MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrisum0fval Structured version   Visualization version   GIF version

Theorem dchrisum0fval 27443
Description: Value of the function 𝐹, the divisor sum of a Dirichlet character. (Contributed by Mario Carneiro, 5-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z 𝑍 = (ℤ/nℤ‘𝑁)
rpvmasum.l 𝐿 = (ℤRHom‘𝑍)
rpvmasum.a (𝜑𝑁 ∈ ℕ)
rpvmasum2.g 𝐺 = (DChr‘𝑁)
rpvmasum2.d 𝐷 = (Base‘𝐺)
rpvmasum2.1 1 = (0g𝐺)
dchrisum0f.f 𝐹 = (𝑏 ∈ ℕ ↦ Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝑏} (𝑋‘(𝐿𝑣)))
Assertion
Ref Expression
dchrisum0fval (𝐴 ∈ ℕ → (𝐹𝐴) = Σ𝑡 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝐴} (𝑋‘(𝐿𝑡)))
Distinct variable groups:   𝑡, 1   𝑡,𝐹   𝑞,𝑏,𝑡,𝑣,𝐴   𝑁,𝑞,𝑡   𝜑,𝑡   𝑡,𝐷   𝐿,𝑏,𝑡,𝑣   𝑋,𝑏,𝑡,𝑣
Allowed substitution hints:   𝜑(𝑣,𝑞,𝑏)   𝐷(𝑣,𝑞,𝑏)   1 (𝑣,𝑞,𝑏)   𝐹(𝑣,𝑞,𝑏)   𝐺(𝑣,𝑡,𝑞,𝑏)   𝐿(𝑞)   𝑁(𝑣,𝑏)   𝑋(𝑞)   𝑍(𝑣,𝑡,𝑞,𝑏)

Proof of Theorem dchrisum0fval
StepHypRef Expression
1 breq2 5093 . . . . 5 (𝑏 = 𝐴 → (𝑞𝑏𝑞𝐴))
21rabbidv 3402 . . . 4 (𝑏 = 𝐴 → {𝑞 ∈ ℕ ∣ 𝑞𝑏} = {𝑞 ∈ ℕ ∣ 𝑞𝐴})
32sumeq1d 15607 . . 3 (𝑏 = 𝐴 → Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝑏} (𝑋‘(𝐿𝑣)) = Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝐴} (𝑋‘(𝐿𝑣)))
4 2fveq3 6827 . . . 4 (𝑣 = 𝑡 → (𝑋‘(𝐿𝑣)) = (𝑋‘(𝐿𝑡)))
54cbvsumv 15603 . . 3 Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝐴} (𝑋‘(𝐿𝑣)) = Σ𝑡 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝐴} (𝑋‘(𝐿𝑡))
63, 5eqtrdi 2782 . 2 (𝑏 = 𝐴 → Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝑏} (𝑋‘(𝐿𝑣)) = Σ𝑡 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝐴} (𝑋‘(𝐿𝑡)))
7 dchrisum0f.f . 2 𝐹 = (𝑏 ∈ ℕ ↦ Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝑏} (𝑋‘(𝐿𝑣)))
8 sumex 15595 . 2 Σ𝑡 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝐴} (𝑋‘(𝐿𝑡)) ∈ V
96, 7, 8fvmpt 6929 1 (𝐴 ∈ ℕ → (𝐹𝐴) = Σ𝑡 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝐴} (𝑋‘(𝐿𝑡)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  {crab 3395   class class class wbr 5089  cmpt 5170  cfv 6481  cn 12125  Σcsu 15593  cdvds 16163  Basecbs 17120  0gc0g 17343  ℤRHomczrh 21436  ℤ/nczn 21439  DChrcdchr 27170
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-iota 6437  df-fun 6483  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-seq 13909  df-sum 15594
This theorem is referenced by:  dchrisum0fmul  27444  dchrisum0flblem1  27446  dchrisum0  27458
  Copyright terms: Public domain W3C validator