| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dchrisum0fmul | Structured version Visualization version GIF version | ||
| Description: The function 𝐹, the divisor sum of a Dirichlet character, is a multiplicative function (but not completely multiplicative). Equation 9.4.27 of [Shapiro], p. 382. (Contributed by Mario Carneiro, 5-May-2016.) |
| Ref | Expression |
|---|---|
| rpvmasum.z | ⊢ 𝑍 = (ℤ/nℤ‘𝑁) |
| rpvmasum.l | ⊢ 𝐿 = (ℤRHom‘𝑍) |
| rpvmasum.a | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| rpvmasum2.g | ⊢ 𝐺 = (DChr‘𝑁) |
| rpvmasum2.d | ⊢ 𝐷 = (Base‘𝐺) |
| rpvmasum2.1 | ⊢ 1 = (0g‘𝐺) |
| dchrisum0f.f | ⊢ 𝐹 = (𝑏 ∈ ℕ ↦ Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝑏} (𝑋‘(𝐿‘𝑣))) |
| dchrisum0f.x | ⊢ (𝜑 → 𝑋 ∈ 𝐷) |
| dchrisum0fmul.a | ⊢ (𝜑 → 𝐴 ∈ ℕ) |
| dchrisum0fmul.b | ⊢ (𝜑 → 𝐵 ∈ ℕ) |
| dchrisum0fmul.m | ⊢ (𝜑 → (𝐴 gcd 𝐵) = 1) |
| Ref | Expression |
|---|---|
| dchrisum0fmul | ⊢ (𝜑 → (𝐹‘(𝐴 · 𝐵)) = ((𝐹‘𝐴) · (𝐹‘𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dchrisum0fmul.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℕ) | |
| 2 | dchrisum0fmul.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℕ) | |
| 3 | dchrisum0fmul.m | . . 3 ⊢ (𝜑 → (𝐴 gcd 𝐵) = 1) | |
| 4 | eqid 2729 | . . 3 ⊢ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐴} = {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐴} | |
| 5 | eqid 2729 | . . 3 ⊢ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐵} = {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐵} | |
| 6 | eqid 2729 | . . 3 ⊢ {𝑞 ∈ ℕ ∣ 𝑞 ∥ (𝐴 · 𝐵)} = {𝑞 ∈ ℕ ∣ 𝑞 ∥ (𝐴 · 𝐵)} | |
| 7 | rpvmasum2.g | . . . 4 ⊢ 𝐺 = (DChr‘𝑁) | |
| 8 | rpvmasum.z | . . . 4 ⊢ 𝑍 = (ℤ/nℤ‘𝑁) | |
| 9 | rpvmasum2.d | . . . 4 ⊢ 𝐷 = (Base‘𝐺) | |
| 10 | rpvmasum.l | . . . 4 ⊢ 𝐿 = (ℤRHom‘𝑍) | |
| 11 | dchrisum0f.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐷) | |
| 12 | 11 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐴}) → 𝑋 ∈ 𝐷) |
| 13 | elrabi 3645 | . . . . . 6 ⊢ (𝑗 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐴} → 𝑗 ∈ ℕ) | |
| 14 | 13 | nnzd 12516 | . . . . 5 ⊢ (𝑗 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐴} → 𝑗 ∈ ℤ) |
| 15 | 14 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐴}) → 𝑗 ∈ ℤ) |
| 16 | 7, 8, 9, 10, 12, 15 | dchrzrhcl 27172 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐴}) → (𝑋‘(𝐿‘𝑗)) ∈ ℂ) |
| 17 | 11 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐵}) → 𝑋 ∈ 𝐷) |
| 18 | elrabi 3645 | . . . . . 6 ⊢ (𝑘 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐵} → 𝑘 ∈ ℕ) | |
| 19 | 18 | nnzd 12516 | . . . . 5 ⊢ (𝑘 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐵} → 𝑘 ∈ ℤ) |
| 20 | 19 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐵}) → 𝑘 ∈ ℤ) |
| 21 | 7, 8, 9, 10, 17, 20 | dchrzrhcl 27172 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐵}) → (𝑋‘(𝐿‘𝑘)) ∈ ℂ) |
| 22 | 14, 19 | anim12i 613 | . . . 4 ⊢ ((𝑗 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐴} ∧ 𝑘 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐵}) → (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) |
| 23 | 11 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → 𝑋 ∈ 𝐷) |
| 24 | simprl 770 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → 𝑗 ∈ ℤ) | |
| 25 | simprr 772 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → 𝑘 ∈ ℤ) | |
| 26 | 7, 8, 9, 10, 23, 24, 25 | dchrzrhmul 27173 | . . . . 5 ⊢ ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (𝑋‘(𝐿‘(𝑗 · 𝑘))) = ((𝑋‘(𝐿‘𝑗)) · (𝑋‘(𝐿‘𝑘)))) |
| 27 | 26 | eqcomd 2735 | . . . 4 ⊢ ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → ((𝑋‘(𝐿‘𝑗)) · (𝑋‘(𝐿‘𝑘))) = (𝑋‘(𝐿‘(𝑗 · 𝑘)))) |
| 28 | 22, 27 | sylan2 593 | . . 3 ⊢ ((𝜑 ∧ (𝑗 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐴} ∧ 𝑘 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐵})) → ((𝑋‘(𝐿‘𝑗)) · (𝑋‘(𝐿‘𝑘))) = (𝑋‘(𝐿‘(𝑗 · 𝑘)))) |
| 29 | 2fveq3 6831 | . . 3 ⊢ (𝑖 = (𝑗 · 𝑘) → (𝑋‘(𝐿‘𝑖)) = (𝑋‘(𝐿‘(𝑗 · 𝑘)))) | |
| 30 | 1, 2, 3, 4, 5, 6, 16, 21, 28, 29 | fsumdvdsmul 27121 | . 2 ⊢ (𝜑 → (Σ𝑗 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐴} (𝑋‘(𝐿‘𝑗)) · Σ𝑘 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐵} (𝑋‘(𝐿‘𝑘))) = Σ𝑖 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ (𝐴 · 𝐵)} (𝑋‘(𝐿‘𝑖))) |
| 31 | rpvmasum.a | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
| 32 | rpvmasum2.1 | . . . . 5 ⊢ 1 = (0g‘𝐺) | |
| 33 | dchrisum0f.f | . . . . 5 ⊢ 𝐹 = (𝑏 ∈ ℕ ↦ Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝑏} (𝑋‘(𝐿‘𝑣))) | |
| 34 | 8, 10, 31, 7, 9, 32, 33 | dchrisum0fval 27432 | . . . 4 ⊢ (𝐴 ∈ ℕ → (𝐹‘𝐴) = Σ𝑗 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐴} (𝑋‘(𝐿‘𝑗))) |
| 35 | 1, 34 | syl 17 | . . 3 ⊢ (𝜑 → (𝐹‘𝐴) = Σ𝑗 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐴} (𝑋‘(𝐿‘𝑗))) |
| 36 | 8, 10, 31, 7, 9, 32, 33 | dchrisum0fval 27432 | . . . 4 ⊢ (𝐵 ∈ ℕ → (𝐹‘𝐵) = Σ𝑘 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐵} (𝑋‘(𝐿‘𝑘))) |
| 37 | 2, 36 | syl 17 | . . 3 ⊢ (𝜑 → (𝐹‘𝐵) = Σ𝑘 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐵} (𝑋‘(𝐿‘𝑘))) |
| 38 | 35, 37 | oveq12d 7371 | . 2 ⊢ (𝜑 → ((𝐹‘𝐴) · (𝐹‘𝐵)) = (Σ𝑗 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐴} (𝑋‘(𝐿‘𝑗)) · Σ𝑘 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐵} (𝑋‘(𝐿‘𝑘)))) |
| 39 | 1, 2 | nnmulcld 12199 | . . 3 ⊢ (𝜑 → (𝐴 · 𝐵) ∈ ℕ) |
| 40 | 8, 10, 31, 7, 9, 32, 33 | dchrisum0fval 27432 | . . 3 ⊢ ((𝐴 · 𝐵) ∈ ℕ → (𝐹‘(𝐴 · 𝐵)) = Σ𝑖 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ (𝐴 · 𝐵)} (𝑋‘(𝐿‘𝑖))) |
| 41 | 39, 40 | syl 17 | . 2 ⊢ (𝜑 → (𝐹‘(𝐴 · 𝐵)) = Σ𝑖 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ (𝐴 · 𝐵)} (𝑋‘(𝐿‘𝑖))) |
| 42 | 30, 38, 41 | 3eqtr4rd 2775 | 1 ⊢ (𝜑 → (𝐹‘(𝐴 · 𝐵)) = ((𝐹‘𝐴) · (𝐹‘𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3396 class class class wbr 5095 ↦ cmpt 5176 ‘cfv 6486 (class class class)co 7353 1c1 11029 · cmul 11033 ℕcn 12146 ℤcz 12489 Σcsu 15611 ∥ cdvds 16181 gcd cgcd 16423 Basecbs 17138 0gc0g 17361 ℤRHomczrh 21424 ℤ/nℤczn 21427 DChrcdchr 27159 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-inf2 9556 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 ax-addf 11107 ax-mulf 11108 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-tpos 8166 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-er 8632 df-ec 8634 df-qs 8638 df-map 8762 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-sup 9351 df-inf 9352 df-oi 9421 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-z 12490 df-dec 12610 df-uz 12754 df-rp 12912 df-fz 13429 df-fzo 13576 df-fl 13714 df-mod 13792 df-seq 13927 df-exp 13987 df-hash 14256 df-cj 15024 df-re 15025 df-im 15026 df-sqrt 15160 df-abs 15161 df-clim 15413 df-sum 15612 df-dvds 16182 df-gcd 16424 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 df-plusg 17192 df-mulr 17193 df-starv 17194 df-sca 17195 df-vsca 17196 df-ip 17197 df-tset 17198 df-ple 17199 df-ds 17201 df-unif 17202 df-0g 17363 df-imas 17430 df-qus 17431 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-mhm 18675 df-grp 18833 df-minusg 18834 df-sbg 18835 df-mulg 18965 df-subg 19020 df-nsg 19021 df-eqg 19022 df-ghm 19110 df-cmn 19679 df-abl 19680 df-mgp 20044 df-rng 20056 df-ur 20085 df-ring 20138 df-cring 20139 df-oppr 20240 df-dvdsr 20260 df-unit 20261 df-rhm 20375 df-subrng 20449 df-subrg 20473 df-lmod 20783 df-lss 20853 df-lsp 20893 df-sra 21095 df-rgmod 21096 df-lidl 21133 df-rsp 21134 df-2idl 21175 df-cnfld 21280 df-zring 21372 df-zrh 21428 df-zn 21431 df-dchr 27160 |
| This theorem is referenced by: dchrisum0flblem2 27436 |
| Copyright terms: Public domain | W3C validator |