MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrisum0fval Structured version   Visualization version   GIF version

Theorem dchrisum0fval 27504
Description: Value of the function 𝐹, the divisor sum of a Dirichlet character. (Contributed by Mario Carneiro, 5-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z 𝑍 = (ℤ/nℤ‘𝑁)
rpvmasum.l 𝐿 = (ℤRHom‘𝑍)
rpvmasum.a (𝜑𝑁 ∈ ℕ)
rpvmasum2.g 𝐺 = (DChr‘𝑁)
rpvmasum2.d 𝐷 = (Base‘𝐺)
rpvmasum2.1 1 = (0g𝐺)
dchrisum0f.f 𝐹 = (𝑏 ∈ ℕ ↦ Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝑏} (𝑋‘(𝐿𝑣)))
Assertion
Ref Expression
dchrisum0fval (𝐴 ∈ ℕ → (𝐹𝐴) = Σ𝑡 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝐴} (𝑋‘(𝐿𝑡)))
Distinct variable groups:   𝑡, 1   𝑡,𝐹   𝑞,𝑏,𝑡,𝑣,𝐴   𝑁,𝑞,𝑡   𝜑,𝑡   𝑡,𝐷   𝐿,𝑏,𝑡,𝑣   𝑋,𝑏,𝑡,𝑣
Allowed substitution hints:   𝜑(𝑣,𝑞,𝑏)   𝐷(𝑣,𝑞,𝑏)   1 (𝑣,𝑞,𝑏)   𝐹(𝑣,𝑞,𝑏)   𝐺(𝑣,𝑡,𝑞,𝑏)   𝐿(𝑞)   𝑁(𝑣,𝑏)   𝑋(𝑞)   𝑍(𝑣,𝑡,𝑞,𝑏)

Proof of Theorem dchrisum0fval
StepHypRef Expression
1 breq2 5129 . . . . 5 (𝑏 = 𝐴 → (𝑞𝑏𝑞𝐴))
21rabbidv 3428 . . . 4 (𝑏 = 𝐴 → {𝑞 ∈ ℕ ∣ 𝑞𝑏} = {𝑞 ∈ ℕ ∣ 𝑞𝐴})
32sumeq1d 15719 . . 3 (𝑏 = 𝐴 → Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝑏} (𝑋‘(𝐿𝑣)) = Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝐴} (𝑋‘(𝐿𝑣)))
4 2fveq3 6892 . . . 4 (𝑣 = 𝑡 → (𝑋‘(𝐿𝑣)) = (𝑋‘(𝐿𝑡)))
54cbvsumv 15715 . . 3 Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝐴} (𝑋‘(𝐿𝑣)) = Σ𝑡 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝐴} (𝑋‘(𝐿𝑡))
63, 5eqtrdi 2785 . 2 (𝑏 = 𝐴 → Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝑏} (𝑋‘(𝐿𝑣)) = Σ𝑡 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝐴} (𝑋‘(𝐿𝑡)))
7 dchrisum0f.f . 2 𝐹 = (𝑏 ∈ ℕ ↦ Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝑏} (𝑋‘(𝐿𝑣)))
8 sumex 15707 . 2 Σ𝑡 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝐴} (𝑋‘(𝐿𝑡)) ∈ V
96, 7, 8fvmpt 6997 1 (𝐴 ∈ ℕ → (𝐹𝐴) = Σ𝑡 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝐴} (𝑋‘(𝐿𝑡)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  {crab 3420   class class class wbr 5125  cmpt 5207  cfv 6542  cn 12249  Σcsu 15705  cdvds 16273  Basecbs 17230  0gc0g 17460  ℤRHomczrh 21477  ℤ/nczn 21480  DChrcdchr 27231
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5278  ax-nul 5288  ax-pr 5414
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-nul 4316  df-if 4508  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-br 5126  df-opab 5188  df-mpt 5208  df-id 5560  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6303  df-iota 6495  df-fun 6544  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7417  df-oprab 7418  df-mpo 7419  df-frecs 8289  df-wrecs 8320  df-recs 8394  df-rdg 8433  df-seq 14026  df-sum 15706
This theorem is referenced by:  dchrisum0fmul  27505  dchrisum0flblem1  27507  dchrisum0  27519
  Copyright terms: Public domain W3C validator