![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dchrisum0fval | Structured version Visualization version GIF version |
Description: Value of the function πΉ, the divisor sum of a Dirichlet character. (Contributed by Mario Carneiro, 5-May-2016.) |
Ref | Expression |
---|---|
rpvmasum.z | β’ π = (β€/nβ€βπ) |
rpvmasum.l | β’ πΏ = (β€RHomβπ) |
rpvmasum.a | β’ (π β π β β) |
rpvmasum2.g | β’ πΊ = (DChrβπ) |
rpvmasum2.d | β’ π· = (BaseβπΊ) |
rpvmasum2.1 | β’ 1 = (0gβπΊ) |
dchrisum0f.f | β’ πΉ = (π β β β¦ Ξ£π£ β {π β β β£ π β₯ π} (πβ(πΏβπ£))) |
Ref | Expression |
---|---|
dchrisum0fval | β’ (π΄ β β β (πΉβπ΄) = Ξ£π‘ β {π β β β£ π β₯ π΄} (πβ(πΏβπ‘))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq2 5146 | . . . . 5 β’ (π = π΄ β (π β₯ π β π β₯ π΄)) | |
2 | 1 | rabbidv 3435 | . . . 4 β’ (π = π΄ β {π β β β£ π β₯ π} = {π β β β£ π β₯ π΄}) |
3 | 2 | sumeq1d 15671 | . . 3 β’ (π = π΄ β Ξ£π£ β {π β β β£ π β₯ π} (πβ(πΏβπ£)) = Ξ£π£ β {π β β β£ π β₯ π΄} (πβ(πΏβπ£))) |
4 | 2fveq3 6896 | . . . 4 β’ (π£ = π‘ β (πβ(πΏβπ£)) = (πβ(πΏβπ‘))) | |
5 | 4 | cbvsumv 15666 | . . 3 β’ Ξ£π£ β {π β β β£ π β₯ π΄} (πβ(πΏβπ£)) = Ξ£π‘ β {π β β β£ π β₯ π΄} (πβ(πΏβπ‘)) |
6 | 3, 5 | eqtrdi 2783 | . 2 β’ (π = π΄ β Ξ£π£ β {π β β β£ π β₯ π} (πβ(πΏβπ£)) = Ξ£π‘ β {π β β β£ π β₯ π΄} (πβ(πΏβπ‘))) |
7 | dchrisum0f.f | . 2 β’ πΉ = (π β β β¦ Ξ£π£ β {π β β β£ π β₯ π} (πβ(πΏβπ£))) | |
8 | sumex 15658 | . 2 β’ Ξ£π‘ β {π β β β£ π β₯ π΄} (πβ(πΏβπ‘)) β V | |
9 | 6, 7, 8 | fvmpt 6999 | 1 β’ (π΄ β β β (πΉβπ΄) = Ξ£π‘ β {π β β β£ π β₯ π΄} (πβ(πΏβπ‘))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1534 β wcel 2099 {crab 3427 class class class wbr 5142 β¦ cmpt 5225 βcfv 6542 βcn 12234 Ξ£csu 15656 β₯ cdvds 16222 Basecbs 17171 0gc0g 17412 β€RHomczrh 21412 β€/nβ€czn 21415 DChrcdchr 27152 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-iota 6494 df-fun 6544 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7417 df-oprab 7418 df-mpo 7419 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-seq 13991 df-sum 15657 |
This theorem is referenced by: dchrisum0fmul 27426 dchrisum0flblem1 27428 dchrisum0 27440 |
Copyright terms: Public domain | W3C validator |