MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrisum0fmul Structured version   Visualization version   GIF version

Theorem dchrisum0fmul 26854
Description: The function 𝐹, the divisor sum of a Dirichlet character, is a multiplicative function (but not completely multiplicative). Equation 9.4.27 of [Shapiro], p. 382. (Contributed by Mario Carneiro, 5-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z 𝑍 = (ℤ/nℤ‘𝑁)
rpvmasum.l 𝐿 = (ℤRHom‘𝑍)
rpvmasum.a (𝜑𝑁 ∈ ℕ)
rpvmasum2.g 𝐺 = (DChr‘𝑁)
rpvmasum2.d 𝐷 = (Base‘𝐺)
rpvmasum2.1 1 = (0g𝐺)
dchrisum0f.f 𝐹 = (𝑏 ∈ ℕ ↦ Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝑏} (𝑋‘(𝐿𝑣)))
dchrisum0f.x (𝜑𝑋𝐷)
dchrisum0fmul.a (𝜑𝐴 ∈ ℕ)
dchrisum0fmul.b (𝜑𝐵 ∈ ℕ)
dchrisum0fmul.m (𝜑 → (𝐴 gcd 𝐵) = 1)
Assertion
Ref Expression
dchrisum0fmul (𝜑 → (𝐹‘(𝐴 · 𝐵)) = ((𝐹𝐴) · (𝐹𝐵)))
Distinct variable groups:   𝑞,𝑏,𝑣,𝐴   𝑁,𝑞   𝐵,𝑏,𝑞,𝑣   𝐿,𝑏,𝑣   𝑋,𝑏,𝑣
Allowed substitution hints:   𝜑(𝑣,𝑞,𝑏)   𝐷(𝑣,𝑞,𝑏)   1 (𝑣,𝑞,𝑏)   𝐹(𝑣,𝑞,𝑏)   𝐺(𝑣,𝑞,𝑏)   𝐿(𝑞)   𝑁(𝑣,𝑏)   𝑋(𝑞)   𝑍(𝑣,𝑞,𝑏)

Proof of Theorem dchrisum0fmul
Dummy variables 𝑘 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dchrisum0fmul.a . . 3 (𝜑𝐴 ∈ ℕ)
2 dchrisum0fmul.b . . 3 (𝜑𝐵 ∈ ℕ)
3 dchrisum0fmul.m . . 3 (𝜑 → (𝐴 gcd 𝐵) = 1)
4 eqid 2736 . . 3 {𝑞 ∈ ℕ ∣ 𝑞𝐴} = {𝑞 ∈ ℕ ∣ 𝑞𝐴}
5 eqid 2736 . . 3 {𝑞 ∈ ℕ ∣ 𝑞𝐵} = {𝑞 ∈ ℕ ∣ 𝑞𝐵}
6 eqid 2736 . . 3 {𝑞 ∈ ℕ ∣ 𝑞 ∥ (𝐴 · 𝐵)} = {𝑞 ∈ ℕ ∣ 𝑞 ∥ (𝐴 · 𝐵)}
7 rpvmasum2.g . . . 4 𝐺 = (DChr‘𝑁)
8 rpvmasum.z . . . 4 𝑍 = (ℤ/nℤ‘𝑁)
9 rpvmasum2.d . . . 4 𝐷 = (Base‘𝐺)
10 rpvmasum.l . . . 4 𝐿 = (ℤRHom‘𝑍)
11 dchrisum0f.x . . . . 5 (𝜑𝑋𝐷)
1211adantr 481 . . . 4 ((𝜑𝑗 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝐴}) → 𝑋𝐷)
13 elrabi 3639 . . . . . 6 (𝑗 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝐴} → 𝑗 ∈ ℕ)
1413nnzd 12526 . . . . 5 (𝑗 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝐴} → 𝑗 ∈ ℤ)
1514adantl 482 . . . 4 ((𝜑𝑗 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝐴}) → 𝑗 ∈ ℤ)
167, 8, 9, 10, 12, 15dchrzrhcl 26593 . . 3 ((𝜑𝑗 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝐴}) → (𝑋‘(𝐿𝑗)) ∈ ℂ)
1711adantr 481 . . . 4 ((𝜑𝑘 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝐵}) → 𝑋𝐷)
18 elrabi 3639 . . . . . 6 (𝑘 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝐵} → 𝑘 ∈ ℕ)
1918nnzd 12526 . . . . 5 (𝑘 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝐵} → 𝑘 ∈ ℤ)
2019adantl 482 . . . 4 ((𝜑𝑘 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝐵}) → 𝑘 ∈ ℤ)
217, 8, 9, 10, 17, 20dchrzrhcl 26593 . . 3 ((𝜑𝑘 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝐵}) → (𝑋‘(𝐿𝑘)) ∈ ℂ)
2214, 19anim12i 613 . . . 4 ((𝑗 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝐴} ∧ 𝑘 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝐵}) → (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ))
2311adantr 481 . . . . . 6 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → 𝑋𝐷)
24 simprl 769 . . . . . 6 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → 𝑗 ∈ ℤ)
25 simprr 771 . . . . . 6 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → 𝑘 ∈ ℤ)
267, 8, 9, 10, 23, 24, 25dchrzrhmul 26594 . . . . 5 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (𝑋‘(𝐿‘(𝑗 · 𝑘))) = ((𝑋‘(𝐿𝑗)) · (𝑋‘(𝐿𝑘))))
2726eqcomd 2742 . . . 4 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → ((𝑋‘(𝐿𝑗)) · (𝑋‘(𝐿𝑘))) = (𝑋‘(𝐿‘(𝑗 · 𝑘))))
2822, 27sylan2 593 . . 3 ((𝜑 ∧ (𝑗 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝐴} ∧ 𝑘 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝐵})) → ((𝑋‘(𝐿𝑗)) · (𝑋‘(𝐿𝑘))) = (𝑋‘(𝐿‘(𝑗 · 𝑘))))
29 2fveq3 6847 . . 3 (𝑖 = (𝑗 · 𝑘) → (𝑋‘(𝐿𝑖)) = (𝑋‘(𝐿‘(𝑗 · 𝑘))))
301, 2, 3, 4, 5, 6, 16, 21, 28, 29fsumdvdsmul 26544 . 2 (𝜑 → (Σ𝑗 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝐴} (𝑋‘(𝐿𝑗)) · Σ𝑘 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝐵} (𝑋‘(𝐿𝑘))) = Σ𝑖 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ (𝐴 · 𝐵)} (𝑋‘(𝐿𝑖)))
31 rpvmasum.a . . . . 5 (𝜑𝑁 ∈ ℕ)
32 rpvmasum2.1 . . . . 5 1 = (0g𝐺)
33 dchrisum0f.f . . . . 5 𝐹 = (𝑏 ∈ ℕ ↦ Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝑏} (𝑋‘(𝐿𝑣)))
348, 10, 31, 7, 9, 32, 33dchrisum0fval 26853 . . . 4 (𝐴 ∈ ℕ → (𝐹𝐴) = Σ𝑗 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝐴} (𝑋‘(𝐿𝑗)))
351, 34syl 17 . . 3 (𝜑 → (𝐹𝐴) = Σ𝑗 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝐴} (𝑋‘(𝐿𝑗)))
368, 10, 31, 7, 9, 32, 33dchrisum0fval 26853 . . . 4 (𝐵 ∈ ℕ → (𝐹𝐵) = Σ𝑘 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝐵} (𝑋‘(𝐿𝑘)))
372, 36syl 17 . . 3 (𝜑 → (𝐹𝐵) = Σ𝑘 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝐵} (𝑋‘(𝐿𝑘)))
3835, 37oveq12d 7375 . 2 (𝜑 → ((𝐹𝐴) · (𝐹𝐵)) = (Σ𝑗 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝐴} (𝑋‘(𝐿𝑗)) · Σ𝑘 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝐵} (𝑋‘(𝐿𝑘))))
391, 2nnmulcld 12206 . . 3 (𝜑 → (𝐴 · 𝐵) ∈ ℕ)
408, 10, 31, 7, 9, 32, 33dchrisum0fval 26853 . . 3 ((𝐴 · 𝐵) ∈ ℕ → (𝐹‘(𝐴 · 𝐵)) = Σ𝑖 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ (𝐴 · 𝐵)} (𝑋‘(𝐿𝑖)))
4139, 40syl 17 . 2 (𝜑 → (𝐹‘(𝐴 · 𝐵)) = Σ𝑖 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ (𝐴 · 𝐵)} (𝑋‘(𝐿𝑖)))
4230, 38, 413eqtr4rd 2787 1 (𝜑 → (𝐹‘(𝐴 · 𝐵)) = ((𝐹𝐴) · (𝐹𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  {crab 3407   class class class wbr 5105  cmpt 5188  cfv 6496  (class class class)co 7357  1c1 11052   · cmul 11056  cn 12153  cz 12499  Σcsu 15570  cdvds 16136   gcd cgcd 16374  Basecbs 17083  0gc0g 17321  ℤRHomczrh 20900  ℤ/nczn 20903  DChrcdchr 26580
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-tpos 8157  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-ec 8650  df-qs 8654  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-sup 9378  df-inf 9379  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-rp 12916  df-fz 13425  df-fzo 13568  df-fl 13697  df-mod 13775  df-seq 13907  df-exp 13968  df-hash 14231  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-clim 15370  df-sum 15571  df-dvds 16137  df-gcd 16375  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-0g 17323  df-imas 17390  df-qus 17391  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-mhm 18601  df-grp 18751  df-minusg 18752  df-sbg 18753  df-mulg 18873  df-subg 18925  df-nsg 18926  df-eqg 18927  df-ghm 19006  df-cmn 19564  df-abl 19565  df-mgp 19897  df-ur 19914  df-ring 19966  df-cring 19967  df-oppr 20049  df-dvdsr 20070  df-unit 20071  df-rnghom 20146  df-subrg 20220  df-lmod 20324  df-lss 20393  df-lsp 20433  df-sra 20633  df-rgmod 20634  df-lidl 20635  df-rsp 20636  df-2idl 20702  df-cnfld 20797  df-zring 20870  df-zrh 20904  df-zn 20907  df-dchr 26581
This theorem is referenced by:  dchrisum0flblem2  26857
  Copyright terms: Public domain W3C validator