| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dchrisum0fval | Structured version Visualization version GIF version | ||
| Description: Value of the function 𝐹, the divisor sum of a Dirichlet character. (Contributed by Mario Carneiro, 5-May-2016.) |
| Ref | Expression |
|---|---|
| rpvmasum.z | ⊢ 𝑍 = (ℤ/nℤ‘𝑁) |
| rpvmasum.l | ⊢ 𝐿 = (ℤRHom‘𝑍) |
| rpvmasum.a | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| rpvmasum2.g | ⊢ 𝐺 = (DChr‘𝑁) |
| rpvmasum2.d | ⊢ 𝐷 = (Base‘𝐺) |
| rpvmasum2.1 | ⊢ 1 = (0g‘𝐺) |
| dchrisum0f.f | ⊢ 𝐹 = (𝑏 ∈ ℕ ↦ Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝑏} (𝑋‘(𝐿‘𝑣))) |
| Ref | Expression |
|---|---|
| dchrisum0fval | ⊢ (𝐴 ∈ ℕ → (𝐹‘𝐴) = Σ𝑡 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐴} (𝑋‘(𝐿‘𝑡))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq2 5096 | . . . . 5 ⊢ (𝑏 = 𝐴 → (𝑞 ∥ 𝑏 ↔ 𝑞 ∥ 𝐴)) | |
| 2 | 1 | rabbidv 3402 | . . . 4 ⊢ (𝑏 = 𝐴 → {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝑏} = {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐴}) |
| 3 | 2 | sumeq1d 15607 | . . 3 ⊢ (𝑏 = 𝐴 → Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝑏} (𝑋‘(𝐿‘𝑣)) = Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐴} (𝑋‘(𝐿‘𝑣))) |
| 4 | 2fveq3 6827 | . . . 4 ⊢ (𝑣 = 𝑡 → (𝑋‘(𝐿‘𝑣)) = (𝑋‘(𝐿‘𝑡))) | |
| 5 | 4 | cbvsumv 15603 | . . 3 ⊢ Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐴} (𝑋‘(𝐿‘𝑣)) = Σ𝑡 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐴} (𝑋‘(𝐿‘𝑡)) |
| 6 | 3, 5 | eqtrdi 2780 | . 2 ⊢ (𝑏 = 𝐴 → Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝑏} (𝑋‘(𝐿‘𝑣)) = Σ𝑡 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐴} (𝑋‘(𝐿‘𝑡))) |
| 7 | dchrisum0f.f | . 2 ⊢ 𝐹 = (𝑏 ∈ ℕ ↦ Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝑏} (𝑋‘(𝐿‘𝑣))) | |
| 8 | sumex 15595 | . 2 ⊢ Σ𝑡 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐴} (𝑋‘(𝐿‘𝑡)) ∈ V | |
| 9 | 6, 7, 8 | fvmpt 6930 | 1 ⊢ (𝐴 ∈ ℕ → (𝐹‘𝐴) = Σ𝑡 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐴} (𝑋‘(𝐿‘𝑡))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {crab 3394 class class class wbr 5092 ↦ cmpt 5173 ‘cfv 6482 ℕcn 12128 Σcsu 15593 ∥ cdvds 16163 Basecbs 17120 0gc0g 17343 ℤRHomczrh 21406 ℤ/nℤczn 21409 DChrcdchr 27141 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-iota 6438 df-fun 6484 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-seq 13909 df-sum 15594 |
| This theorem is referenced by: dchrisum0fmul 27415 dchrisum0flblem1 27417 dchrisum0 27429 |
| Copyright terms: Public domain | W3C validator |