![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dchrisum0fval | Structured version Visualization version GIF version |
Description: Value of the function πΉ, the divisor sum of a Dirichlet character. (Contributed by Mario Carneiro, 5-May-2016.) |
Ref | Expression |
---|---|
rpvmasum.z | β’ π = (β€/nβ€βπ) |
rpvmasum.l | β’ πΏ = (β€RHomβπ) |
rpvmasum.a | β’ (π β π β β) |
rpvmasum2.g | β’ πΊ = (DChrβπ) |
rpvmasum2.d | β’ π· = (BaseβπΊ) |
rpvmasum2.1 | β’ 1 = (0gβπΊ) |
dchrisum0f.f | β’ πΉ = (π β β β¦ Ξ£π£ β {π β β β£ π β₯ π} (πβ(πΏβπ£))) |
Ref | Expression |
---|---|
dchrisum0fval | β’ (π΄ β β β (πΉβπ΄) = Ξ£π‘ β {π β β β£ π β₯ π΄} (πβ(πΏβπ‘))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq2 5148 | . . . . 5 β’ (π = π΄ β (π β₯ π β π β₯ π΄)) | |
2 | 1 | rabbidv 3427 | . . . 4 β’ (π = π΄ β {π β β β£ π β₯ π} = {π β β β£ π β₯ π΄}) |
3 | 2 | sumeq1d 15674 | . . 3 β’ (π = π΄ β Ξ£π£ β {π β β β£ π β₯ π} (πβ(πΏβπ£)) = Ξ£π£ β {π β β β£ π β₯ π΄} (πβ(πΏβπ£))) |
4 | 2fveq3 6895 | . . . 4 β’ (π£ = π‘ β (πβ(πΏβπ£)) = (πβ(πΏβπ‘))) | |
5 | 4 | cbvsumv 15669 | . . 3 β’ Ξ£π£ β {π β β β£ π β₯ π΄} (πβ(πΏβπ£)) = Ξ£π‘ β {π β β β£ π β₯ π΄} (πβ(πΏβπ‘)) |
6 | 3, 5 | eqtrdi 2781 | . 2 β’ (π = π΄ β Ξ£π£ β {π β β β£ π β₯ π} (πβ(πΏβπ£)) = Ξ£π‘ β {π β β β£ π β₯ π΄} (πβ(πΏβπ‘))) |
7 | dchrisum0f.f | . 2 β’ πΉ = (π β β β¦ Ξ£π£ β {π β β β£ π β₯ π} (πβ(πΏβπ£))) | |
8 | sumex 15661 | . 2 β’ Ξ£π‘ β {π β β β£ π β₯ π΄} (πβ(πΏβπ‘)) β V | |
9 | 6, 7, 8 | fvmpt 6998 | 1 β’ (π΄ β β β (πΉβπ΄) = Ξ£π‘ β {π β β β£ π β₯ π΄} (πβ(πΏβπ‘))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1533 β wcel 2098 {crab 3419 class class class wbr 5144 β¦ cmpt 5227 βcfv 6543 βcn 12237 Ξ£csu 15659 β₯ cdvds 16225 Basecbs 17174 0gc0g 17415 β€RHomczrh 21424 β€/nβ€czn 21427 DChrcdchr 27178 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5295 ax-nul 5302 ax-pr 5424 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4320 df-if 4526 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-br 5145 df-opab 5207 df-mpt 5228 df-id 5571 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6301 df-iota 6495 df-fun 6545 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7416 df-oprab 7417 df-mpo 7418 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-seq 13994 df-sum 15660 |
This theorem is referenced by: dchrisum0fmul 27452 dchrisum0flblem1 27454 dchrisum0 27466 |
Copyright terms: Public domain | W3C validator |