![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dchrisum0fmul | Structured version Visualization version GIF version |
Description: The function 𝐹, the divisor sum of a Dirichlet character, is a multiplicative function (but not completely multiplicative). Equation 9.4.27 of [Shapiro], p. 382. (Contributed by Mario Carneiro, 5-May-2016.) |
Ref | Expression |
---|---|
rpvmasum.z | ⊢ 𝑍 = (ℤ/nℤ‘𝑁) |
rpvmasum.l | ⊢ 𝐿 = (ℤRHom‘𝑍) |
rpvmasum.a | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
rpvmasum2.g | ⊢ 𝐺 = (DChr‘𝑁) |
rpvmasum2.d | ⊢ 𝐷 = (Base‘𝐺) |
rpvmasum2.1 | ⊢ 1 = (0g‘𝐺) |
dchrisum0f.f | ⊢ 𝐹 = (𝑏 ∈ ℕ ↦ Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝑏} (𝑋‘(𝐿‘𝑣))) |
dchrisum0f.x | ⊢ (𝜑 → 𝑋 ∈ 𝐷) |
dchrisum0fmul.a | ⊢ (𝜑 → 𝐴 ∈ ℕ) |
dchrisum0fmul.b | ⊢ (𝜑 → 𝐵 ∈ ℕ) |
dchrisum0fmul.m | ⊢ (𝜑 → (𝐴 gcd 𝐵) = 1) |
Ref | Expression |
---|---|
dchrisum0fmul | ⊢ (𝜑 → (𝐹‘(𝐴 · 𝐵)) = ((𝐹‘𝐴) · (𝐹‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dchrisum0fmul.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℕ) | |
2 | dchrisum0fmul.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℕ) | |
3 | dchrisum0fmul.m | . . 3 ⊢ (𝜑 → (𝐴 gcd 𝐵) = 1) | |
4 | eqid 2736 | . . 3 ⊢ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐴} = {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐴} | |
5 | eqid 2736 | . . 3 ⊢ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐵} = {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐵} | |
6 | eqid 2736 | . . 3 ⊢ {𝑞 ∈ ℕ ∣ 𝑞 ∥ (𝐴 · 𝐵)} = {𝑞 ∈ ℕ ∣ 𝑞 ∥ (𝐴 · 𝐵)} | |
7 | rpvmasum2.g | . . . 4 ⊢ 𝐺 = (DChr‘𝑁) | |
8 | rpvmasum.z | . . . 4 ⊢ 𝑍 = (ℤ/nℤ‘𝑁) | |
9 | rpvmasum2.d | . . . 4 ⊢ 𝐷 = (Base‘𝐺) | |
10 | rpvmasum.l | . . . 4 ⊢ 𝐿 = (ℤRHom‘𝑍) | |
11 | dchrisum0f.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐷) | |
12 | 11 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐴}) → 𝑋 ∈ 𝐷) |
13 | elrabi 3639 | . . . . . 6 ⊢ (𝑗 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐴} → 𝑗 ∈ ℕ) | |
14 | 13 | nnzd 12526 | . . . . 5 ⊢ (𝑗 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐴} → 𝑗 ∈ ℤ) |
15 | 14 | adantl 482 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐴}) → 𝑗 ∈ ℤ) |
16 | 7, 8, 9, 10, 12, 15 | dchrzrhcl 26593 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐴}) → (𝑋‘(𝐿‘𝑗)) ∈ ℂ) |
17 | 11 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐵}) → 𝑋 ∈ 𝐷) |
18 | elrabi 3639 | . . . . . 6 ⊢ (𝑘 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐵} → 𝑘 ∈ ℕ) | |
19 | 18 | nnzd 12526 | . . . . 5 ⊢ (𝑘 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐵} → 𝑘 ∈ ℤ) |
20 | 19 | adantl 482 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐵}) → 𝑘 ∈ ℤ) |
21 | 7, 8, 9, 10, 17, 20 | dchrzrhcl 26593 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐵}) → (𝑋‘(𝐿‘𝑘)) ∈ ℂ) |
22 | 14, 19 | anim12i 613 | . . . 4 ⊢ ((𝑗 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐴} ∧ 𝑘 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐵}) → (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) |
23 | 11 | adantr 481 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → 𝑋 ∈ 𝐷) |
24 | simprl 769 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → 𝑗 ∈ ℤ) | |
25 | simprr 771 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → 𝑘 ∈ ℤ) | |
26 | 7, 8, 9, 10, 23, 24, 25 | dchrzrhmul 26594 | . . . . 5 ⊢ ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (𝑋‘(𝐿‘(𝑗 · 𝑘))) = ((𝑋‘(𝐿‘𝑗)) · (𝑋‘(𝐿‘𝑘)))) |
27 | 26 | eqcomd 2742 | . . . 4 ⊢ ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → ((𝑋‘(𝐿‘𝑗)) · (𝑋‘(𝐿‘𝑘))) = (𝑋‘(𝐿‘(𝑗 · 𝑘)))) |
28 | 22, 27 | sylan2 593 | . . 3 ⊢ ((𝜑 ∧ (𝑗 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐴} ∧ 𝑘 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐵})) → ((𝑋‘(𝐿‘𝑗)) · (𝑋‘(𝐿‘𝑘))) = (𝑋‘(𝐿‘(𝑗 · 𝑘)))) |
29 | 2fveq3 6847 | . . 3 ⊢ (𝑖 = (𝑗 · 𝑘) → (𝑋‘(𝐿‘𝑖)) = (𝑋‘(𝐿‘(𝑗 · 𝑘)))) | |
30 | 1, 2, 3, 4, 5, 6, 16, 21, 28, 29 | fsumdvdsmul 26544 | . 2 ⊢ (𝜑 → (Σ𝑗 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐴} (𝑋‘(𝐿‘𝑗)) · Σ𝑘 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐵} (𝑋‘(𝐿‘𝑘))) = Σ𝑖 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ (𝐴 · 𝐵)} (𝑋‘(𝐿‘𝑖))) |
31 | rpvmasum.a | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
32 | rpvmasum2.1 | . . . . 5 ⊢ 1 = (0g‘𝐺) | |
33 | dchrisum0f.f | . . . . 5 ⊢ 𝐹 = (𝑏 ∈ ℕ ↦ Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝑏} (𝑋‘(𝐿‘𝑣))) | |
34 | 8, 10, 31, 7, 9, 32, 33 | dchrisum0fval 26853 | . . . 4 ⊢ (𝐴 ∈ ℕ → (𝐹‘𝐴) = Σ𝑗 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐴} (𝑋‘(𝐿‘𝑗))) |
35 | 1, 34 | syl 17 | . . 3 ⊢ (𝜑 → (𝐹‘𝐴) = Σ𝑗 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐴} (𝑋‘(𝐿‘𝑗))) |
36 | 8, 10, 31, 7, 9, 32, 33 | dchrisum0fval 26853 | . . . 4 ⊢ (𝐵 ∈ ℕ → (𝐹‘𝐵) = Σ𝑘 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐵} (𝑋‘(𝐿‘𝑘))) |
37 | 2, 36 | syl 17 | . . 3 ⊢ (𝜑 → (𝐹‘𝐵) = Σ𝑘 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐵} (𝑋‘(𝐿‘𝑘))) |
38 | 35, 37 | oveq12d 7375 | . 2 ⊢ (𝜑 → ((𝐹‘𝐴) · (𝐹‘𝐵)) = (Σ𝑗 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐴} (𝑋‘(𝐿‘𝑗)) · Σ𝑘 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐵} (𝑋‘(𝐿‘𝑘)))) |
39 | 1, 2 | nnmulcld 12206 | . . 3 ⊢ (𝜑 → (𝐴 · 𝐵) ∈ ℕ) |
40 | 8, 10, 31, 7, 9, 32, 33 | dchrisum0fval 26853 | . . 3 ⊢ ((𝐴 · 𝐵) ∈ ℕ → (𝐹‘(𝐴 · 𝐵)) = Σ𝑖 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ (𝐴 · 𝐵)} (𝑋‘(𝐿‘𝑖))) |
41 | 39, 40 | syl 17 | . 2 ⊢ (𝜑 → (𝐹‘(𝐴 · 𝐵)) = Σ𝑖 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ (𝐴 · 𝐵)} (𝑋‘(𝐿‘𝑖))) |
42 | 30, 38, 41 | 3eqtr4rd 2787 | 1 ⊢ (𝜑 → (𝐹‘(𝐴 · 𝐵)) = ((𝐹‘𝐴) · (𝐹‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 {crab 3407 class class class wbr 5105 ↦ cmpt 5188 ‘cfv 6496 (class class class)co 7357 1c1 11052 · cmul 11056 ℕcn 12153 ℤcz 12499 Σcsu 15570 ∥ cdvds 16136 gcd cgcd 16374 Basecbs 17083 0gc0g 17321 ℤRHomczrh 20900 ℤ/nℤczn 20903 DChrcdchr 26580 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-rep 5242 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-inf2 9577 ax-cnex 11107 ax-resscn 11108 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-addrcl 11112 ax-mulcl 11113 ax-mulrcl 11114 ax-mulcom 11115 ax-addass 11116 ax-mulass 11117 ax-distr 11118 ax-i2m1 11119 ax-1ne0 11120 ax-1rid 11121 ax-rnegex 11122 ax-rrecex 11123 ax-cnre 11124 ax-pre-lttri 11125 ax-pre-lttrn 11126 ax-pre-ltadd 11127 ax-pre-mulgt0 11128 ax-pre-sup 11129 ax-addf 11130 ax-mulf 11131 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-rmo 3353 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-tp 4591 df-op 4593 df-uni 4866 df-int 4908 df-iun 4956 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-se 5589 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-isom 6505 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-om 7803 df-1st 7921 df-2nd 7922 df-tpos 8157 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-1o 8412 df-er 8648 df-ec 8650 df-qs 8654 df-map 8767 df-en 8884 df-dom 8885 df-sdom 8886 df-fin 8887 df-sup 9378 df-inf 9379 df-oi 9446 df-card 9875 df-pnf 11191 df-mnf 11192 df-xr 11193 df-ltxr 11194 df-le 11195 df-sub 11387 df-neg 11388 df-div 11813 df-nn 12154 df-2 12216 df-3 12217 df-4 12218 df-5 12219 df-6 12220 df-7 12221 df-8 12222 df-9 12223 df-n0 12414 df-z 12500 df-dec 12619 df-uz 12764 df-rp 12916 df-fz 13425 df-fzo 13568 df-fl 13697 df-mod 13775 df-seq 13907 df-exp 13968 df-hash 14231 df-cj 14984 df-re 14985 df-im 14986 df-sqrt 15120 df-abs 15121 df-clim 15370 df-sum 15571 df-dvds 16137 df-gcd 16375 df-struct 17019 df-sets 17036 df-slot 17054 df-ndx 17066 df-base 17084 df-ress 17113 df-plusg 17146 df-mulr 17147 df-starv 17148 df-sca 17149 df-vsca 17150 df-ip 17151 df-tset 17152 df-ple 17153 df-ds 17155 df-unif 17156 df-0g 17323 df-imas 17390 df-qus 17391 df-mgm 18497 df-sgrp 18546 df-mnd 18557 df-mhm 18601 df-grp 18751 df-minusg 18752 df-sbg 18753 df-mulg 18873 df-subg 18925 df-nsg 18926 df-eqg 18927 df-ghm 19006 df-cmn 19564 df-abl 19565 df-mgp 19897 df-ur 19914 df-ring 19966 df-cring 19967 df-oppr 20049 df-dvdsr 20070 df-unit 20071 df-rnghom 20146 df-subrg 20220 df-lmod 20324 df-lss 20393 df-lsp 20433 df-sra 20633 df-rgmod 20634 df-lidl 20635 df-rsp 20636 df-2idl 20702 df-cnfld 20797 df-zring 20870 df-zrh 20904 df-zn 20907 df-dchr 26581 |
This theorem is referenced by: dchrisum0flblem2 26857 |
Copyright terms: Public domain | W3C validator |