18 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝜓𝑧𝑊)) → 𝐹:𝐵𝑋)
23 ffn 6691 . . . . . . . . . . . . . 14 (𝐹:𝐵𝑋𝐹 Fn 𝐵)
24 fniniseg 7035 . . . . . . . . . . . . . 14 (𝐹 Fn 𝐵 → (((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ (𝐹 “ {(𝐺‘((𝑀 − 1) / 𝑁))}) ↔ (((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝐵 ∧ (𝐹‘((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁))) = (𝐺‘((𝑀 − 1) / 𝑁)))))
2522, 23, 243syl 18 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝜓𝑧𝑊)) → (((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ (𝐹 “ {(𝐺‘((𝑀 − 1) / 𝑁))}) ↔ (((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝐵 ∧ (𝐹‘((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁))) = (𝐺‘((𝑀 − 1) / 𝑁)))))
2619, 25mpbid 232 . . . . . . . . . . . 12 ((𝜑 ∧ (𝜓𝑧𝑊)) → (((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝐵 ∧ (𝐹‘((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁))) = (𝐺‘((𝑀 − 1) / 𝑁))))
2726simpld 494 . . . . . . . . . . 11 ((𝜑 ∧ (𝜓𝑧𝑊)) → ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝐵)
2826simprd 495 . . . . . . . . . . . 12 ((𝜑 ∧ (𝜓𝑧𝑊)) → (𝐹‘((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁))) = (𝐺‘((𝑀 − 1) / 𝑁)))
29 cvmliftlem5.3 . . . . . . . . . . . . 13 𝑊 = (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁))
30 elfznn 13521 . . . . . . . . . . . . . . . . . . . 20 (𝑀 ∈ (1...𝑁) → 𝑀 ∈ ℕ)
3113, 30syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝜓𝑧𝑊)) → 𝑀 ∈ ℕ)
3231nnred 12208 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝜓𝑧𝑊)) → 𝑀 ∈ ℝ)
33 peano2rem 11496 . . . . . . . . . . . . . . . . . 18 (𝑀 ∈ ℝ → (𝑀 − 1) ∈ ℝ)
3432, 33syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝜓𝑧𝑊)) → (𝑀 − 1) ∈ ℝ)
358adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝜓𝑧𝑊)) → 𝑁 ∈ ℕ)
3634, 35nndivred 12247 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝜓𝑧𝑊)) → ((𝑀 − 1) / 𝑁) ∈ ℝ)
3736rexrd 11231 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝜓𝑧𝑊)) → ((𝑀 − 1) / 𝑁) ∈ ℝ*)
3832, 35nndivred 12247 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝜓𝑧𝑊)) → (𝑀 / 𝑁) ∈ ℝ)
3938rexrd 11231 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝜓𝑧𝑊)) → (𝑀 / 𝑁) ∈ ℝ*)
4032ltm1d 12122 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝜓𝑧𝑊)) → (𝑀 − 1) < 𝑀)
4135nnred 12208 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝜓𝑧𝑊)) → 𝑁 ∈ ℝ)
4235nngt0d 12242 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝜓𝑧𝑊)) → 0 < 𝑁)
43 ltdiv1 12054 . . . . . . . . . . . . . . . . . 18 (((𝑀 − 1) ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → ((𝑀 − 1) < 𝑀 ↔ ((𝑀 − 1) / 𝑁) < (𝑀 / 𝑁)))
4434, 32, 41, 42, 43syl112anc 1376 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝜓𝑧𝑊)) → ((𝑀 − 1) < 𝑀 ↔ ((𝑀 − 1) / 𝑁) < (𝑀 / 𝑁)))
4540, 44mpbid 232 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝜓𝑧𝑊)) → ((𝑀 − 1) / 𝑁) < (𝑀 / 𝑁))
4636, 38, 45ltled 11329 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝜓𝑧𝑊)) → ((𝑀 − 1) / 𝑁) ≤ (𝑀 / 𝑁))
47 lbicc2 13432 . . . . . . . . . . . . . . 15 ((((𝑀 − 1) / 𝑁) ∈ ℝ* ∧ (𝑀 / 𝑁) ∈ ℝ* ∧ ((𝑀 − 1) / 𝑁) ≤ (𝑀 / 𝑁)) → ((𝑀 − 1) / 𝑁) ∈ (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁)))
4837, 39, 46, 47syl3anc 1373 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝜓𝑧𝑊)) → ((𝑀 − 1) / 𝑁) ∈ (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁)))
4948, 29eleqtrrdi 2840 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝜓𝑧𝑊)) → ((𝑀 − 1) / 𝑁) ∈ 𝑊)
501, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 29, 49cvmliftlem3 35281 . . . . . . . . . . . 12 ((𝜑 ∧ (𝜓𝑧𝑊)) → (𝐺‘((𝑀 − 1) / 𝑁)) ∈ (1st ‘(𝑇𝑀)))
5128, 50eqeltrd 2829 . . . . . . . . . . 11 ((𝜑 ∧ (𝜓𝑧𝑊)) → (𝐹‘((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁))) ∈ (1st ‘(𝑇𝑀)))
52 eqid 2730 . . . . . . . . . . . 12 (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏) = (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)
531, 2, 52cvmsiota 35271 . . . . . . . . . . 11 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ ((2nd ‘(𝑇𝑀)) ∈ (𝑆‘(1st ‘(𝑇𝑀))) ∧ ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝐵 ∧ (𝐹‘((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁))) ∈ (1st ‘(𝑇𝑀)))) → ((𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏) ∈ (2nd ‘(𝑇𝑀)) ∧ ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)))
5417, 14, 27, 51, 53syl13anc 1374 . . . . . . . . . 10 ((𝜑 ∧ (𝜓𝑧𝑊)) → ((𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏) ∈ (2nd ‘(𝑇𝑀)) ∧ ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)))
5554simpld 494 . . . . . . . . 9 ((𝜑 ∧ (𝜓𝑧𝑊)) → (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏) ∈ (2nd ‘(𝑇𝑀)))
5616, 55sseldd 3950 . . . . . . . 8 ((𝜑 ∧ (𝜓𝑧𝑊)) → (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏) ∈ 𝐶)
57 elssuni 4904 . . . . . . . 8 ((𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏) ∈ 𝐶 → (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏) ⊆ 𝐶)
5856, 57syl 17 . . . . . . 7 ((𝜑 ∧ (𝜓𝑧𝑊)) → (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏) ⊆ 𝐶)
5958, 2sseqtrrdi 3991 . . . . . 6 ((𝜑 ∧ (𝜓𝑧𝑊)) → (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏) ⊆ 𝐵)
601cvmsf1o 35266 . . . . . . . . 9 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (2nd ‘(𝑇𝑀)) ∈ (𝑆‘(1st ‘(𝑇𝑀))) ∧ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏) ∈ (2nd ‘(𝑇𝑀))) → (𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)):(𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)–1-1-onto→(1st ‘(𝑇𝑀)))
6117, 14, 55, 60syl3anc 1373 . . . . . . . 8 ((𝜑 ∧ (𝜓𝑧𝑊)) → (𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)):(𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)–1-1-onto→(1st ‘(𝑇𝑀)))
62 f1ocnv 6815 . . . . . . . 8 ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)):(𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)–1-1-onto→(1st ‘(𝑇𝑀)) → (𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)):(1st ‘(𝑇𝑀))–1-1-onto→(𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))
63 f1of 6803 . . . . . . . 8 ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)):(1st ‘(𝑇𝑀))–1-1-onto→(𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏) → (𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)):(1st ‘(𝑇𝑀))⟶(𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))
6461, 62, 633syl 18 . . . . . . 7 ((𝜑 ∧ (𝜓𝑧𝑊)) → (𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)):(1st ‘(𝑇𝑀))⟶(𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))
65 simprr 772 . . . . . . . 8 ((𝜑 ∧ (𝜓𝑧𝑊)) → 𝑧𝑊)
661, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 29, 65cvmliftlem3 35281 . . . . . . 7 ((𝜑 ∧ (𝜓𝑧𝑊)) → (𝐺𝑧) ∈ (1st ‘(𝑇𝑀)))
6764, 66ffvelcdmd 7060 . . . . . 6 ((𝜑 ∧ (𝜓𝑧𝑊)) → ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧)) ∈ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))
6859, 67sseldd 3950 . . . . 5 ((𝜑 ∧ (𝜓𝑧𝑊)) → ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧)) ∈ 𝐵)
6968anassrs 467 . . . 4 (((𝜑𝜓) ∧ 𝑧𝑊) → ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧)) ∈ 𝐵)
7069fmpttd 7090 . . 3 ((𝜑𝜓) → (𝑧𝑊 ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧))):𝑊𝐵)
7112, 30syl 17 . . . . 5 ((𝜑𝜓) → 𝑀 ∈ ℕ)
72 cvmliftlem.q . . . . . 6 𝑄 = seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧)))), (( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩}))
731, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 72, 29cvmliftlem5 35283 . . . . 5 ((𝜑𝑀 ∈ ℕ) → (𝑄𝑀) = (𝑧𝑊 ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧))))
7471, 73syldan 591 . . . 4 ((𝜑𝜓) → (𝑄𝑀) = (𝑧𝑊 ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧))))
7574feq1d 6673 . . 3 ((𝜑𝜓) → ((𝑄𝑀):𝑊𝐵 ↔ (𝑧𝑊 ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧))):𝑊𝐵))
7670, 75mpbird 257 . 2 ((𝜑𝜓) → (𝑄𝑀):𝑊𝐵)
77 fvres 6880 . . . . . . 7 (𝑧𝑊 → ((𝐺𝑊)‘𝑧) = (𝐺𝑧))
7865, 77syl 17 . . . . . 6 ((𝜑 ∧ (𝜓𝑧𝑊)) → ((𝐺𝑊)‘𝑧) = (𝐺𝑧))
79 f1ocnvfv2 7255 . . . . . . 7 (((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)):(𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)–1-1-onto→(1st ‘(𝑇𝑀)) ∧ (𝐺𝑧) ∈ (1st ‘(𝑇𝑀))) → ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧))) = (𝐺𝑧))
8061, 66, 79syl2anc 584 . . . . . 6 ((𝜑 ∧ (𝜓𝑧𝑊)) → ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧))) = (𝐺𝑧))
81 fvres 6880 . . . . . . 7 (((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧)) ∈ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏) → ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧))) = (𝐹‘((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧))))
8267, 81syl 17 . . . . . 6 ((𝜑 ∧ (𝜓𝑧𝑊)) → ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧))) = (𝐹‘((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧))))
8378, 80, 823eqtr2rd 2772 . . . . 5 ((𝜑 ∧ (𝜓𝑧𝑊)) → (𝐹‘((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧))) = ((𝐺𝑊)‘𝑧))
8483anassrs 467 . . . 4 (((𝜑𝜓) ∧ 𝑧𝑊) → (𝐹‘((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧))) = ((𝐺𝑊)‘𝑧))
8584mpteq2dva 5203 . . 3 ((𝜑𝜓) → (𝑧𝑊 ↦ (𝐹‘((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧)))) = (𝑧𝑊 ↦ ((𝐺𝑊)‘𝑧)))
864, 20, 213syl 18 . . . . . 6 (𝜑𝐹:𝐵𝑋)
8786adantr 480 . . . . 5 ((𝜑𝜓) → 𝐹:𝐵𝑋)
8887feqmptd 6932 . . . 4 ((𝜑𝜓) → 𝐹 = (𝑦𝐵 ↦ (𝐹𝑦)))
89 fveq2 6861 . . . 4 (𝑦 = ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧)) → (𝐹𝑦) = (𝐹‘((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧))))
9069, 74, 88, 89fmptco 7104 . . 3 ((𝜑𝜓) → (𝐹 ∘ (𝑄𝑀)) = (𝑧𝑊 ↦ (𝐹‘((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧)))))
91 iiuni 24781 . . . . . . . 8 (0[,]1) = II
9291, 3cnf 23140 . . . . . . 7 (𝐺 ∈ (II Cn 𝐽) → 𝐺:(0[,]1)⟶𝑋)
935, 92syl 17 . . . . . 6 (𝜑𝐺:(0[,]1)⟶𝑋)
9493adantr 480 . . . . 5 ((𝜑𝜓) → 𝐺:(0[,]1)⟶𝑋)
951, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 29cvmliftlem2 35280 . . . . 5 ((𝜑𝜓) → 𝑊 ⊆ (0[,]1))
9694, 95fssresd 6730 . . . 4 ((𝜑𝜓) → (𝐺𝑊):𝑊𝑋)
9796feqmptd 6932 . . 3 ((𝜑𝜓) → (𝐺𝑊) = (𝑧𝑊 ↦ ((𝐺𝑊)‘𝑧)))
9885, 90, 973eqtr4d 2775 . 2 ((𝜑𝜓) → (𝐹 ∘ (𝑄𝑀)) = (𝐺𝑊))
9976, 98jca 511 1 ((𝜑𝜓) → ((𝑄𝑀):𝑊𝐵 ∧ (𝐹 ∘ (𝑄𝑀)) = (𝐺𝑊)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3045  {crab 3408  Vcvv 3450  cdif 3914  cun 3915  cin 3916  wss 3917  c0 4299  𝒫 cpw 4566  {csn 4592  cop 4598   cuni 4874   ciun 4958   class class class wbr 5110  cmpt 5191   I cid 5535   × cxp 5639  ccnv 5640  ran crn 5642  cres 5643  cima 5644  ccom 5645   Fn wfn 6509  wf 6510  1-1-ontowf1o 6513  cfv 6514  crio 7346  (class class class)co 7390  cmpo 7392  1st c1st 7969  2nd c2nd 7970  cr 11074  0cc0 11075  1c1 11076  *cxr 11214   < clt 11215  cle 11216  cmin 11412   / cdiv 11842  cn 12193  (,)cioo 13313  [,]cicc 13316  ...cfz 13475  seqcseq 13973  t crest 17390  topGenctg 17407   Cn ccn 23118  Homeochmeo 23647  IIcii 24775   CovMap ccvm 35249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fi 9369  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-icc 13320  df-fz 13476  df-seq 13974  df-exp 14034  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-rest 17392  df-topgen 17413  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-top 22788  df-topon 22805  df-bases 22840  df-cn 23121  df-hmeo 23649  df-ii 24777  df-cvm 35250
This theorem is referenced by:  cvmliftlem7  35285  cvmliftlem10  35288  cvmliftlem13  35290
  Copyright terms: Public domain W3C validator