![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dchrisum0fmul | Structured version Visualization version GIF version |
Description: The function πΉ, the divisor sum of a Dirichlet character, is a multiplicative function (but not completely multiplicative). Equation 9.4.27 of [Shapiro], p. 382. (Contributed by Mario Carneiro, 5-May-2016.) |
Ref | Expression |
---|---|
rpvmasum.z | β’ π = (β€/nβ€βπ) |
rpvmasum.l | β’ πΏ = (β€RHomβπ) |
rpvmasum.a | β’ (π β π β β) |
rpvmasum2.g | β’ πΊ = (DChrβπ) |
rpvmasum2.d | β’ π· = (BaseβπΊ) |
rpvmasum2.1 | β’ 1 = (0gβπΊ) |
dchrisum0f.f | β’ πΉ = (π β β β¦ Ξ£π£ β {π β β β£ π β₯ π} (πβ(πΏβπ£))) |
dchrisum0f.x | β’ (π β π β π·) |
dchrisum0fmul.a | β’ (π β π΄ β β) |
dchrisum0fmul.b | β’ (π β π΅ β β) |
dchrisum0fmul.m | β’ (π β (π΄ gcd π΅) = 1) |
Ref | Expression |
---|---|
dchrisum0fmul | β’ (π β (πΉβ(π΄ Β· π΅)) = ((πΉβπ΄) Β· (πΉβπ΅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dchrisum0fmul.a | . . 3 β’ (π β π΄ β β) | |
2 | dchrisum0fmul.b | . . 3 β’ (π β π΅ β β) | |
3 | dchrisum0fmul.m | . . 3 β’ (π β (π΄ gcd π΅) = 1) | |
4 | eqid 2725 | . . 3 β’ {π β β β£ π β₯ π΄} = {π β β β£ π β₯ π΄} | |
5 | eqid 2725 | . . 3 β’ {π β β β£ π β₯ π΅} = {π β β β£ π β₯ π΅} | |
6 | eqid 2725 | . . 3 β’ {π β β β£ π β₯ (π΄ Β· π΅)} = {π β β β£ π β₯ (π΄ Β· π΅)} | |
7 | rpvmasum2.g | . . . 4 β’ πΊ = (DChrβπ) | |
8 | rpvmasum.z | . . . 4 β’ π = (β€/nβ€βπ) | |
9 | rpvmasum2.d | . . . 4 β’ π· = (BaseβπΊ) | |
10 | rpvmasum.l | . . . 4 β’ πΏ = (β€RHomβπ) | |
11 | dchrisum0f.x | . . . . 5 β’ (π β π β π·) | |
12 | 11 | adantr 479 | . . . 4 β’ ((π β§ π β {π β β β£ π β₯ π΄}) β π β π·) |
13 | elrabi 3670 | . . . . . 6 β’ (π β {π β β β£ π β₯ π΄} β π β β) | |
14 | 13 | nnzd 12610 | . . . . 5 β’ (π β {π β β β£ π β₯ π΄} β π β β€) |
15 | 14 | adantl 480 | . . . 4 β’ ((π β§ π β {π β β β£ π β₯ π΄}) β π β β€) |
16 | 7, 8, 9, 10, 12, 15 | dchrzrhcl 27191 | . . 3 β’ ((π β§ π β {π β β β£ π β₯ π΄}) β (πβ(πΏβπ)) β β) |
17 | 11 | adantr 479 | . . . 4 β’ ((π β§ π β {π β β β£ π β₯ π΅}) β π β π·) |
18 | elrabi 3670 | . . . . . 6 β’ (π β {π β β β£ π β₯ π΅} β π β β) | |
19 | 18 | nnzd 12610 | . . . . 5 β’ (π β {π β β β£ π β₯ π΅} β π β β€) |
20 | 19 | adantl 480 | . . . 4 β’ ((π β§ π β {π β β β£ π β₯ π΅}) β π β β€) |
21 | 7, 8, 9, 10, 17, 20 | dchrzrhcl 27191 | . . 3 β’ ((π β§ π β {π β β β£ π β₯ π΅}) β (πβ(πΏβπ)) β β) |
22 | 14, 19 | anim12i 611 | . . . 4 β’ ((π β {π β β β£ π β₯ π΄} β§ π β {π β β β£ π β₯ π΅}) β (π β β€ β§ π β β€)) |
23 | 11 | adantr 479 | . . . . . 6 β’ ((π β§ (π β β€ β§ π β β€)) β π β π·) |
24 | simprl 769 | . . . . . 6 β’ ((π β§ (π β β€ β§ π β β€)) β π β β€) | |
25 | simprr 771 | . . . . . 6 β’ ((π β§ (π β β€ β§ π β β€)) β π β β€) | |
26 | 7, 8, 9, 10, 23, 24, 25 | dchrzrhmul 27192 | . . . . 5 β’ ((π β§ (π β β€ β§ π β β€)) β (πβ(πΏβ(π Β· π))) = ((πβ(πΏβπ)) Β· (πβ(πΏβπ)))) |
27 | 26 | eqcomd 2731 | . . . 4 β’ ((π β§ (π β β€ β§ π β β€)) β ((πβ(πΏβπ)) Β· (πβ(πΏβπ))) = (πβ(πΏβ(π Β· π)))) |
28 | 22, 27 | sylan2 591 | . . 3 β’ ((π β§ (π β {π β β β£ π β₯ π΄} β§ π β {π β β β£ π β₯ π΅})) β ((πβ(πΏβπ)) Β· (πβ(πΏβπ))) = (πβ(πΏβ(π Β· π)))) |
29 | 2fveq3 6895 | . . 3 β’ (π = (π Β· π) β (πβ(πΏβπ)) = (πβ(πΏβ(π Β· π)))) | |
30 | 1, 2, 3, 4, 5, 6, 16, 21, 28, 29 | fsumdvdsmul 27140 | . 2 β’ (π β (Ξ£π β {π β β β£ π β₯ π΄} (πβ(πΏβπ)) Β· Ξ£π β {π β β β£ π β₯ π΅} (πβ(πΏβπ))) = Ξ£π β {π β β β£ π β₯ (π΄ Β· π΅)} (πβ(πΏβπ))) |
31 | rpvmasum.a | . . . . 5 β’ (π β π β β) | |
32 | rpvmasum2.1 | . . . . 5 β’ 1 = (0gβπΊ) | |
33 | dchrisum0f.f | . . . . 5 β’ πΉ = (π β β β¦ Ξ£π£ β {π β β β£ π β₯ π} (πβ(πΏβπ£))) | |
34 | 8, 10, 31, 7, 9, 32, 33 | dchrisum0fval 27451 | . . . 4 β’ (π΄ β β β (πΉβπ΄) = Ξ£π β {π β β β£ π β₯ π΄} (πβ(πΏβπ))) |
35 | 1, 34 | syl 17 | . . 3 β’ (π β (πΉβπ΄) = Ξ£π β {π β β β£ π β₯ π΄} (πβ(πΏβπ))) |
36 | 8, 10, 31, 7, 9, 32, 33 | dchrisum0fval 27451 | . . . 4 β’ (π΅ β β β (πΉβπ΅) = Ξ£π β {π β β β£ π β₯ π΅} (πβ(πΏβπ))) |
37 | 2, 36 | syl 17 | . . 3 β’ (π β (πΉβπ΅) = Ξ£π β {π β β β£ π β₯ π΅} (πβ(πΏβπ))) |
38 | 35, 37 | oveq12d 7431 | . 2 β’ (π β ((πΉβπ΄) Β· (πΉβπ΅)) = (Ξ£π β {π β β β£ π β₯ π΄} (πβ(πΏβπ)) Β· Ξ£π β {π β β β£ π β₯ π΅} (πβ(πΏβπ)))) |
39 | 1, 2 | nnmulcld 12290 | . . 3 β’ (π β (π΄ Β· π΅) β β) |
40 | 8, 10, 31, 7, 9, 32, 33 | dchrisum0fval 27451 | . . 3 β’ ((π΄ Β· π΅) β β β (πΉβ(π΄ Β· π΅)) = Ξ£π β {π β β β£ π β₯ (π΄ Β· π΅)} (πβ(πΏβπ))) |
41 | 39, 40 | syl 17 | . 2 β’ (π β (πΉβ(π΄ Β· π΅)) = Ξ£π β {π β β β£ π β₯ (π΄ Β· π΅)} (πβ(πΏβπ))) |
42 | 30, 38, 41 | 3eqtr4rd 2776 | 1 β’ (π β (πΉβ(π΄ Β· π΅)) = ((πΉβπ΄) Β· (πΉβπ΅))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 = wceq 1533 β wcel 2098 {crab 3419 class class class wbr 5144 β¦ cmpt 5227 βcfv 6543 (class class class)co 7413 1c1 11134 Β· cmul 11138 βcn 12237 β€cz 12583 Ξ£csu 15659 β₯ cdvds 16225 gcd cgcd 16463 Basecbs 17174 0gc0g 17415 β€RHomczrh 21424 β€/nβ€czn 21427 DChrcdchr 27178 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5281 ax-sep 5295 ax-nul 5302 ax-pow 5360 ax-pr 5424 ax-un 7735 ax-inf2 9659 ax-cnex 11189 ax-resscn 11190 ax-1cn 11191 ax-icn 11192 ax-addcl 11193 ax-addrcl 11194 ax-mulcl 11195 ax-mulrcl 11196 ax-mulcom 11197 ax-addass 11198 ax-mulass 11199 ax-distr 11200 ax-i2m1 11201 ax-1ne0 11202 ax-1rid 11203 ax-rnegex 11204 ax-rrecex 11205 ax-cnre 11206 ax-pre-lttri 11207 ax-pre-lttrn 11208 ax-pre-ltadd 11209 ax-pre-mulgt0 11210 ax-pre-sup 11211 ax-addf 11212 ax-mulf 11213 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3961 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-tp 4630 df-op 4632 df-uni 4905 df-int 4946 df-iun 4994 df-br 5145 df-opab 5207 df-mpt 5228 df-tr 5262 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-se 5629 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7866 df-1st 7987 df-2nd 7988 df-tpos 8225 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8718 df-ec 8720 df-qs 8724 df-map 8840 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-sup 9460 df-inf 9461 df-oi 9528 df-card 9957 df-pnf 11275 df-mnf 11276 df-xr 11277 df-ltxr 11278 df-le 11279 df-sub 11471 df-neg 11472 df-div 11897 df-nn 12238 df-2 12300 df-3 12301 df-4 12302 df-5 12303 df-6 12304 df-7 12305 df-8 12306 df-9 12307 df-n0 12498 df-z 12584 df-dec 12703 df-uz 12848 df-rp 13002 df-fz 13512 df-fzo 13655 df-fl 13784 df-mod 13862 df-seq 13994 df-exp 14054 df-hash 14317 df-cj 15073 df-re 15074 df-im 15075 df-sqrt 15209 df-abs 15210 df-clim 15459 df-sum 15660 df-dvds 16226 df-gcd 16464 df-struct 17110 df-sets 17127 df-slot 17145 df-ndx 17157 df-base 17175 df-ress 17204 df-plusg 17240 df-mulr 17241 df-starv 17242 df-sca 17243 df-vsca 17244 df-ip 17245 df-tset 17246 df-ple 17247 df-ds 17249 df-unif 17250 df-0g 17417 df-imas 17484 df-qus 17485 df-mgm 18594 df-sgrp 18673 df-mnd 18689 df-mhm 18734 df-grp 18892 df-minusg 18893 df-sbg 18894 df-mulg 19023 df-subg 19077 df-nsg 19078 df-eqg 19079 df-ghm 19167 df-cmn 19736 df-abl 19737 df-mgp 20074 df-rng 20092 df-ur 20121 df-ring 20174 df-cring 20175 df-oppr 20272 df-dvdsr 20295 df-unit 20296 df-rhm 20410 df-subrng 20482 df-subrg 20507 df-lmod 20744 df-lss 20815 df-lsp 20855 df-sra 21057 df-rgmod 21058 df-lidl 21103 df-rsp 21104 df-2idl 21143 df-cnfld 21279 df-zring 21372 df-zrh 21428 df-zn 21431 df-dchr 27179 |
This theorem is referenced by: dchrisum0flblem2 27455 |
Copyright terms: Public domain | W3C validator |