| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dchrisum0fmul | Structured version Visualization version GIF version | ||
| Description: The function 𝐹, the divisor sum of a Dirichlet character, is a multiplicative function (but not completely multiplicative). Equation 9.4.27 of [Shapiro], p. 382. (Contributed by Mario Carneiro, 5-May-2016.) |
| Ref | Expression |
|---|---|
| rpvmasum.z | ⊢ 𝑍 = (ℤ/nℤ‘𝑁) |
| rpvmasum.l | ⊢ 𝐿 = (ℤRHom‘𝑍) |
| rpvmasum.a | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| rpvmasum2.g | ⊢ 𝐺 = (DChr‘𝑁) |
| rpvmasum2.d | ⊢ 𝐷 = (Base‘𝐺) |
| rpvmasum2.1 | ⊢ 1 = (0g‘𝐺) |
| dchrisum0f.f | ⊢ 𝐹 = (𝑏 ∈ ℕ ↦ Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝑏} (𝑋‘(𝐿‘𝑣))) |
| dchrisum0f.x | ⊢ (𝜑 → 𝑋 ∈ 𝐷) |
| dchrisum0fmul.a | ⊢ (𝜑 → 𝐴 ∈ ℕ) |
| dchrisum0fmul.b | ⊢ (𝜑 → 𝐵 ∈ ℕ) |
| dchrisum0fmul.m | ⊢ (𝜑 → (𝐴 gcd 𝐵) = 1) |
| Ref | Expression |
|---|---|
| dchrisum0fmul | ⊢ (𝜑 → (𝐹‘(𝐴 · 𝐵)) = ((𝐹‘𝐴) · (𝐹‘𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dchrisum0fmul.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℕ) | |
| 2 | dchrisum0fmul.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℕ) | |
| 3 | dchrisum0fmul.m | . . 3 ⊢ (𝜑 → (𝐴 gcd 𝐵) = 1) | |
| 4 | eqid 2733 | . . 3 ⊢ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐴} = {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐴} | |
| 5 | eqid 2733 | . . 3 ⊢ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐵} = {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐵} | |
| 6 | eqid 2733 | . . 3 ⊢ {𝑞 ∈ ℕ ∣ 𝑞 ∥ (𝐴 · 𝐵)} = {𝑞 ∈ ℕ ∣ 𝑞 ∥ (𝐴 · 𝐵)} | |
| 7 | rpvmasum2.g | . . . 4 ⊢ 𝐺 = (DChr‘𝑁) | |
| 8 | rpvmasum.z | . . . 4 ⊢ 𝑍 = (ℤ/nℤ‘𝑁) | |
| 9 | rpvmasum2.d | . . . 4 ⊢ 𝐷 = (Base‘𝐺) | |
| 10 | rpvmasum.l | . . . 4 ⊢ 𝐿 = (ℤRHom‘𝑍) | |
| 11 | dchrisum0f.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐷) | |
| 12 | 11 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐴}) → 𝑋 ∈ 𝐷) |
| 13 | elrabi 3640 | . . . . . 6 ⊢ (𝑗 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐴} → 𝑗 ∈ ℕ) | |
| 14 | 13 | nnzd 12505 | . . . . 5 ⊢ (𝑗 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐴} → 𝑗 ∈ ℤ) |
| 15 | 14 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐴}) → 𝑗 ∈ ℤ) |
| 16 | 7, 8, 9, 10, 12, 15 | dchrzrhcl 27193 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐴}) → (𝑋‘(𝐿‘𝑗)) ∈ ℂ) |
| 17 | 11 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐵}) → 𝑋 ∈ 𝐷) |
| 18 | elrabi 3640 | . . . . . 6 ⊢ (𝑘 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐵} → 𝑘 ∈ ℕ) | |
| 19 | 18 | nnzd 12505 | . . . . 5 ⊢ (𝑘 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐵} → 𝑘 ∈ ℤ) |
| 20 | 19 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐵}) → 𝑘 ∈ ℤ) |
| 21 | 7, 8, 9, 10, 17, 20 | dchrzrhcl 27193 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐵}) → (𝑋‘(𝐿‘𝑘)) ∈ ℂ) |
| 22 | 14, 19 | anim12i 613 | . . . 4 ⊢ ((𝑗 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐴} ∧ 𝑘 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐵}) → (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) |
| 23 | 11 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → 𝑋 ∈ 𝐷) |
| 24 | simprl 770 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → 𝑗 ∈ ℤ) | |
| 25 | simprr 772 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → 𝑘 ∈ ℤ) | |
| 26 | 7, 8, 9, 10, 23, 24, 25 | dchrzrhmul 27194 | . . . . 5 ⊢ ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (𝑋‘(𝐿‘(𝑗 · 𝑘))) = ((𝑋‘(𝐿‘𝑗)) · (𝑋‘(𝐿‘𝑘)))) |
| 27 | 26 | eqcomd 2739 | . . . 4 ⊢ ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → ((𝑋‘(𝐿‘𝑗)) · (𝑋‘(𝐿‘𝑘))) = (𝑋‘(𝐿‘(𝑗 · 𝑘)))) |
| 28 | 22, 27 | sylan2 593 | . . 3 ⊢ ((𝜑 ∧ (𝑗 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐴} ∧ 𝑘 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐵})) → ((𝑋‘(𝐿‘𝑗)) · (𝑋‘(𝐿‘𝑘))) = (𝑋‘(𝐿‘(𝑗 · 𝑘)))) |
| 29 | 2fveq3 6836 | . . 3 ⊢ (𝑖 = (𝑗 · 𝑘) → (𝑋‘(𝐿‘𝑖)) = (𝑋‘(𝐿‘(𝑗 · 𝑘)))) | |
| 30 | 1, 2, 3, 4, 5, 6, 16, 21, 28, 29 | fsumdvdsmul 27142 | . 2 ⊢ (𝜑 → (Σ𝑗 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐴} (𝑋‘(𝐿‘𝑗)) · Σ𝑘 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐵} (𝑋‘(𝐿‘𝑘))) = Σ𝑖 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ (𝐴 · 𝐵)} (𝑋‘(𝐿‘𝑖))) |
| 31 | rpvmasum.a | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
| 32 | rpvmasum2.1 | . . . . 5 ⊢ 1 = (0g‘𝐺) | |
| 33 | dchrisum0f.f | . . . . 5 ⊢ 𝐹 = (𝑏 ∈ ℕ ↦ Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝑏} (𝑋‘(𝐿‘𝑣))) | |
| 34 | 8, 10, 31, 7, 9, 32, 33 | dchrisum0fval 27453 | . . . 4 ⊢ (𝐴 ∈ ℕ → (𝐹‘𝐴) = Σ𝑗 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐴} (𝑋‘(𝐿‘𝑗))) |
| 35 | 1, 34 | syl 17 | . . 3 ⊢ (𝜑 → (𝐹‘𝐴) = Σ𝑗 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐴} (𝑋‘(𝐿‘𝑗))) |
| 36 | 8, 10, 31, 7, 9, 32, 33 | dchrisum0fval 27453 | . . . 4 ⊢ (𝐵 ∈ ℕ → (𝐹‘𝐵) = Σ𝑘 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐵} (𝑋‘(𝐿‘𝑘))) |
| 37 | 2, 36 | syl 17 | . . 3 ⊢ (𝜑 → (𝐹‘𝐵) = Σ𝑘 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐵} (𝑋‘(𝐿‘𝑘))) |
| 38 | 35, 37 | oveq12d 7373 | . 2 ⊢ (𝜑 → ((𝐹‘𝐴) · (𝐹‘𝐵)) = (Σ𝑗 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐴} (𝑋‘(𝐿‘𝑗)) · Σ𝑘 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐵} (𝑋‘(𝐿‘𝑘)))) |
| 39 | 1, 2 | nnmulcld 12188 | . . 3 ⊢ (𝜑 → (𝐴 · 𝐵) ∈ ℕ) |
| 40 | 8, 10, 31, 7, 9, 32, 33 | dchrisum0fval 27453 | . . 3 ⊢ ((𝐴 · 𝐵) ∈ ℕ → (𝐹‘(𝐴 · 𝐵)) = Σ𝑖 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ (𝐴 · 𝐵)} (𝑋‘(𝐿‘𝑖))) |
| 41 | 39, 40 | syl 17 | . 2 ⊢ (𝜑 → (𝐹‘(𝐴 · 𝐵)) = Σ𝑖 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ (𝐴 · 𝐵)} (𝑋‘(𝐿‘𝑖))) |
| 42 | 30, 38, 41 | 3eqtr4rd 2779 | 1 ⊢ (𝜑 → (𝐹‘(𝐴 · 𝐵)) = ((𝐹‘𝐴) · (𝐹‘𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 {crab 3397 class class class wbr 5095 ↦ cmpt 5176 ‘cfv 6489 (class class class)co 7355 1c1 11017 · cmul 11021 ℕcn 12135 ℤcz 12478 Σcsu 15603 ∥ cdvds 16173 gcd cgcd 16415 Basecbs 17130 0gc0g 17353 ℤRHomczrh 21446 ℤ/nℤczn 21449 DChrcdchr 27180 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-inf2 9541 ax-cnex 11072 ax-resscn 11073 ax-1cn 11074 ax-icn 11075 ax-addcl 11076 ax-addrcl 11077 ax-mulcl 11078 ax-mulrcl 11079 ax-mulcom 11080 ax-addass 11081 ax-mulass 11082 ax-distr 11083 ax-i2m1 11084 ax-1ne0 11085 ax-1rid 11086 ax-rnegex 11087 ax-rrecex 11088 ax-cnre 11089 ax-pre-lttri 11090 ax-pre-lttrn 11091 ax-pre-ltadd 11092 ax-pre-mulgt0 11093 ax-pre-sup 11094 ax-addf 11095 ax-mulf 11096 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-nel 3035 df-ral 3050 df-rex 3059 df-rmo 3348 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-isom 6498 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-tpos 8165 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-er 8631 df-ec 8633 df-qs 8637 df-map 8761 df-en 8879 df-dom 8880 df-sdom 8881 df-fin 8882 df-sup 9336 df-inf 9337 df-oi 9406 df-card 9842 df-pnf 11158 df-mnf 11159 df-xr 11160 df-ltxr 11161 df-le 11162 df-sub 11356 df-neg 11357 df-div 11785 df-nn 12136 df-2 12198 df-3 12199 df-4 12200 df-5 12201 df-6 12202 df-7 12203 df-8 12204 df-9 12205 df-n0 12392 df-z 12479 df-dec 12599 df-uz 12743 df-rp 12901 df-fz 13418 df-fzo 13565 df-fl 13706 df-mod 13784 df-seq 13919 df-exp 13979 df-hash 14248 df-cj 15016 df-re 15017 df-im 15018 df-sqrt 15152 df-abs 15153 df-clim 15405 df-sum 15604 df-dvds 16174 df-gcd 16416 df-struct 17068 df-sets 17085 df-slot 17103 df-ndx 17115 df-base 17131 df-ress 17152 df-plusg 17184 df-mulr 17185 df-starv 17186 df-sca 17187 df-vsca 17188 df-ip 17189 df-tset 17190 df-ple 17191 df-ds 17193 df-unif 17194 df-0g 17355 df-imas 17422 df-qus 17423 df-mgm 18558 df-sgrp 18637 df-mnd 18653 df-mhm 18701 df-grp 18859 df-minusg 18860 df-sbg 18861 df-mulg 18991 df-subg 19046 df-nsg 19047 df-eqg 19048 df-ghm 19135 df-cmn 19704 df-abl 19705 df-mgp 20069 df-rng 20081 df-ur 20110 df-ring 20163 df-cring 20164 df-oppr 20265 df-dvdsr 20285 df-unit 20286 df-rhm 20400 df-subrng 20471 df-subrg 20495 df-lmod 20805 df-lss 20875 df-lsp 20915 df-sra 21117 df-rgmod 21118 df-lidl 21155 df-rsp 21156 df-2idl 21197 df-cnfld 21302 df-zring 21394 df-zrh 21450 df-zn 21453 df-dchr 27181 |
| This theorem is referenced by: dchrisum0flblem2 27457 |
| Copyright terms: Public domain | W3C validator |