Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmliftlem6 Structured version   Visualization version   GIF version

Theorem cvmliftlem6 32772
Description: Lemma for cvmlift 32781. Induction step for cvmliftlem7 32773. Assuming that 𝑄(𝑀 − 1) is defined at (𝑀 − 1) / 𝑁 and is a preimage of 𝐺((𝑀 − 1) / 𝑁), the next segment 𝑄(𝑀) is also defined and is a function on 𝑊 which is a lift 𝐺 for this segment. This follows explicitly from the definition 𝑄(𝑀) = (𝐹𝐼) ∘ 𝐺 since 𝐺 is in 1st ‘(𝐹𝑀) for the entire interval so that (𝐹𝐼) maps this into 𝐼 and 𝐹𝑄 maps back to 𝐺. (Contributed by Mario Carneiro, 16-Feb-2015.)
Hypotheses
Ref Expression
cvmliftlem.1 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
cvmliftlem.b 𝐵 = 𝐶
cvmliftlem.x 𝑋 = 𝐽
cvmliftlem.f (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
cvmliftlem.g (𝜑𝐺 ∈ (II Cn 𝐽))
cvmliftlem.p (𝜑𝑃𝐵)
cvmliftlem.e (𝜑 → (𝐹𝑃) = (𝐺‘0))
cvmliftlem.n (𝜑𝑁 ∈ ℕ)
cvmliftlem.t (𝜑𝑇:(1...𝑁)⟶ 𝑗𝐽 ({𝑗} × (𝑆𝑗)))
cvmliftlem.a (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇𝑘)))
cvmliftlem.l 𝐿 = (topGen‘ran (,))
cvmliftlem.q 𝑄 = seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧)))), (( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩}))
cvmliftlem5.3 𝑊 = (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁))
cvmliftlem6.1 ((𝜑𝜓) → 𝑀 ∈ (1...𝑁))
cvmliftlem6.2 ((𝜑𝜓) → ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ (𝐹 “ {(𝐺‘((𝑀 − 1) / 𝑁))}))
Assertion
Ref Expression
cvmliftlem6 ((𝜑𝜓) → ((𝑄𝑀):𝑊𝐵 ∧ (𝐹 ∘ (𝑄𝑀)) = (𝐺𝑊)))
Distinct variable groups:   𝑣,𝑏,𝑧,𝐵   𝑗,𝑏,𝑘,𝑚,𝑠,𝑢,𝑥,𝐹,𝑣,𝑧   𝑧,𝐿   𝑀,𝑏,𝑗,𝑘,𝑚,𝑠,𝑢,𝑣,𝑥,𝑧   𝑃,𝑏,𝑘,𝑚,𝑢,𝑣,𝑥,𝑧   𝐶,𝑏,𝑗,𝑘,𝑠,𝑢,𝑣,𝑧   𝜑,𝑗,𝑠,𝑥,𝑧   𝜓,𝑧   𝑁,𝑏,𝑘,𝑚,𝑢,𝑣,𝑥,𝑧   𝑆,𝑏,𝑗,𝑘,𝑠,𝑢,𝑣,𝑥,𝑧   𝑗,𝑋   𝐺,𝑏,𝑗,𝑘,𝑚,𝑠,𝑢,𝑣,𝑥,𝑧   𝑇,𝑏,𝑗,𝑘,𝑚,𝑠,𝑢,𝑣,𝑥,𝑧   𝐽,𝑏,𝑗,𝑘,𝑠,𝑢,𝑣,𝑥,𝑧   𝑄,𝑏,𝑘,𝑚,𝑢,𝑣,𝑥,𝑧   𝑘,𝑊,𝑚,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑣,𝑢,𝑘,𝑚,𝑏)   𝜓(𝑥,𝑣,𝑢,𝑗,𝑘,𝑚,𝑠,𝑏)   𝐵(𝑥,𝑢,𝑗,𝑘,𝑚,𝑠)   𝐶(𝑥,𝑚)   𝑃(𝑗,𝑠)   𝑄(𝑗,𝑠)   𝑆(𝑚)   𝐽(𝑚)   𝐿(𝑥,𝑣,𝑢,𝑗,𝑘,𝑚,𝑠,𝑏)   𝑁(𝑗,𝑠)   𝑊(𝑣,𝑢,𝑗,𝑠,𝑏)   𝑋(𝑥,𝑧,𝑣,𝑢,𝑘,𝑚,𝑠,𝑏)

Proof of Theorem cvmliftlem6
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 cvmliftlem.1 . . . . . . . . . . 11 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
2 cvmliftlem.b . . . . . . . . . . 11 𝐵 = 𝐶
3 cvmliftlem.x . . . . . . . . . . 11 𝑋 = 𝐽
4 cvmliftlem.f . . . . . . . . . . 11 (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
5 cvmliftlem.g . . . . . . . . . . 11 (𝜑𝐺 ∈ (II Cn 𝐽))
6 cvmliftlem.p . . . . . . . . . . 11 (𝜑𝑃𝐵)
7 cvmliftlem.e . . . . . . . . . . 11 (𝜑 → (𝐹𝑃) = (𝐺‘0))
8 cvmliftlem.n . . . . . . . . . . 11 (𝜑𝑁 ∈ ℕ)
9 cvmliftlem.t . . . . . . . . . . 11 (𝜑𝑇:(1...𝑁)⟶ 𝑗𝐽 ({𝑗} × (𝑆𝑗)))
10 cvmliftlem.a . . . . . . . . . . 11 (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇𝑘)))
11 cvmliftlem.l . . . . . . . . . . 11 𝐿 = (topGen‘ran (,))
12 cvmliftlem6.1 . . . . . . . . . . . 12 ((𝜑𝜓) → 𝑀 ∈ (1...𝑁))
1312adantrr 716 . . . . . . . . . . 11 ((𝜑 ∧ (𝜓𝑧𝑊)) → 𝑀 ∈ (1...𝑁))
141, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13cvmliftlem1 32767 . . . . . . . . . 10 ((𝜑 ∧ (𝜓𝑧𝑊)) → (2nd ‘(𝑇𝑀)) ∈ (𝑆‘(1st ‘(𝑇𝑀))))
151cvmsss 32749 . . . . . . . . . 10 ((2nd ‘(𝑇𝑀)) ∈ (𝑆‘(1st ‘(𝑇𝑀))) → (2nd ‘(𝑇𝑀)) ⊆ 𝐶)
1614, 15syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝜓𝑧𝑊)) → (2nd ‘(𝑇𝑀)) ⊆ 𝐶)
174adantr 484 . . . . . . . . . . 11 ((𝜑 ∧ (𝜓𝑧𝑊)) → 𝐹 ∈ (𝐶 CovMap 𝐽))
18 cvmliftlem6.2 . . . . . . . . . . . . . 14 ((𝜑𝜓) → ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ (𝐹 “ {(𝐺‘((𝑀 − 1) / 𝑁))}))
1918adantrr 716 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝜓𝑧𝑊)) → ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ (𝐹 “ {(𝐺‘((𝑀 − 1) / 𝑁))}))
20 cvmcn 32744 . . . . . . . . . . . . . . 15 (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐹 ∈ (𝐶 Cn 𝐽))
212, 3cnf 21951 . . . . . . . . . . . . . . 15 (𝐹 ∈ (𝐶 Cn 𝐽) → 𝐹:𝐵𝑋)
2217, 20, 213syl 18 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝜓𝑧𝑊)) → 𝐹:𝐵𝑋)
23 ffn 6502 . . . . . . . . . . . . . 14 (𝐹:𝐵𝑋𝐹 Fn 𝐵)
24 fniniseg 6825 . . . . . . . . . . . . . 14 (𝐹 Fn 𝐵 → (((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ (𝐹 “ {(𝐺‘((𝑀 − 1) / 𝑁))}) ↔ (((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝐵 ∧ (𝐹‘((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁))) = (𝐺‘((𝑀 − 1) / 𝑁)))))
2522, 23, 243syl 18 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝜓𝑧𝑊)) → (((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ (𝐹 “ {(𝐺‘((𝑀 − 1) / 𝑁))}) ↔ (((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝐵 ∧ (𝐹‘((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁))) = (𝐺‘((𝑀 − 1) / 𝑁)))))
2619, 25mpbid 235 . . . . . . . . . . . 12 ((𝜑 ∧ (𝜓𝑧𝑊)) → (((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝐵 ∧ (𝐹‘((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁))) = (𝐺‘((𝑀 − 1) / 𝑁))))
2726simpld 498 . . . . . . . . . . 11 ((𝜑 ∧ (𝜓𝑧𝑊)) → ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝐵)
2826simprd 499 . . . . . . . . . . . 12 ((𝜑 ∧ (𝜓𝑧𝑊)) → (𝐹‘((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁))) = (𝐺‘((𝑀 − 1) / 𝑁)))
29 cvmliftlem5.3 . . . . . . . . . . . . 13 𝑊 = (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁))
30 elfznn 12990 . . . . . . . . . . . . . . . . . . . 20 (𝑀 ∈ (1...𝑁) → 𝑀 ∈ ℕ)
3113, 30syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝜓𝑧𝑊)) → 𝑀 ∈ ℕ)
3231nnred 11694 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝜓𝑧𝑊)) → 𝑀 ∈ ℝ)
33 peano2rem 10996 . . . . . . . . . . . . . . . . . 18 (𝑀 ∈ ℝ → (𝑀 − 1) ∈ ℝ)
3432, 33syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝜓𝑧𝑊)) → (𝑀 − 1) ∈ ℝ)
358adantr 484 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝜓𝑧𝑊)) → 𝑁 ∈ ℕ)
3634, 35nndivred 11733 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝜓𝑧𝑊)) → ((𝑀 − 1) / 𝑁) ∈ ℝ)
3736rexrd 10734 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝜓𝑧𝑊)) → ((𝑀 − 1) / 𝑁) ∈ ℝ*)
3832, 35nndivred 11733 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝜓𝑧𝑊)) → (𝑀 / 𝑁) ∈ ℝ)
3938rexrd 10734 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝜓𝑧𝑊)) → (𝑀 / 𝑁) ∈ ℝ*)
4032ltm1d 11615 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝜓𝑧𝑊)) → (𝑀 − 1) < 𝑀)
4135nnred 11694 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝜓𝑧𝑊)) → 𝑁 ∈ ℝ)
4235nngt0d 11728 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝜓𝑧𝑊)) → 0 < 𝑁)
43 ltdiv1 11547 . . . . . . . . . . . . . . . . . 18 (((𝑀 − 1) ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → ((𝑀 − 1) < 𝑀 ↔ ((𝑀 − 1) / 𝑁) < (𝑀 / 𝑁)))
4434, 32, 41, 42, 43syl112anc 1371 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝜓𝑧𝑊)) → ((𝑀 − 1) < 𝑀 ↔ ((𝑀 − 1) / 𝑁) < (𝑀 / 𝑁)))
4540, 44mpbid 235 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝜓𝑧𝑊)) → ((𝑀 − 1) / 𝑁) < (𝑀 / 𝑁))
4636, 38, 45ltled 10831 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝜓𝑧𝑊)) → ((𝑀 − 1) / 𝑁) ≤ (𝑀 / 𝑁))
47 lbicc2 12901 . . . . . . . . . . . . . . 15 ((((𝑀 − 1) / 𝑁) ∈ ℝ* ∧ (𝑀 / 𝑁) ∈ ℝ* ∧ ((𝑀 − 1) / 𝑁) ≤ (𝑀 / 𝑁)) → ((𝑀 − 1) / 𝑁) ∈ (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁)))
4837, 39, 46, 47syl3anc 1368 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝜓𝑧𝑊)) → ((𝑀 − 1) / 𝑁) ∈ (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁)))
4948, 29eleqtrrdi 2863 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝜓𝑧𝑊)) → ((𝑀 − 1) / 𝑁) ∈ 𝑊)
501, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 29, 49cvmliftlem3 32769 . . . . . . . . . . . 12 ((𝜑 ∧ (𝜓𝑧𝑊)) → (𝐺‘((𝑀 − 1) / 𝑁)) ∈ (1st ‘(𝑇𝑀)))
5128, 50eqeltrd 2852 . . . . . . . . . . 11 ((𝜑 ∧ (𝜓𝑧𝑊)) → (𝐹‘((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁))) ∈ (1st ‘(𝑇𝑀)))
52 eqid 2758 . . . . . . . . . . . 12 (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏) = (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)
531, 2, 52cvmsiota 32759 . . . . . . . . . . 11 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ ((2nd ‘(𝑇𝑀)) ∈ (𝑆‘(1st ‘(𝑇𝑀))) ∧ ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝐵 ∧ (𝐹‘((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁))) ∈ (1st ‘(𝑇𝑀)))) → ((𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏) ∈ (2nd ‘(𝑇𝑀)) ∧ ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)))
5417, 14, 27, 51, 53syl13anc 1369 . . . . . . . . . 10 ((𝜑 ∧ (𝜓𝑧𝑊)) → ((𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏) ∈ (2nd ‘(𝑇𝑀)) ∧ ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)))
5554simpld 498 . . . . . . . . 9 ((𝜑 ∧ (𝜓𝑧𝑊)) → (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏) ∈ (2nd ‘(𝑇𝑀)))
5616, 55sseldd 3895 . . . . . . . 8 ((𝜑 ∧ (𝜓𝑧𝑊)) → (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏) ∈ 𝐶)
57 elssuni 4833 . . . . . . . 8 ((𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏) ∈ 𝐶 → (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏) ⊆ 𝐶)
5856, 57syl 17 . . . . . . 7 ((𝜑 ∧ (𝜓𝑧𝑊)) → (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏) ⊆ 𝐶)
5958, 2sseqtrrdi 3945 . . . . . 6 ((𝜑 ∧ (𝜓𝑧𝑊)) → (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏) ⊆ 𝐵)
601cvmsf1o 32754 . . . . . . . . 9 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (2nd ‘(𝑇𝑀)) ∈ (𝑆‘(1st ‘(𝑇𝑀))) ∧ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏) ∈ (2nd ‘(𝑇𝑀))) → (𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)):(𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)–1-1-onto→(1st ‘(𝑇𝑀)))
6117, 14, 55, 60syl3anc 1368 . . . . . . . 8 ((𝜑 ∧ (𝜓𝑧𝑊)) → (𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)):(𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)–1-1-onto→(1st ‘(𝑇𝑀)))
62 f1ocnv 6618 . . . . . . . 8 ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)):(𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)–1-1-onto→(1st ‘(𝑇𝑀)) → (𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)):(1st ‘(𝑇𝑀))–1-1-onto→(𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))
63 f1of 6606 . . . . . . . 8 ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)):(1st ‘(𝑇𝑀))–1-1-onto→(𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏) → (𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)):(1st ‘(𝑇𝑀))⟶(𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))
6461, 62, 633syl 18 . . . . . . 7 ((𝜑 ∧ (𝜓𝑧𝑊)) → (𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)):(1st ‘(𝑇𝑀))⟶(𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))
65 simprr 772 . . . . . . . 8 ((𝜑 ∧ (𝜓𝑧𝑊)) → 𝑧𝑊)
661, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 29, 65cvmliftlem3 32769 . . . . . . 7 ((𝜑 ∧ (𝜓𝑧𝑊)) → (𝐺𝑧) ∈ (1st ‘(𝑇𝑀)))
6764, 66ffvelrnd 6848 . . . . . 6 ((𝜑 ∧ (𝜓𝑧𝑊)) → ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧)) ∈ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))
6859, 67sseldd 3895 . . . . 5 ((𝜑 ∧ (𝜓𝑧𝑊)) → ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧)) ∈ 𝐵)
6968anassrs 471 . . . 4 (((𝜑𝜓) ∧ 𝑧𝑊) → ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧)) ∈ 𝐵)
7069fmpttd 6875 . . 3 ((𝜑𝜓) → (𝑧𝑊 ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧))):𝑊𝐵)
7112, 30syl 17 . . . . 5 ((𝜑𝜓) → 𝑀 ∈ ℕ)
72 cvmliftlem.q . . . . . 6 𝑄 = seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧)))), (( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩}))
731, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 72, 29cvmliftlem5 32771 . . . . 5 ((𝜑𝑀 ∈ ℕ) → (𝑄𝑀) = (𝑧𝑊 ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧))))
7471, 73syldan 594 . . . 4 ((𝜑𝜓) → (𝑄𝑀) = (𝑧𝑊 ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧))))
7574feq1d 6487 . . 3 ((𝜑𝜓) → ((𝑄𝑀):𝑊𝐵 ↔ (𝑧𝑊 ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧))):𝑊𝐵))
7670, 75mpbird 260 . 2 ((𝜑𝜓) → (𝑄𝑀):𝑊𝐵)
77 fvres 6681 . . . . . . 7 (𝑧𝑊 → ((𝐺𝑊)‘𝑧) = (𝐺𝑧))
7865, 77syl 17 . . . . . 6 ((𝜑 ∧ (𝜓𝑧𝑊)) → ((𝐺𝑊)‘𝑧) = (𝐺𝑧))
79 f1ocnvfv2 7031 . . . . . . 7 (((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)):(𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)–1-1-onto→(1st ‘(𝑇𝑀)) ∧ (𝐺𝑧) ∈ (1st ‘(𝑇𝑀))) → ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧))) = (𝐺𝑧))
8061, 66, 79syl2anc 587 . . . . . 6 ((𝜑 ∧ (𝜓𝑧𝑊)) → ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧))) = (𝐺𝑧))
81 fvres 6681 . . . . . . 7 (((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧)) ∈ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏) → ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧))) = (𝐹‘((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧))))
8267, 81syl 17 . . . . . 6 ((𝜑 ∧ (𝜓𝑧𝑊)) → ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧))) = (𝐹‘((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧))))
8378, 80, 823eqtr2rd 2800 . . . . 5 ((𝜑 ∧ (𝜓𝑧𝑊)) → (𝐹‘((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧))) = ((𝐺𝑊)‘𝑧))
8483anassrs 471 . . . 4 (((𝜑𝜓) ∧ 𝑧𝑊) → (𝐹‘((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧))) = ((𝐺𝑊)‘𝑧))
8584mpteq2dva 5130 . . 3 ((𝜑𝜓) → (𝑧𝑊 ↦ (𝐹‘((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧)))) = (𝑧𝑊 ↦ ((𝐺𝑊)‘𝑧)))
864, 20, 213syl 18 . . . . . 6 (𝜑𝐹:𝐵𝑋)
8786adantr 484 . . . . 5 ((𝜑𝜓) → 𝐹:𝐵𝑋)
8887feqmptd 6725 . . . 4 ((𝜑𝜓) → 𝐹 = (𝑦𝐵 ↦ (𝐹𝑦)))
89 fveq2 6662 . . . 4 (𝑦 = ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧)) → (𝐹𝑦) = (𝐹‘((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧))))
9069, 74, 88, 89fmptco 6887 . . 3 ((𝜑𝜓) → (𝐹 ∘ (𝑄𝑀)) = (𝑧𝑊 ↦ (𝐹‘((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧)))))
91 iiuni 23587 . . . . . . . 8 (0[,]1) = II
9291, 3cnf 21951 . . . . . . 7 (𝐺 ∈ (II Cn 𝐽) → 𝐺:(0[,]1)⟶𝑋)
935, 92syl 17 . . . . . 6 (𝜑𝐺:(0[,]1)⟶𝑋)
9493adantr 484 . . . . 5 ((𝜑𝜓) → 𝐺:(0[,]1)⟶𝑋)
951, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 29cvmliftlem2 32768 . . . . 5 ((𝜑𝜓) → 𝑊 ⊆ (0[,]1))
9694, 95fssresd 6534 . . . 4 ((𝜑𝜓) → (𝐺𝑊):𝑊𝑋)
9796feqmptd 6725 . . 3 ((𝜑𝜓) → (𝐺𝑊) = (𝑧𝑊 ↦ ((𝐺𝑊)‘𝑧)))
9885, 90, 973eqtr4d 2803 . 2 ((𝜑𝜓) → (𝐹 ∘ (𝑄𝑀)) = (𝐺𝑊))
9976, 98jca 515 1 ((𝜑𝜓) → ((𝑄𝑀):𝑊𝐵 ∧ (𝐹 ∘ (𝑄𝑀)) = (𝐺𝑊)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wral 3070  {crab 3074  Vcvv 3409  cdif 3857  cun 3858  cin 3859  wss 3860  c0 4227  𝒫 cpw 4497  {csn 4525  cop 4531   cuni 4801   ciun 4886   class class class wbr 5035  cmpt 5115   I cid 5432   × cxp 5525  ccnv 5526  ran crn 5528  cres 5529  cima 5530  ccom 5531   Fn wfn 6334  wf 6335  1-1-ontowf1o 6338  cfv 6339  crio 7112  (class class class)co 7155  cmpo 7157  1st c1st 7696  2nd c2nd 7697  cr 10579  0cc0 10580  1c1 10581  *cxr 10717   < clt 10718  cle 10719  cmin 10913   / cdiv 11340  cn 11679  (,)cioo 12784  [,]cicc 12787  ...cfz 12944  seqcseq 13423  t crest 16757  topGenctg 16774   Cn ccn 21929  Homeochmeo 22458  IIcii 23581   CovMap ccvm 32737
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5159  ax-sep 5172  ax-nul 5179  ax-pow 5237  ax-pr 5301  ax-un 7464  ax-cnex 10636  ax-resscn 10637  ax-1cn 10638  ax-icn 10639  ax-addcl 10640  ax-addrcl 10641  ax-mulcl 10642  ax-mulrcl 10643  ax-mulcom 10644  ax-addass 10645  ax-mulass 10646  ax-distr 10647  ax-i2m1 10648  ax-1ne0 10649  ax-1rid 10650  ax-rnegex 10651  ax-rrecex 10652  ax-cnre 10653  ax-pre-lttri 10654  ax-pre-lttrn 10655  ax-pre-ltadd 10656  ax-pre-mulgt0 10657  ax-pre-sup 10658
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4842  df-iun 4888  df-br 5036  df-opab 5098  df-mpt 5116  df-tr 5142  df-id 5433  df-eprel 5438  df-po 5446  df-so 5447  df-fr 5486  df-we 5488  df-xp 5533  df-rel 5534  df-cnv 5535  df-co 5536  df-dm 5537  df-rn 5538  df-res 5539  df-ima 5540  df-pred 6130  df-ord 6176  df-on 6177  df-lim 6178  df-suc 6179  df-iota 6298  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7585  df-1st 7698  df-2nd 7699  df-wrecs 7962  df-recs 8023  df-rdg 8061  df-er 8304  df-map 8423  df-en 8533  df-dom 8534  df-sdom 8535  df-fin 8536  df-fi 8913  df-sup 8944  df-inf 8945  df-pnf 10720  df-mnf 10721  df-xr 10722  df-ltxr 10723  df-le 10724  df-sub 10915  df-neg 10916  df-div 11341  df-nn 11680  df-2 11742  df-3 11743  df-n0 11940  df-z 12026  df-uz 12288  df-q 12394  df-rp 12436  df-xneg 12553  df-xadd 12554  df-xmul 12555  df-icc 12791  df-fz 12945  df-seq 13424  df-exp 13485  df-cj 14511  df-re 14512  df-im 14513  df-sqrt 14647  df-abs 14648  df-rest 16759  df-topgen 16780  df-psmet 20163  df-xmet 20164  df-met 20165  df-bl 20166  df-mopn 20167  df-top 21599  df-topon 21616  df-bases 21651  df-cn 21932  df-hmeo 22460  df-ii 23583  df-cvm 32738
This theorem is referenced by:  cvmliftlem7  32773  cvmliftlem10  32776  cvmliftlem13  32778
  Copyright terms: Public domain W3C validator