![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dchrisum0fval | Structured version Visualization version GIF version |
Description: Value of the function πΉ, the divisor sum of a Dirichlet character. (Contributed by Mario Carneiro, 5-May-2016.) |
Ref | Expression |
---|---|
rpvmasum.z | β’ π = (β€/nβ€βπ) |
rpvmasum.l | β’ πΏ = (β€RHomβπ) |
rpvmasum.a | β’ (π β π β β) |
rpvmasum2.g | β’ πΊ = (DChrβπ) |
rpvmasum2.d | β’ π· = (BaseβπΊ) |
rpvmasum2.1 | β’ 1 = (0gβπΊ) |
dchrisum0f.f | β’ πΉ = (π β β β¦ Ξ£π£ β {π β β β£ π β₯ π} (πβ(πΏβπ£))) |
Ref | Expression |
---|---|
dchrisum0fval | β’ (π΄ β β β (πΉβπ΄) = Ξ£π‘ β {π β β β£ π β₯ π΄} (πβ(πΏβπ‘))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq2 5153 | . . . . 5 β’ (π = π΄ β (π β₯ π β π β₯ π΄)) | |
2 | 1 | rabbidv 3441 | . . . 4 β’ (π = π΄ β {π β β β£ π β₯ π} = {π β β β£ π β₯ π΄}) |
3 | 2 | sumeq1d 15647 | . . 3 β’ (π = π΄ β Ξ£π£ β {π β β β£ π β₯ π} (πβ(πΏβπ£)) = Ξ£π£ β {π β β β£ π β₯ π΄} (πβ(πΏβπ£))) |
4 | 2fveq3 6897 | . . . 4 β’ (π£ = π‘ β (πβ(πΏβπ£)) = (πβ(πΏβπ‘))) | |
5 | 4 | cbvsumv 15642 | . . 3 β’ Ξ£π£ β {π β β β£ π β₯ π΄} (πβ(πΏβπ£)) = Ξ£π‘ β {π β β β£ π β₯ π΄} (πβ(πΏβπ‘)) |
6 | 3, 5 | eqtrdi 2789 | . 2 β’ (π = π΄ β Ξ£π£ β {π β β β£ π β₯ π} (πβ(πΏβπ£)) = Ξ£π‘ β {π β β β£ π β₯ π΄} (πβ(πΏβπ‘))) |
7 | dchrisum0f.f | . 2 β’ πΉ = (π β β β¦ Ξ£π£ β {π β β β£ π β₯ π} (πβ(πΏβπ£))) | |
8 | sumex 15634 | . 2 β’ Ξ£π‘ β {π β β β£ π β₯ π΄} (πβ(πΏβπ‘)) β V | |
9 | 6, 7, 8 | fvmpt 6999 | 1 β’ (π΄ β β β (πΉβπ΄) = Ξ£π‘ β {π β β β£ π β₯ π΄} (πβ(πΏβπ‘))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1542 β wcel 2107 {crab 3433 class class class wbr 5149 β¦ cmpt 5232 βcfv 6544 βcn 12212 Ξ£csu 15632 β₯ cdvds 16197 Basecbs 17144 0gc0g 17385 β€RHomczrh 21049 β€/nβ€czn 21052 DChrcdchr 26735 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-iota 6496 df-fun 6546 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7412 df-oprab 7413 df-mpo 7414 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-seq 13967 df-sum 15633 |
This theorem is referenced by: dchrisum0fmul 27009 dchrisum0flblem1 27011 dchrisum0 27023 |
Copyright terms: Public domain | W3C validator |