MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrisum0fmul Structured version   Visualization version   GIF version

Theorem dchrisum0fmul 27568
Description: The function 𝐹, the divisor sum of a Dirichlet character, is a multiplicative function (but not completely multiplicative). Equation 9.4.27 of [Shapiro], p. 382. (Contributed by Mario Carneiro, 5-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z 𝑍 = (ℤ/nℤ‘𝑁)
rpvmasum.l 𝐿 = (ℤRHom‘𝑍)
rpvmasum.a (𝜑𝑁 ∈ ℕ)
rpvmasum2.g 𝐺 = (DChr‘𝑁)
rpvmasum2.d 𝐷 = (Base‘𝐺)
rpvmasum2.1 1 = (0g𝐺)
dchrisum0f.f 𝐹 = (𝑏 ∈ ℕ ↦ Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝑏} (𝑋‘(𝐿𝑣)))
dchrisum0f.x (𝜑𝑋𝐷)
dchrisum0fmul.a (𝜑𝐴 ∈ ℕ)
dchrisum0fmul.b (𝜑𝐵 ∈ ℕ)
dchrisum0fmul.m (𝜑 → (𝐴 gcd 𝐵) = 1)
Assertion
Ref Expression
dchrisum0fmul (𝜑 → (𝐹‘(𝐴 · 𝐵)) = ((𝐹𝐴) · (𝐹𝐵)))
Distinct variable groups:   𝑞,𝑏,𝑣,𝐴   𝑁,𝑞   𝐵,𝑏,𝑞,𝑣   𝐿,𝑏,𝑣   𝑋,𝑏,𝑣
Allowed substitution hints:   𝜑(𝑣,𝑞,𝑏)   𝐷(𝑣,𝑞,𝑏)   1 (𝑣,𝑞,𝑏)   𝐹(𝑣,𝑞,𝑏)   𝐺(𝑣,𝑞,𝑏)   𝐿(𝑞)   𝑁(𝑣,𝑏)   𝑋(𝑞)   𝑍(𝑣,𝑞,𝑏)

Proof of Theorem dchrisum0fmul
Dummy variables 𝑘 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dchrisum0fmul.a . . 3 (𝜑𝐴 ∈ ℕ)
2 dchrisum0fmul.b . . 3 (𝜑𝐵 ∈ ℕ)
3 dchrisum0fmul.m . . 3 (𝜑 → (𝐴 gcd 𝐵) = 1)
4 eqid 2740 . . 3 {𝑞 ∈ ℕ ∣ 𝑞𝐴} = {𝑞 ∈ ℕ ∣ 𝑞𝐴}
5 eqid 2740 . . 3 {𝑞 ∈ ℕ ∣ 𝑞𝐵} = {𝑞 ∈ ℕ ∣ 𝑞𝐵}
6 eqid 2740 . . 3 {𝑞 ∈ ℕ ∣ 𝑞 ∥ (𝐴 · 𝐵)} = {𝑞 ∈ ℕ ∣ 𝑞 ∥ (𝐴 · 𝐵)}
7 rpvmasum2.g . . . 4 𝐺 = (DChr‘𝑁)
8 rpvmasum.z . . . 4 𝑍 = (ℤ/nℤ‘𝑁)
9 rpvmasum2.d . . . 4 𝐷 = (Base‘𝐺)
10 rpvmasum.l . . . 4 𝐿 = (ℤRHom‘𝑍)
11 dchrisum0f.x . . . . 5 (𝜑𝑋𝐷)
1211adantr 480 . . . 4 ((𝜑𝑗 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝐴}) → 𝑋𝐷)
13 elrabi 3703 . . . . . 6 (𝑗 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝐴} → 𝑗 ∈ ℕ)
1413nnzd 12666 . . . . 5 (𝑗 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝐴} → 𝑗 ∈ ℤ)
1514adantl 481 . . . 4 ((𝜑𝑗 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝐴}) → 𝑗 ∈ ℤ)
167, 8, 9, 10, 12, 15dchrzrhcl 27307 . . 3 ((𝜑𝑗 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝐴}) → (𝑋‘(𝐿𝑗)) ∈ ℂ)
1711adantr 480 . . . 4 ((𝜑𝑘 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝐵}) → 𝑋𝐷)
18 elrabi 3703 . . . . . 6 (𝑘 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝐵} → 𝑘 ∈ ℕ)
1918nnzd 12666 . . . . 5 (𝑘 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝐵} → 𝑘 ∈ ℤ)
2019adantl 481 . . . 4 ((𝜑𝑘 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝐵}) → 𝑘 ∈ ℤ)
217, 8, 9, 10, 17, 20dchrzrhcl 27307 . . 3 ((𝜑𝑘 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝐵}) → (𝑋‘(𝐿𝑘)) ∈ ℂ)
2214, 19anim12i 612 . . . 4 ((𝑗 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝐴} ∧ 𝑘 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝐵}) → (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ))
2311adantr 480 . . . . . 6 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → 𝑋𝐷)
24 simprl 770 . . . . . 6 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → 𝑗 ∈ ℤ)
25 simprr 772 . . . . . 6 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → 𝑘 ∈ ℤ)
267, 8, 9, 10, 23, 24, 25dchrzrhmul 27308 . . . . 5 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (𝑋‘(𝐿‘(𝑗 · 𝑘))) = ((𝑋‘(𝐿𝑗)) · (𝑋‘(𝐿𝑘))))
2726eqcomd 2746 . . . 4 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → ((𝑋‘(𝐿𝑗)) · (𝑋‘(𝐿𝑘))) = (𝑋‘(𝐿‘(𝑗 · 𝑘))))
2822, 27sylan2 592 . . 3 ((𝜑 ∧ (𝑗 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝐴} ∧ 𝑘 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝐵})) → ((𝑋‘(𝐿𝑗)) · (𝑋‘(𝐿𝑘))) = (𝑋‘(𝐿‘(𝑗 · 𝑘))))
29 2fveq3 6925 . . 3 (𝑖 = (𝑗 · 𝑘) → (𝑋‘(𝐿𝑖)) = (𝑋‘(𝐿‘(𝑗 · 𝑘))))
301, 2, 3, 4, 5, 6, 16, 21, 28, 29fsumdvdsmul 27256 . 2 (𝜑 → (Σ𝑗 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝐴} (𝑋‘(𝐿𝑗)) · Σ𝑘 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝐵} (𝑋‘(𝐿𝑘))) = Σ𝑖 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ (𝐴 · 𝐵)} (𝑋‘(𝐿𝑖)))
31 rpvmasum.a . . . . 5 (𝜑𝑁 ∈ ℕ)
32 rpvmasum2.1 . . . . 5 1 = (0g𝐺)
33 dchrisum0f.f . . . . 5 𝐹 = (𝑏 ∈ ℕ ↦ Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝑏} (𝑋‘(𝐿𝑣)))
348, 10, 31, 7, 9, 32, 33dchrisum0fval 27567 . . . 4 (𝐴 ∈ ℕ → (𝐹𝐴) = Σ𝑗 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝐴} (𝑋‘(𝐿𝑗)))
351, 34syl 17 . . 3 (𝜑 → (𝐹𝐴) = Σ𝑗 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝐴} (𝑋‘(𝐿𝑗)))
368, 10, 31, 7, 9, 32, 33dchrisum0fval 27567 . . . 4 (𝐵 ∈ ℕ → (𝐹𝐵) = Σ𝑘 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝐵} (𝑋‘(𝐿𝑘)))
372, 36syl 17 . . 3 (𝜑 → (𝐹𝐵) = Σ𝑘 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝐵} (𝑋‘(𝐿𝑘)))
3835, 37oveq12d 7466 . 2 (𝜑 → ((𝐹𝐴) · (𝐹𝐵)) = (Σ𝑗 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝐴} (𝑋‘(𝐿𝑗)) · Σ𝑘 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝐵} (𝑋‘(𝐿𝑘))))
391, 2nnmulcld 12346 . . 3 (𝜑 → (𝐴 · 𝐵) ∈ ℕ)
408, 10, 31, 7, 9, 32, 33dchrisum0fval 27567 . . 3 ((𝐴 · 𝐵) ∈ ℕ → (𝐹‘(𝐴 · 𝐵)) = Σ𝑖 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ (𝐴 · 𝐵)} (𝑋‘(𝐿𝑖)))
4139, 40syl 17 . 2 (𝜑 → (𝐹‘(𝐴 · 𝐵)) = Σ𝑖 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ (𝐴 · 𝐵)} (𝑋‘(𝐿𝑖)))
4230, 38, 413eqtr4rd 2791 1 (𝜑 → (𝐹‘(𝐴 · 𝐵)) = ((𝐹𝐴) · (𝐹𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  {crab 3443   class class class wbr 5166  cmpt 5249  cfv 6573  (class class class)co 7448  1c1 11185   · cmul 11189  cn 12293  cz 12639  Σcsu 15734  cdvds 16302   gcd cgcd 16540  Basecbs 17258  0gc0g 17499  ℤRHomczrh 21533  ℤ/nczn 21536  DChrcdchr 27294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263  ax-mulf 11264
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-tpos 8267  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-ec 8765  df-qs 8769  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-rp 13058  df-fz 13568  df-fzo 13712  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-sum 15735  df-dvds 16303  df-gcd 16541  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-0g 17501  df-imas 17568  df-qus 17569  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mhm 18818  df-grp 18976  df-minusg 18977  df-sbg 18978  df-mulg 19108  df-subg 19163  df-nsg 19164  df-eqg 19165  df-ghm 19253  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-cring 20263  df-oppr 20360  df-dvdsr 20383  df-unit 20384  df-rhm 20498  df-subrng 20572  df-subrg 20597  df-lmod 20882  df-lss 20953  df-lsp 20993  df-sra 21195  df-rgmod 21196  df-lidl 21241  df-rsp 21242  df-2idl 21283  df-cnfld 21388  df-zring 21481  df-zrh 21537  df-zn 21540  df-dchr 27295
This theorem is referenced by:  dchrisum0flblem2  27571
  Copyright terms: Public domain W3C validator