Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dchrisum0fval | Structured version Visualization version GIF version |
Description: Value of the function 𝐹, the divisor sum of a Dirichlet character. (Contributed by Mario Carneiro, 5-May-2016.) |
Ref | Expression |
---|---|
rpvmasum.z | ⊢ 𝑍 = (ℤ/nℤ‘𝑁) |
rpvmasum.l | ⊢ 𝐿 = (ℤRHom‘𝑍) |
rpvmasum.a | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
rpvmasum2.g | ⊢ 𝐺 = (DChr‘𝑁) |
rpvmasum2.d | ⊢ 𝐷 = (Base‘𝐺) |
rpvmasum2.1 | ⊢ 1 = (0g‘𝐺) |
dchrisum0f.f | ⊢ 𝐹 = (𝑏 ∈ ℕ ↦ Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝑏} (𝑋‘(𝐿‘𝑣))) |
Ref | Expression |
---|---|
dchrisum0fval | ⊢ (𝐴 ∈ ℕ → (𝐹‘𝐴) = Σ𝑡 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐴} (𝑋‘(𝐿‘𝑡))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq2 5035 | . . . . 5 ⊢ (𝑏 = 𝐴 → (𝑞 ∥ 𝑏 ↔ 𝑞 ∥ 𝐴)) | |
2 | 1 | rabbidv 3382 | . . . 4 ⊢ (𝑏 = 𝐴 → {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝑏} = {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐴}) |
3 | 2 | sumeq1d 15154 | . . 3 ⊢ (𝑏 = 𝐴 → Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝑏} (𝑋‘(𝐿‘𝑣)) = Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐴} (𝑋‘(𝐿‘𝑣))) |
4 | 2fveq3 6682 | . . . 4 ⊢ (𝑣 = 𝑡 → (𝑋‘(𝐿‘𝑣)) = (𝑋‘(𝐿‘𝑡))) | |
5 | 4 | cbvsumv 15149 | . . 3 ⊢ Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐴} (𝑋‘(𝐿‘𝑣)) = Σ𝑡 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐴} (𝑋‘(𝐿‘𝑡)) |
6 | 3, 5 | eqtrdi 2790 | . 2 ⊢ (𝑏 = 𝐴 → Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝑏} (𝑋‘(𝐿‘𝑣)) = Σ𝑡 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐴} (𝑋‘(𝐿‘𝑡))) |
7 | dchrisum0f.f | . 2 ⊢ 𝐹 = (𝑏 ∈ ℕ ↦ Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝑏} (𝑋‘(𝐿‘𝑣))) | |
8 | sumex 15140 | . 2 ⊢ Σ𝑡 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐴} (𝑋‘(𝐿‘𝑡)) ∈ V | |
9 | 6, 7, 8 | fvmpt 6778 | 1 ⊢ (𝐴 ∈ ℕ → (𝐹‘𝐴) = Σ𝑡 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐴} (𝑋‘(𝐿‘𝑡))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2114 {crab 3058 class class class wbr 5031 ↦ cmpt 5111 ‘cfv 6340 ℕcn 11719 Σcsu 15138 ∥ cdvds 15702 Basecbs 16589 0gc0g 16819 ℤRHomczrh 20323 ℤ/nℤczn 20326 DChrcdchr 25971 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2711 ax-sep 5168 ax-nul 5175 ax-pr 5297 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2541 df-eu 2571 df-clab 2718 df-cleq 2731 df-clel 2812 df-nfc 2882 df-ral 3059 df-rex 3060 df-rab 3063 df-v 3401 df-sbc 3682 df-csb 3792 df-dif 3847 df-un 3849 df-in 3851 df-ss 3861 df-nul 4213 df-if 4416 df-sn 4518 df-pr 4520 df-op 4524 df-uni 4798 df-br 5032 df-opab 5094 df-mpt 5112 df-id 5430 df-xp 5532 df-rel 5533 df-cnv 5534 df-co 5535 df-dm 5536 df-rn 5537 df-res 5538 df-ima 5539 df-pred 6130 df-iota 6298 df-fun 6342 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-ov 7176 df-oprab 7177 df-mpo 7178 df-wrecs 7979 df-recs 8040 df-rdg 8078 df-seq 13464 df-sum 15139 |
This theorem is referenced by: dchrisum0fmul 26245 dchrisum0flblem1 26247 dchrisum0 26259 |
Copyright terms: Public domain | W3C validator |