MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrisum0fmul Structured version   Visualization version   GIF version

Theorem dchrisum0fmul 26081
Description: The function 𝐹, the divisor sum of a Dirichlet character, is a multiplicative function (but not completely multiplicative). Equation 9.4.27 of [Shapiro], p. 382. (Contributed by Mario Carneiro, 5-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z 𝑍 = (ℤ/nℤ‘𝑁)
rpvmasum.l 𝐿 = (ℤRHom‘𝑍)
rpvmasum.a (𝜑𝑁 ∈ ℕ)
rpvmasum2.g 𝐺 = (DChr‘𝑁)
rpvmasum2.d 𝐷 = (Base‘𝐺)
rpvmasum2.1 1 = (0g𝐺)
dchrisum0f.f 𝐹 = (𝑏 ∈ ℕ ↦ Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝑏} (𝑋‘(𝐿𝑣)))
dchrisum0f.x (𝜑𝑋𝐷)
dchrisum0fmul.a (𝜑𝐴 ∈ ℕ)
dchrisum0fmul.b (𝜑𝐵 ∈ ℕ)
dchrisum0fmul.m (𝜑 → (𝐴 gcd 𝐵) = 1)
Assertion
Ref Expression
dchrisum0fmul (𝜑 → (𝐹‘(𝐴 · 𝐵)) = ((𝐹𝐴) · (𝐹𝐵)))
Distinct variable groups:   𝑞,𝑏,𝑣,𝐴   𝑁,𝑞   𝐵,𝑏,𝑞,𝑣   𝐿,𝑏,𝑣   𝑋,𝑏,𝑣
Allowed substitution hints:   𝜑(𝑣,𝑞,𝑏)   𝐷(𝑣,𝑞,𝑏)   1 (𝑣,𝑞,𝑏)   𝐹(𝑣,𝑞,𝑏)   𝐺(𝑣,𝑞,𝑏)   𝐿(𝑞)   𝑁(𝑣,𝑏)   𝑋(𝑞)   𝑍(𝑣,𝑞,𝑏)

Proof of Theorem dchrisum0fmul
Dummy variables 𝑘 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dchrisum0fmul.a . . 3 (𝜑𝐴 ∈ ℕ)
2 dchrisum0fmul.b . . 3 (𝜑𝐵 ∈ ℕ)
3 dchrisum0fmul.m . . 3 (𝜑 → (𝐴 gcd 𝐵) = 1)
4 eqid 2821 . . 3 {𝑞 ∈ ℕ ∣ 𝑞𝐴} = {𝑞 ∈ ℕ ∣ 𝑞𝐴}
5 eqid 2821 . . 3 {𝑞 ∈ ℕ ∣ 𝑞𝐵} = {𝑞 ∈ ℕ ∣ 𝑞𝐵}
6 eqid 2821 . . 3 {𝑞 ∈ ℕ ∣ 𝑞 ∥ (𝐴 · 𝐵)} = {𝑞 ∈ ℕ ∣ 𝑞 ∥ (𝐴 · 𝐵)}
7 rpvmasum2.g . . . 4 𝐺 = (DChr‘𝑁)
8 rpvmasum.z . . . 4 𝑍 = (ℤ/nℤ‘𝑁)
9 rpvmasum2.d . . . 4 𝐷 = (Base‘𝐺)
10 rpvmasum.l . . . 4 𝐿 = (ℤRHom‘𝑍)
11 dchrisum0f.x . . . . 5 (𝜑𝑋𝐷)
1211adantr 483 . . . 4 ((𝜑𝑗 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝐴}) → 𝑋𝐷)
13 elrabi 3674 . . . . . 6 (𝑗 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝐴} → 𝑗 ∈ ℕ)
1413nnzd 12085 . . . . 5 (𝑗 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝐴} → 𝑗 ∈ ℤ)
1514adantl 484 . . . 4 ((𝜑𝑗 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝐴}) → 𝑗 ∈ ℤ)
167, 8, 9, 10, 12, 15dchrzrhcl 25820 . . 3 ((𝜑𝑗 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝐴}) → (𝑋‘(𝐿𝑗)) ∈ ℂ)
1711adantr 483 . . . 4 ((𝜑𝑘 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝐵}) → 𝑋𝐷)
18 elrabi 3674 . . . . . 6 (𝑘 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝐵} → 𝑘 ∈ ℕ)
1918nnzd 12085 . . . . 5 (𝑘 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝐵} → 𝑘 ∈ ℤ)
2019adantl 484 . . . 4 ((𝜑𝑘 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝐵}) → 𝑘 ∈ ℤ)
217, 8, 9, 10, 17, 20dchrzrhcl 25820 . . 3 ((𝜑𝑘 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝐵}) → (𝑋‘(𝐿𝑘)) ∈ ℂ)
2214, 19anim12i 614 . . . 4 ((𝑗 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝐴} ∧ 𝑘 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝐵}) → (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ))
2311adantr 483 . . . . . 6 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → 𝑋𝐷)
24 simprl 769 . . . . . 6 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → 𝑗 ∈ ℤ)
25 simprr 771 . . . . . 6 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → 𝑘 ∈ ℤ)
267, 8, 9, 10, 23, 24, 25dchrzrhmul 25821 . . . . 5 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (𝑋‘(𝐿‘(𝑗 · 𝑘))) = ((𝑋‘(𝐿𝑗)) · (𝑋‘(𝐿𝑘))))
2726eqcomd 2827 . . . 4 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → ((𝑋‘(𝐿𝑗)) · (𝑋‘(𝐿𝑘))) = (𝑋‘(𝐿‘(𝑗 · 𝑘))))
2822, 27sylan2 594 . . 3 ((𝜑 ∧ (𝑗 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝐴} ∧ 𝑘 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝐵})) → ((𝑋‘(𝐿𝑗)) · (𝑋‘(𝐿𝑘))) = (𝑋‘(𝐿‘(𝑗 · 𝑘))))
29 2fveq3 6674 . . 3 (𝑖 = (𝑗 · 𝑘) → (𝑋‘(𝐿𝑖)) = (𝑋‘(𝐿‘(𝑗 · 𝑘))))
301, 2, 3, 4, 5, 6, 16, 21, 28, 29fsumdvdsmul 25771 . 2 (𝜑 → (Σ𝑗 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝐴} (𝑋‘(𝐿𝑗)) · Σ𝑘 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝐵} (𝑋‘(𝐿𝑘))) = Σ𝑖 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ (𝐴 · 𝐵)} (𝑋‘(𝐿𝑖)))
31 rpvmasum.a . . . . 5 (𝜑𝑁 ∈ ℕ)
32 rpvmasum2.1 . . . . 5 1 = (0g𝐺)
33 dchrisum0f.f . . . . 5 𝐹 = (𝑏 ∈ ℕ ↦ Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝑏} (𝑋‘(𝐿𝑣)))
348, 10, 31, 7, 9, 32, 33dchrisum0fval 26080 . . . 4 (𝐴 ∈ ℕ → (𝐹𝐴) = Σ𝑗 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝐴} (𝑋‘(𝐿𝑗)))
351, 34syl 17 . . 3 (𝜑 → (𝐹𝐴) = Σ𝑗 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝐴} (𝑋‘(𝐿𝑗)))
368, 10, 31, 7, 9, 32, 33dchrisum0fval 26080 . . . 4 (𝐵 ∈ ℕ → (𝐹𝐵) = Σ𝑘 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝐵} (𝑋‘(𝐿𝑘)))
372, 36syl 17 . . 3 (𝜑 → (𝐹𝐵) = Σ𝑘 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝐵} (𝑋‘(𝐿𝑘)))
3835, 37oveq12d 7173 . 2 (𝜑 → ((𝐹𝐴) · (𝐹𝐵)) = (Σ𝑗 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝐴} (𝑋‘(𝐿𝑗)) · Σ𝑘 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝐵} (𝑋‘(𝐿𝑘))))
391, 2nnmulcld 11689 . . 3 (𝜑 → (𝐴 · 𝐵) ∈ ℕ)
408, 10, 31, 7, 9, 32, 33dchrisum0fval 26080 . . 3 ((𝐴 · 𝐵) ∈ ℕ → (𝐹‘(𝐴 · 𝐵)) = Σ𝑖 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ (𝐴 · 𝐵)} (𝑋‘(𝐿𝑖)))
4139, 40syl 17 . 2 (𝜑 → (𝐹‘(𝐴 · 𝐵)) = Σ𝑖 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ (𝐴 · 𝐵)} (𝑋‘(𝐿𝑖)))
4230, 38, 413eqtr4rd 2867 1 (𝜑 → (𝐹‘(𝐴 · 𝐵)) = ((𝐹𝐴) · (𝐹𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  {crab 3142   class class class wbr 5065  cmpt 5145  cfv 6354  (class class class)co 7155  1c1 10537   · cmul 10541  cn 11637  cz 11980  Σcsu 15041  cdvds 15606   gcd cgcd 15842  Basecbs 16482  0gc0g 16712  ℤRHomczrh 20646  ℤ/nczn 20649  DChrcdchr 25807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-inf2 9103  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613  ax-pre-sup 10614  ax-addf 10615  ax-mulf 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-isom 6363  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-1st 7688  df-2nd 7689  df-tpos 7891  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-1o 8101  df-oadd 8105  df-er 8288  df-ec 8290  df-qs 8294  df-map 8407  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-sup 8905  df-inf 8906  df-oi 8973  df-card 9367  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-div 11297  df-nn 11638  df-2 11699  df-3 11700  df-4 11701  df-5 11702  df-6 11703  df-7 11704  df-8 11705  df-9 11706  df-n0 11897  df-z 11981  df-dec 12098  df-uz 12243  df-rp 12389  df-fz 12892  df-fzo 13033  df-fl 13161  df-mod 13237  df-seq 13369  df-exp 13429  df-hash 13690  df-cj 14457  df-re 14458  df-im 14459  df-sqrt 14593  df-abs 14594  df-clim 14844  df-sum 15042  df-dvds 15607  df-gcd 15843  df-struct 16484  df-ndx 16485  df-slot 16486  df-base 16488  df-sets 16489  df-ress 16490  df-plusg 16577  df-mulr 16578  df-starv 16579  df-sca 16580  df-vsca 16581  df-ip 16582  df-tset 16583  df-ple 16584  df-ds 16586  df-unif 16587  df-0g 16714  df-imas 16780  df-qus 16781  df-mgm 17851  df-sgrp 17900  df-mnd 17911  df-mhm 17955  df-grp 18105  df-minusg 18106  df-sbg 18107  df-mulg 18224  df-subg 18275  df-nsg 18276  df-eqg 18277  df-ghm 18355  df-cmn 18907  df-abl 18908  df-mgp 19239  df-ur 19251  df-ring 19298  df-cring 19299  df-oppr 19372  df-dvdsr 19390  df-unit 19391  df-rnghom 19466  df-subrg 19532  df-lmod 19635  df-lss 19703  df-lsp 19743  df-sra 19943  df-rgmod 19944  df-lidl 19945  df-rsp 19946  df-2idl 20004  df-cnfld 20545  df-zring 20617  df-zrh 20650  df-zn 20653  df-dchr 25808
This theorem is referenced by:  dchrisum0flblem2  26084
  Copyright terms: Public domain W3C validator