MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrisum0fval Structured version   Visualization version   GIF version

Theorem dchrisum0fval 27422
Description: Value of the function 𝐹, the divisor sum of a Dirichlet character. (Contributed by Mario Carneiro, 5-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z 𝑍 = (ℤ/nℤ‘𝑁)
rpvmasum.l 𝐿 = (ℤRHom‘𝑍)
rpvmasum.a (𝜑𝑁 ∈ ℕ)
rpvmasum2.g 𝐺 = (DChr‘𝑁)
rpvmasum2.d 𝐷 = (Base‘𝐺)
rpvmasum2.1 1 = (0g𝐺)
dchrisum0f.f 𝐹 = (𝑏 ∈ ℕ ↦ Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝑏} (𝑋‘(𝐿𝑣)))
Assertion
Ref Expression
dchrisum0fval (𝐴 ∈ ℕ → (𝐹𝐴) = Σ𝑡 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝐴} (𝑋‘(𝐿𝑡)))
Distinct variable groups:   𝑡, 1   𝑡,𝐹   𝑞,𝑏,𝑡,𝑣,𝐴   𝑁,𝑞,𝑡   𝜑,𝑡   𝑡,𝐷   𝐿,𝑏,𝑡,𝑣   𝑋,𝑏,𝑡,𝑣
Allowed substitution hints:   𝜑(𝑣,𝑞,𝑏)   𝐷(𝑣,𝑞,𝑏)   1 (𝑣,𝑞,𝑏)   𝐹(𝑣,𝑞,𝑏)   𝐺(𝑣,𝑡,𝑞,𝑏)   𝐿(𝑞)   𝑁(𝑣,𝑏)   𝑋(𝑞)   𝑍(𝑣,𝑡,𝑞,𝑏)

Proof of Theorem dchrisum0fval
StepHypRef Expression
1 breq2 5113 . . . . 5 (𝑏 = 𝐴 → (𝑞𝑏𝑞𝐴))
21rabbidv 3416 . . . 4 (𝑏 = 𝐴 → {𝑞 ∈ ℕ ∣ 𝑞𝑏} = {𝑞 ∈ ℕ ∣ 𝑞𝐴})
32sumeq1d 15672 . . 3 (𝑏 = 𝐴 → Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝑏} (𝑋‘(𝐿𝑣)) = Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝐴} (𝑋‘(𝐿𝑣)))
4 2fveq3 6865 . . . 4 (𝑣 = 𝑡 → (𝑋‘(𝐿𝑣)) = (𝑋‘(𝐿𝑡)))
54cbvsumv 15668 . . 3 Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝐴} (𝑋‘(𝐿𝑣)) = Σ𝑡 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝐴} (𝑋‘(𝐿𝑡))
63, 5eqtrdi 2781 . 2 (𝑏 = 𝐴 → Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝑏} (𝑋‘(𝐿𝑣)) = Σ𝑡 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝐴} (𝑋‘(𝐿𝑡)))
7 dchrisum0f.f . 2 𝐹 = (𝑏 ∈ ℕ ↦ Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝑏} (𝑋‘(𝐿𝑣)))
8 sumex 15660 . 2 Σ𝑡 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝐴} (𝑋‘(𝐿𝑡)) ∈ V
96, 7, 8fvmpt 6970 1 (𝐴 ∈ ℕ → (𝐹𝐴) = Σ𝑡 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝐴} (𝑋‘(𝐿𝑡)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  {crab 3408   class class class wbr 5109  cmpt 5190  cfv 6513  cn 12187  Σcsu 15658  cdvds 16228  Basecbs 17185  0gc0g 17408  ℤRHomczrh 21415  ℤ/nczn 21418  DChrcdchr 27149
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pr 5389
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-iota 6466  df-fun 6515  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-ov 7392  df-oprab 7393  df-mpo 7394  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-seq 13973  df-sum 15659
This theorem is referenced by:  dchrisum0fmul  27423  dchrisum0flblem1  27425  dchrisum0  27437
  Copyright terms: Public domain W3C validator