| Step | Hyp | Ref
| Expression |
| 1 | | cvmliftlem.1 |
. . . . . . . . . . 11
⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 =
(◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) |
| 2 | | cvmliftlem.b |
. . . . . . . . . . 11
⊢ 𝐵 = ∪
𝐶 |
| 3 | | cvmliftlem.x |
. . . . . . . . . . 11
⊢ 𝑋 = ∪
𝐽 |
| 4 | | cvmliftlem.f |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) |
| 5 | | cvmliftlem.g |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) |
| 6 | | cvmliftlem.p |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑃 ∈ 𝐵) |
| 7 | | cvmliftlem.e |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘0)) |
| 8 | | cvmliftlem.n |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑁 ∈ ℕ) |
| 9 | | cvmliftlem.t |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑇:(1...𝑁)⟶∪
𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗))) |
| 10 | | cvmliftlem.a |
. . . . . . . . . . 11
⊢ (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇‘𝑘))) |
| 11 | | cvmliftlem.l |
. . . . . . . . . . 11
⊢ 𝐿 = (topGen‘ran
(,)) |
| 12 | | cvmliftlem6.1 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝜓) → 𝑀 ∈ (1...𝑁)) |
| 13 | 12 | adantrr 717 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝜓 ∧ 𝑧 ∈ 𝑊)) → 𝑀 ∈ (1...𝑁)) |
| 14 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 13 | cvmliftlem1 35290 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝜓 ∧ 𝑧 ∈ 𝑊)) → (2nd ‘(𝑇‘𝑀)) ∈ (𝑆‘(1st ‘(𝑇‘𝑀)))) |
| 15 | 1 | cvmsss 35272 |
. . . . . . . . . 10
⊢
((2nd ‘(𝑇‘𝑀)) ∈ (𝑆‘(1st ‘(𝑇‘𝑀))) → (2nd ‘(𝑇‘𝑀)) ⊆ 𝐶) |
| 16 | 14, 15 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝜓 ∧ 𝑧 ∈ 𝑊)) → (2nd ‘(𝑇‘𝑀)) ⊆ 𝐶) |
| 17 | 4 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝜓 ∧ 𝑧 ∈ 𝑊)) → 𝐹 ∈ (𝐶 CovMap 𝐽)) |
| 18 | | cvmliftlem6.2 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝜓) → ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ (◡𝐹 “ {(𝐺‘((𝑀 − 1) / 𝑁))})) |
| 19 | 18 | adantrr 717 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝜓 ∧ 𝑧 ∈ 𝑊)) → ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ (◡𝐹 “ {(𝐺‘((𝑀 − 1) / 𝑁))})) |
| 20 | | cvmcn 35267 |
. . . . . . . . . . . . . . 15
⊢ (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐹 ∈ (𝐶 Cn 𝐽)) |
| 21 | 2, 3 | cnf 23254 |
. . . . . . . . . . . . . . 15
⊢ (𝐹 ∈ (𝐶 Cn 𝐽) → 𝐹:𝐵⟶𝑋) |
| 22 | 17, 20, 21 | 3syl 18 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝜓 ∧ 𝑧 ∈ 𝑊)) → 𝐹:𝐵⟶𝑋) |
| 23 | | ffn 6736 |
. . . . . . . . . . . . . 14
⊢ (𝐹:𝐵⟶𝑋 → 𝐹 Fn 𝐵) |
| 24 | | fniniseg 7080 |
. . . . . . . . . . . . . 14
⊢ (𝐹 Fn 𝐵 → (((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ (◡𝐹 “ {(𝐺‘((𝑀 − 1) / 𝑁))}) ↔ (((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝐵 ∧ (𝐹‘((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁))) = (𝐺‘((𝑀 − 1) / 𝑁))))) |
| 25 | 22, 23, 24 | 3syl 18 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝜓 ∧ 𝑧 ∈ 𝑊)) → (((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ (◡𝐹 “ {(𝐺‘((𝑀 − 1) / 𝑁))}) ↔ (((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝐵 ∧ (𝐹‘((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁))) = (𝐺‘((𝑀 − 1) / 𝑁))))) |
| 26 | 19, 25 | mpbid 232 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝜓 ∧ 𝑧 ∈ 𝑊)) → (((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝐵 ∧ (𝐹‘((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁))) = (𝐺‘((𝑀 − 1) / 𝑁)))) |
| 27 | 26 | simpld 494 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝜓 ∧ 𝑧 ∈ 𝑊)) → ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝐵) |
| 28 | 26 | simprd 495 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝜓 ∧ 𝑧 ∈ 𝑊)) → (𝐹‘((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁))) = (𝐺‘((𝑀 − 1) / 𝑁))) |
| 29 | | cvmliftlem5.3 |
. . . . . . . . . . . . 13
⊢ 𝑊 = (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁)) |
| 30 | | elfznn 13593 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑀 ∈ (1...𝑁) → 𝑀 ∈ ℕ) |
| 31 | 13, 30 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝜓 ∧ 𝑧 ∈ 𝑊)) → 𝑀 ∈ ℕ) |
| 32 | 31 | nnred 12281 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝜓 ∧ 𝑧 ∈ 𝑊)) → 𝑀 ∈ ℝ) |
| 33 | | peano2rem 11576 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑀 ∈ ℝ → (𝑀 − 1) ∈
ℝ) |
| 34 | 32, 33 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝜓 ∧ 𝑧 ∈ 𝑊)) → (𝑀 − 1) ∈ ℝ) |
| 35 | 8 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝜓 ∧ 𝑧 ∈ 𝑊)) → 𝑁 ∈ ℕ) |
| 36 | 34, 35 | nndivred 12320 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝜓 ∧ 𝑧 ∈ 𝑊)) → ((𝑀 − 1) / 𝑁) ∈ ℝ) |
| 37 | 36 | rexrd 11311 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝜓 ∧ 𝑧 ∈ 𝑊)) → ((𝑀 − 1) / 𝑁) ∈
ℝ*) |
| 38 | 32, 35 | nndivred 12320 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝜓 ∧ 𝑧 ∈ 𝑊)) → (𝑀 / 𝑁) ∈ ℝ) |
| 39 | 38 | rexrd 11311 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝜓 ∧ 𝑧 ∈ 𝑊)) → (𝑀 / 𝑁) ∈
ℝ*) |
| 40 | 32 | ltm1d 12200 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝜓 ∧ 𝑧 ∈ 𝑊)) → (𝑀 − 1) < 𝑀) |
| 41 | 35 | nnred 12281 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝜓 ∧ 𝑧 ∈ 𝑊)) → 𝑁 ∈ ℝ) |
| 42 | 35 | nngt0d 12315 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝜓 ∧ 𝑧 ∈ 𝑊)) → 0 < 𝑁) |
| 43 | | ltdiv1 12132 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑀 − 1) ∈ ℝ ∧
𝑀 ∈ ℝ ∧
(𝑁 ∈ ℝ ∧ 0
< 𝑁)) → ((𝑀 − 1) < 𝑀 ↔ ((𝑀 − 1) / 𝑁) < (𝑀 / 𝑁))) |
| 44 | 34, 32, 41, 42, 43 | syl112anc 1376 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝜓 ∧ 𝑧 ∈ 𝑊)) → ((𝑀 − 1) < 𝑀 ↔ ((𝑀 − 1) / 𝑁) < (𝑀 / 𝑁))) |
| 45 | 40, 44 | mpbid 232 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝜓 ∧ 𝑧 ∈ 𝑊)) → ((𝑀 − 1) / 𝑁) < (𝑀 / 𝑁)) |
| 46 | 36, 38, 45 | ltled 11409 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝜓 ∧ 𝑧 ∈ 𝑊)) → ((𝑀 − 1) / 𝑁) ≤ (𝑀 / 𝑁)) |
| 47 | | lbicc2 13504 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑀 − 1) / 𝑁) ∈ ℝ* ∧ (𝑀 / 𝑁) ∈ ℝ* ∧ ((𝑀 − 1) / 𝑁) ≤ (𝑀 / 𝑁)) → ((𝑀 − 1) / 𝑁) ∈ (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁))) |
| 48 | 37, 39, 46, 47 | syl3anc 1373 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝜓 ∧ 𝑧 ∈ 𝑊)) → ((𝑀 − 1) / 𝑁) ∈ (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁))) |
| 49 | 48, 29 | eleqtrrdi 2852 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝜓 ∧ 𝑧 ∈ 𝑊)) → ((𝑀 − 1) / 𝑁) ∈ 𝑊) |
| 50 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 13, 29, 49 | cvmliftlem3 35292 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝜓 ∧ 𝑧 ∈ 𝑊)) → (𝐺‘((𝑀 − 1) / 𝑁)) ∈ (1st ‘(𝑇‘𝑀))) |
| 51 | 28, 50 | eqeltrd 2841 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝜓 ∧ 𝑧 ∈ 𝑊)) → (𝐹‘((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁))) ∈ (1st ‘(𝑇‘𝑀))) |
| 52 | | eqid 2737 |
. . . . . . . . . . . 12
⊢
(℩𝑏
∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏) = (℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏) |
| 53 | 1, 2, 52 | cvmsiota 35282 |
. . . . . . . . . . 11
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ ((2nd ‘(𝑇‘𝑀)) ∈ (𝑆‘(1st ‘(𝑇‘𝑀))) ∧ ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝐵 ∧ (𝐹‘((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁))) ∈ (1st ‘(𝑇‘𝑀)))) → ((℩𝑏 ∈ (2nd
‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏) ∈ (2nd ‘(𝑇‘𝑀)) ∧ ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))) |
| 54 | 17, 14, 27, 51, 53 | syl13anc 1374 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝜓 ∧ 𝑧 ∈ 𝑊)) → ((℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏) ∈ (2nd ‘(𝑇‘𝑀)) ∧ ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))) |
| 55 | 54 | simpld 494 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝜓 ∧ 𝑧 ∈ 𝑊)) → (℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏) ∈ (2nd ‘(𝑇‘𝑀))) |
| 56 | 16, 55 | sseldd 3984 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝜓 ∧ 𝑧 ∈ 𝑊)) → (℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏) ∈ 𝐶) |
| 57 | | elssuni 4937 |
. . . . . . . 8
⊢
((℩𝑏
∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏) ∈ 𝐶 → (℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏) ⊆ ∪ 𝐶) |
| 58 | 56, 57 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝜓 ∧ 𝑧 ∈ 𝑊)) → (℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏) ⊆ ∪ 𝐶) |
| 59 | 58, 2 | sseqtrrdi 4025 |
. . . . . 6
⊢ ((𝜑 ∧ (𝜓 ∧ 𝑧 ∈ 𝑊)) → (℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏) ⊆ 𝐵) |
| 60 | 1 | cvmsf1o 35277 |
. . . . . . . . 9
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (2nd ‘(𝑇‘𝑀)) ∈ (𝑆‘(1st ‘(𝑇‘𝑀))) ∧ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏) ∈ (2nd ‘(𝑇‘𝑀))) → (𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)):(℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)–1-1-onto→(1st ‘(𝑇‘𝑀))) |
| 61 | 17, 14, 55, 60 | syl3anc 1373 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝜓 ∧ 𝑧 ∈ 𝑊)) → (𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)):(℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)–1-1-onto→(1st ‘(𝑇‘𝑀))) |
| 62 | | f1ocnv 6860 |
. . . . . . . 8
⊢ ((𝐹 ↾ (℩𝑏 ∈ (2nd
‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)):(℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)–1-1-onto→(1st ‘(𝑇‘𝑀)) → ◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)):(1st ‘(𝑇‘𝑀))–1-1-onto→(℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)) |
| 63 | | f1of 6848 |
. . . . . . . 8
⊢ (◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)):(1st ‘(𝑇‘𝑀))–1-1-onto→(℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏) → ◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)):(1st ‘(𝑇‘𝑀))⟶(℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)) |
| 64 | 61, 62, 63 | 3syl 18 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝜓 ∧ 𝑧 ∈ 𝑊)) → ◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)):(1st ‘(𝑇‘𝑀))⟶(℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)) |
| 65 | | simprr 773 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝜓 ∧ 𝑧 ∈ 𝑊)) → 𝑧 ∈ 𝑊) |
| 66 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 13, 29, 65 | cvmliftlem3 35292 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝜓 ∧ 𝑧 ∈ 𝑊)) → (𝐺‘𝑧) ∈ (1st ‘(𝑇‘𝑀))) |
| 67 | 64, 66 | ffvelcdmd 7105 |
. . . . . 6
⊢ ((𝜑 ∧ (𝜓 ∧ 𝑧 ∈ 𝑊)) → (◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘𝑧)) ∈ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)) |
| 68 | 59, 67 | sseldd 3984 |
. . . . 5
⊢ ((𝜑 ∧ (𝜓 ∧ 𝑧 ∈ 𝑊)) → (◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘𝑧)) ∈ 𝐵) |
| 69 | 68 | anassrs 467 |
. . . 4
⊢ (((𝜑 ∧ 𝜓) ∧ 𝑧 ∈ 𝑊) → (◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘𝑧)) ∈ 𝐵) |
| 70 | 69 | fmpttd 7135 |
. . 3
⊢ ((𝜑 ∧ 𝜓) → (𝑧 ∈ 𝑊 ↦ (◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘𝑧))):𝑊⟶𝐵) |
| 71 | 12, 30 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ 𝜓) → 𝑀 ∈ ℕ) |
| 72 | | cvmliftlem.q |
. . . . . 6
⊢ 𝑄 = seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ (◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘𝑧)))), (( I ↾ ℕ) ∪ {〈0,
{〈0, 𝑃〉}〉})) |
| 73 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 72, 29 | cvmliftlem5 35294 |
. . . . 5
⊢ ((𝜑 ∧ 𝑀 ∈ ℕ) → (𝑄‘𝑀) = (𝑧 ∈ 𝑊 ↦ (◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘𝑧)))) |
| 74 | 71, 73 | syldan 591 |
. . . 4
⊢ ((𝜑 ∧ 𝜓) → (𝑄‘𝑀) = (𝑧 ∈ 𝑊 ↦ (◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘𝑧)))) |
| 75 | 74 | feq1d 6720 |
. . 3
⊢ ((𝜑 ∧ 𝜓) → ((𝑄‘𝑀):𝑊⟶𝐵 ↔ (𝑧 ∈ 𝑊 ↦ (◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘𝑧))):𝑊⟶𝐵)) |
| 76 | 70, 75 | mpbird 257 |
. 2
⊢ ((𝜑 ∧ 𝜓) → (𝑄‘𝑀):𝑊⟶𝐵) |
| 77 | | fvres 6925 |
. . . . . . 7
⊢ (𝑧 ∈ 𝑊 → ((𝐺 ↾ 𝑊)‘𝑧) = (𝐺‘𝑧)) |
| 78 | 65, 77 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ (𝜓 ∧ 𝑧 ∈ 𝑊)) → ((𝐺 ↾ 𝑊)‘𝑧) = (𝐺‘𝑧)) |
| 79 | | f1ocnvfv2 7297 |
. . . . . . 7
⊢ (((𝐹 ↾ (℩𝑏 ∈ (2nd
‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)):(℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)–1-1-onto→(1st ‘(𝑇‘𝑀)) ∧ (𝐺‘𝑧) ∈ (1st ‘(𝑇‘𝑀))) → ((𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘𝑧))) = (𝐺‘𝑧)) |
| 80 | 61, 66, 79 | syl2anc 584 |
. . . . . 6
⊢ ((𝜑 ∧ (𝜓 ∧ 𝑧 ∈ 𝑊)) → ((𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘𝑧))) = (𝐺‘𝑧)) |
| 81 | | fvres 6925 |
. . . . . . 7
⊢ ((◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘𝑧)) ∈ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏) → ((𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘𝑧))) = (𝐹‘(◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘𝑧)))) |
| 82 | 67, 81 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ (𝜓 ∧ 𝑧 ∈ 𝑊)) → ((𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘𝑧))) = (𝐹‘(◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘𝑧)))) |
| 83 | 78, 80, 82 | 3eqtr2rd 2784 |
. . . . 5
⊢ ((𝜑 ∧ (𝜓 ∧ 𝑧 ∈ 𝑊)) → (𝐹‘(◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘𝑧))) = ((𝐺 ↾ 𝑊)‘𝑧)) |
| 84 | 83 | anassrs 467 |
. . . 4
⊢ (((𝜑 ∧ 𝜓) ∧ 𝑧 ∈ 𝑊) → (𝐹‘(◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘𝑧))) = ((𝐺 ↾ 𝑊)‘𝑧)) |
| 85 | 84 | mpteq2dva 5242 |
. . 3
⊢ ((𝜑 ∧ 𝜓) → (𝑧 ∈ 𝑊 ↦ (𝐹‘(◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘𝑧)))) = (𝑧 ∈ 𝑊 ↦ ((𝐺 ↾ 𝑊)‘𝑧))) |
| 86 | 4, 20, 21 | 3syl 18 |
. . . . . 6
⊢ (𝜑 → 𝐹:𝐵⟶𝑋) |
| 87 | 86 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝜓) → 𝐹:𝐵⟶𝑋) |
| 88 | 87 | feqmptd 6977 |
. . . 4
⊢ ((𝜑 ∧ 𝜓) → 𝐹 = (𝑦 ∈ 𝐵 ↦ (𝐹‘𝑦))) |
| 89 | | fveq2 6906 |
. . . 4
⊢ (𝑦 = (◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘𝑧)) → (𝐹‘𝑦) = (𝐹‘(◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘𝑧)))) |
| 90 | 69, 74, 88, 89 | fmptco 7149 |
. . 3
⊢ ((𝜑 ∧ 𝜓) → (𝐹 ∘ (𝑄‘𝑀)) = (𝑧 ∈ 𝑊 ↦ (𝐹‘(◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘𝑧))))) |
| 91 | | iiuni 24907 |
. . . . . . . 8
⊢ (0[,]1) =
∪ II |
| 92 | 91, 3 | cnf 23254 |
. . . . . . 7
⊢ (𝐺 ∈ (II Cn 𝐽) → 𝐺:(0[,]1)⟶𝑋) |
| 93 | 5, 92 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝐺:(0[,]1)⟶𝑋) |
| 94 | 93 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝜓) → 𝐺:(0[,]1)⟶𝑋) |
| 95 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 29 | cvmliftlem2 35291 |
. . . . 5
⊢ ((𝜑 ∧ 𝜓) → 𝑊 ⊆ (0[,]1)) |
| 96 | 94, 95 | fssresd 6775 |
. . . 4
⊢ ((𝜑 ∧ 𝜓) → (𝐺 ↾ 𝑊):𝑊⟶𝑋) |
| 97 | 96 | feqmptd 6977 |
. . 3
⊢ ((𝜑 ∧ 𝜓) → (𝐺 ↾ 𝑊) = (𝑧 ∈ 𝑊 ↦ ((𝐺 ↾ 𝑊)‘𝑧))) |
| 98 | 85, 90, 97 | 3eqtr4d 2787 |
. 2
⊢ ((𝜑 ∧ 𝜓) → (𝐹 ∘ (𝑄‘𝑀)) = (𝐺 ↾ 𝑊)) |
| 99 | 76, 98 | jca 511 |
1
⊢ ((𝜑 ∧ 𝜓) → ((𝑄‘𝑀):𝑊⟶𝐵 ∧ (𝐹 ∘ (𝑄‘𝑀)) = (𝐺 ↾ 𝑊))) |