![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dchrisum0fmul | Structured version Visualization version GIF version |
Description: The function 𝐹, the divisor sum of a Dirichlet character, is a multiplicative function (but not completely multiplicative). Equation 9.4.27 of [Shapiro], p. 382. (Contributed by Mario Carneiro, 5-May-2016.) |
Ref | Expression |
---|---|
rpvmasum.z | ⊢ 𝑍 = (ℤ/nℤ‘𝑁) |
rpvmasum.l | ⊢ 𝐿 = (ℤRHom‘𝑍) |
rpvmasum.a | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
rpvmasum2.g | ⊢ 𝐺 = (DChr‘𝑁) |
rpvmasum2.d | ⊢ 𝐷 = (Base‘𝐺) |
rpvmasum2.1 | ⊢ 1 = (0g‘𝐺) |
dchrisum0f.f | ⊢ 𝐹 = (𝑏 ∈ ℕ ↦ Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝑏} (𝑋‘(𝐿‘𝑣))) |
dchrisum0f.x | ⊢ (𝜑 → 𝑋 ∈ 𝐷) |
dchrisum0fmul.a | ⊢ (𝜑 → 𝐴 ∈ ℕ) |
dchrisum0fmul.b | ⊢ (𝜑 → 𝐵 ∈ ℕ) |
dchrisum0fmul.m | ⊢ (𝜑 → (𝐴 gcd 𝐵) = 1) |
Ref | Expression |
---|---|
dchrisum0fmul | ⊢ (𝜑 → (𝐹‘(𝐴 · 𝐵)) = ((𝐹‘𝐴) · (𝐹‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dchrisum0fmul.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℕ) | |
2 | dchrisum0fmul.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℕ) | |
3 | dchrisum0fmul.m | . . 3 ⊢ (𝜑 → (𝐴 gcd 𝐵) = 1) | |
4 | eqid 2740 | . . 3 ⊢ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐴} = {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐴} | |
5 | eqid 2740 | . . 3 ⊢ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐵} = {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐵} | |
6 | eqid 2740 | . . 3 ⊢ {𝑞 ∈ ℕ ∣ 𝑞 ∥ (𝐴 · 𝐵)} = {𝑞 ∈ ℕ ∣ 𝑞 ∥ (𝐴 · 𝐵)} | |
7 | rpvmasum2.g | . . . 4 ⊢ 𝐺 = (DChr‘𝑁) | |
8 | rpvmasum.z | . . . 4 ⊢ 𝑍 = (ℤ/nℤ‘𝑁) | |
9 | rpvmasum2.d | . . . 4 ⊢ 𝐷 = (Base‘𝐺) | |
10 | rpvmasum.l | . . . 4 ⊢ 𝐿 = (ℤRHom‘𝑍) | |
11 | dchrisum0f.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐷) | |
12 | 11 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐴}) → 𝑋 ∈ 𝐷) |
13 | elrabi 3703 | . . . . . 6 ⊢ (𝑗 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐴} → 𝑗 ∈ ℕ) | |
14 | 13 | nnzd 12666 | . . . . 5 ⊢ (𝑗 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐴} → 𝑗 ∈ ℤ) |
15 | 14 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐴}) → 𝑗 ∈ ℤ) |
16 | 7, 8, 9, 10, 12, 15 | dchrzrhcl 27307 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐴}) → (𝑋‘(𝐿‘𝑗)) ∈ ℂ) |
17 | 11 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐵}) → 𝑋 ∈ 𝐷) |
18 | elrabi 3703 | . . . . . 6 ⊢ (𝑘 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐵} → 𝑘 ∈ ℕ) | |
19 | 18 | nnzd 12666 | . . . . 5 ⊢ (𝑘 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐵} → 𝑘 ∈ ℤ) |
20 | 19 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐵}) → 𝑘 ∈ ℤ) |
21 | 7, 8, 9, 10, 17, 20 | dchrzrhcl 27307 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐵}) → (𝑋‘(𝐿‘𝑘)) ∈ ℂ) |
22 | 14, 19 | anim12i 612 | . . . 4 ⊢ ((𝑗 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐴} ∧ 𝑘 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐵}) → (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) |
23 | 11 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → 𝑋 ∈ 𝐷) |
24 | simprl 770 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → 𝑗 ∈ ℤ) | |
25 | simprr 772 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → 𝑘 ∈ ℤ) | |
26 | 7, 8, 9, 10, 23, 24, 25 | dchrzrhmul 27308 | . . . . 5 ⊢ ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (𝑋‘(𝐿‘(𝑗 · 𝑘))) = ((𝑋‘(𝐿‘𝑗)) · (𝑋‘(𝐿‘𝑘)))) |
27 | 26 | eqcomd 2746 | . . . 4 ⊢ ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → ((𝑋‘(𝐿‘𝑗)) · (𝑋‘(𝐿‘𝑘))) = (𝑋‘(𝐿‘(𝑗 · 𝑘)))) |
28 | 22, 27 | sylan2 592 | . . 3 ⊢ ((𝜑 ∧ (𝑗 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐴} ∧ 𝑘 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐵})) → ((𝑋‘(𝐿‘𝑗)) · (𝑋‘(𝐿‘𝑘))) = (𝑋‘(𝐿‘(𝑗 · 𝑘)))) |
29 | 2fveq3 6925 | . . 3 ⊢ (𝑖 = (𝑗 · 𝑘) → (𝑋‘(𝐿‘𝑖)) = (𝑋‘(𝐿‘(𝑗 · 𝑘)))) | |
30 | 1, 2, 3, 4, 5, 6, 16, 21, 28, 29 | fsumdvdsmul 27256 | . 2 ⊢ (𝜑 → (Σ𝑗 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐴} (𝑋‘(𝐿‘𝑗)) · Σ𝑘 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐵} (𝑋‘(𝐿‘𝑘))) = Σ𝑖 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ (𝐴 · 𝐵)} (𝑋‘(𝐿‘𝑖))) |
31 | rpvmasum.a | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
32 | rpvmasum2.1 | . . . . 5 ⊢ 1 = (0g‘𝐺) | |
33 | dchrisum0f.f | . . . . 5 ⊢ 𝐹 = (𝑏 ∈ ℕ ↦ Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝑏} (𝑋‘(𝐿‘𝑣))) | |
34 | 8, 10, 31, 7, 9, 32, 33 | dchrisum0fval 27567 | . . . 4 ⊢ (𝐴 ∈ ℕ → (𝐹‘𝐴) = Σ𝑗 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐴} (𝑋‘(𝐿‘𝑗))) |
35 | 1, 34 | syl 17 | . . 3 ⊢ (𝜑 → (𝐹‘𝐴) = Σ𝑗 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐴} (𝑋‘(𝐿‘𝑗))) |
36 | 8, 10, 31, 7, 9, 32, 33 | dchrisum0fval 27567 | . . . 4 ⊢ (𝐵 ∈ ℕ → (𝐹‘𝐵) = Σ𝑘 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐵} (𝑋‘(𝐿‘𝑘))) |
37 | 2, 36 | syl 17 | . . 3 ⊢ (𝜑 → (𝐹‘𝐵) = Σ𝑘 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐵} (𝑋‘(𝐿‘𝑘))) |
38 | 35, 37 | oveq12d 7466 | . 2 ⊢ (𝜑 → ((𝐹‘𝐴) · (𝐹‘𝐵)) = (Σ𝑗 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐴} (𝑋‘(𝐿‘𝑗)) · Σ𝑘 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐵} (𝑋‘(𝐿‘𝑘)))) |
39 | 1, 2 | nnmulcld 12346 | . . 3 ⊢ (𝜑 → (𝐴 · 𝐵) ∈ ℕ) |
40 | 8, 10, 31, 7, 9, 32, 33 | dchrisum0fval 27567 | . . 3 ⊢ ((𝐴 · 𝐵) ∈ ℕ → (𝐹‘(𝐴 · 𝐵)) = Σ𝑖 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ (𝐴 · 𝐵)} (𝑋‘(𝐿‘𝑖))) |
41 | 39, 40 | syl 17 | . 2 ⊢ (𝜑 → (𝐹‘(𝐴 · 𝐵)) = Σ𝑖 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ (𝐴 · 𝐵)} (𝑋‘(𝐿‘𝑖))) |
42 | 30, 38, 41 | 3eqtr4rd 2791 | 1 ⊢ (𝜑 → (𝐹‘(𝐴 · 𝐵)) = ((𝐹‘𝐴) · (𝐹‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 {crab 3443 class class class wbr 5166 ↦ cmpt 5249 ‘cfv 6573 (class class class)co 7448 1c1 11185 · cmul 11189 ℕcn 12293 ℤcz 12639 Σcsu 15734 ∥ cdvds 16302 gcd cgcd 16540 Basecbs 17258 0gc0g 17499 ℤRHomczrh 21533 ℤ/nℤczn 21536 DChrcdchr 27294 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 ax-addf 11263 ax-mulf 11264 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-tpos 8267 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-ec 8765 df-qs 8769 df-map 8886 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-sup 9511 df-inf 9512 df-oi 9579 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-rp 13058 df-fz 13568 df-fzo 13712 df-fl 13843 df-mod 13921 df-seq 14053 df-exp 14113 df-hash 14380 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-clim 15534 df-sum 15735 df-dvds 16303 df-gcd 16541 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-starv 17326 df-sca 17327 df-vsca 17328 df-ip 17329 df-tset 17330 df-ple 17331 df-ds 17333 df-unif 17334 df-0g 17501 df-imas 17568 df-qus 17569 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-mhm 18818 df-grp 18976 df-minusg 18977 df-sbg 18978 df-mulg 19108 df-subg 19163 df-nsg 19164 df-eqg 19165 df-ghm 19253 df-cmn 19824 df-abl 19825 df-mgp 20162 df-rng 20180 df-ur 20209 df-ring 20262 df-cring 20263 df-oppr 20360 df-dvdsr 20383 df-unit 20384 df-rhm 20498 df-subrng 20572 df-subrg 20597 df-lmod 20882 df-lss 20953 df-lsp 20993 df-sra 21195 df-rgmod 21196 df-lidl 21241 df-rsp 21242 df-2idl 21283 df-cnfld 21388 df-zring 21481 df-zrh 21537 df-zn 21540 df-dchr 27295 |
This theorem is referenced by: dchrisum0flblem2 27571 |
Copyright terms: Public domain | W3C validator |