![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dchrisum0fmul | Structured version Visualization version GIF version |
Description: The function πΉ, the divisor sum of a Dirichlet character, is a multiplicative function (but not completely multiplicative). Equation 9.4.27 of [Shapiro], p. 382. (Contributed by Mario Carneiro, 5-May-2016.) |
Ref | Expression |
---|---|
rpvmasum.z | β’ π = (β€/nβ€βπ) |
rpvmasum.l | β’ πΏ = (β€RHomβπ) |
rpvmasum.a | β’ (π β π β β) |
rpvmasum2.g | β’ πΊ = (DChrβπ) |
rpvmasum2.d | β’ π· = (BaseβπΊ) |
rpvmasum2.1 | β’ 1 = (0gβπΊ) |
dchrisum0f.f | β’ πΉ = (π β β β¦ Ξ£π£ β {π β β β£ π β₯ π} (πβ(πΏβπ£))) |
dchrisum0f.x | β’ (π β π β π·) |
dchrisum0fmul.a | β’ (π β π΄ β β) |
dchrisum0fmul.b | β’ (π β π΅ β β) |
dchrisum0fmul.m | β’ (π β (π΄ gcd π΅) = 1) |
Ref | Expression |
---|---|
dchrisum0fmul | β’ (π β (πΉβ(π΄ Β· π΅)) = ((πΉβπ΄) Β· (πΉβπ΅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dchrisum0fmul.a | . . 3 β’ (π β π΄ β β) | |
2 | dchrisum0fmul.b | . . 3 β’ (π β π΅ β β) | |
3 | dchrisum0fmul.m | . . 3 β’ (π β (π΄ gcd π΅) = 1) | |
4 | eqid 2727 | . . 3 β’ {π β β β£ π β₯ π΄} = {π β β β£ π β₯ π΄} | |
5 | eqid 2727 | . . 3 β’ {π β β β£ π β₯ π΅} = {π β β β£ π β₯ π΅} | |
6 | eqid 2727 | . . 3 β’ {π β β β£ π β₯ (π΄ Β· π΅)} = {π β β β£ π β₯ (π΄ Β· π΅)} | |
7 | rpvmasum2.g | . . . 4 β’ πΊ = (DChrβπ) | |
8 | rpvmasum.z | . . . 4 β’ π = (β€/nβ€βπ) | |
9 | rpvmasum2.d | . . . 4 β’ π· = (BaseβπΊ) | |
10 | rpvmasum.l | . . . 4 β’ πΏ = (β€RHomβπ) | |
11 | dchrisum0f.x | . . . . 5 β’ (π β π β π·) | |
12 | 11 | adantr 480 | . . . 4 β’ ((π β§ π β {π β β β£ π β₯ π΄}) β π β π·) |
13 | elrabi 3674 | . . . . . 6 β’ (π β {π β β β£ π β₯ π΄} β π β β) | |
14 | 13 | nnzd 12607 | . . . . 5 β’ (π β {π β β β£ π β₯ π΄} β π β β€) |
15 | 14 | adantl 481 | . . . 4 β’ ((π β§ π β {π β β β£ π β₯ π΄}) β π β β€) |
16 | 7, 8, 9, 10, 12, 15 | dchrzrhcl 27165 | . . 3 β’ ((π β§ π β {π β β β£ π β₯ π΄}) β (πβ(πΏβπ)) β β) |
17 | 11 | adantr 480 | . . . 4 β’ ((π β§ π β {π β β β£ π β₯ π΅}) β π β π·) |
18 | elrabi 3674 | . . . . . 6 β’ (π β {π β β β£ π β₯ π΅} β π β β) | |
19 | 18 | nnzd 12607 | . . . . 5 β’ (π β {π β β β£ π β₯ π΅} β π β β€) |
20 | 19 | adantl 481 | . . . 4 β’ ((π β§ π β {π β β β£ π β₯ π΅}) β π β β€) |
21 | 7, 8, 9, 10, 17, 20 | dchrzrhcl 27165 | . . 3 β’ ((π β§ π β {π β β β£ π β₯ π΅}) β (πβ(πΏβπ)) β β) |
22 | 14, 19 | anim12i 612 | . . . 4 β’ ((π β {π β β β£ π β₯ π΄} β§ π β {π β β β£ π β₯ π΅}) β (π β β€ β§ π β β€)) |
23 | 11 | adantr 480 | . . . . . 6 β’ ((π β§ (π β β€ β§ π β β€)) β π β π·) |
24 | simprl 770 | . . . . . 6 β’ ((π β§ (π β β€ β§ π β β€)) β π β β€) | |
25 | simprr 772 | . . . . . 6 β’ ((π β§ (π β β€ β§ π β β€)) β π β β€) | |
26 | 7, 8, 9, 10, 23, 24, 25 | dchrzrhmul 27166 | . . . . 5 β’ ((π β§ (π β β€ β§ π β β€)) β (πβ(πΏβ(π Β· π))) = ((πβ(πΏβπ)) Β· (πβ(πΏβπ)))) |
27 | 26 | eqcomd 2733 | . . . 4 β’ ((π β§ (π β β€ β§ π β β€)) β ((πβ(πΏβπ)) Β· (πβ(πΏβπ))) = (πβ(πΏβ(π Β· π)))) |
28 | 22, 27 | sylan2 592 | . . 3 β’ ((π β§ (π β {π β β β£ π β₯ π΄} β§ π β {π β β β£ π β₯ π΅})) β ((πβ(πΏβπ)) Β· (πβ(πΏβπ))) = (πβ(πΏβ(π Β· π)))) |
29 | 2fveq3 6896 | . . 3 β’ (π = (π Β· π) β (πβ(πΏβπ)) = (πβ(πΏβ(π Β· π)))) | |
30 | 1, 2, 3, 4, 5, 6, 16, 21, 28, 29 | fsumdvdsmul 27114 | . 2 β’ (π β (Ξ£π β {π β β β£ π β₯ π΄} (πβ(πΏβπ)) Β· Ξ£π β {π β β β£ π β₯ π΅} (πβ(πΏβπ))) = Ξ£π β {π β β β£ π β₯ (π΄ Β· π΅)} (πβ(πΏβπ))) |
31 | rpvmasum.a | . . . . 5 β’ (π β π β β) | |
32 | rpvmasum2.1 | . . . . 5 β’ 1 = (0gβπΊ) | |
33 | dchrisum0f.f | . . . . 5 β’ πΉ = (π β β β¦ Ξ£π£ β {π β β β£ π β₯ π} (πβ(πΏβπ£))) | |
34 | 8, 10, 31, 7, 9, 32, 33 | dchrisum0fval 27425 | . . . 4 β’ (π΄ β β β (πΉβπ΄) = Ξ£π β {π β β β£ π β₯ π΄} (πβ(πΏβπ))) |
35 | 1, 34 | syl 17 | . . 3 β’ (π β (πΉβπ΄) = Ξ£π β {π β β β£ π β₯ π΄} (πβ(πΏβπ))) |
36 | 8, 10, 31, 7, 9, 32, 33 | dchrisum0fval 27425 | . . . 4 β’ (π΅ β β β (πΉβπ΅) = Ξ£π β {π β β β£ π β₯ π΅} (πβ(πΏβπ))) |
37 | 2, 36 | syl 17 | . . 3 β’ (π β (πΉβπ΅) = Ξ£π β {π β β β£ π β₯ π΅} (πβ(πΏβπ))) |
38 | 35, 37 | oveq12d 7432 | . 2 β’ (π β ((πΉβπ΄) Β· (πΉβπ΅)) = (Ξ£π β {π β β β£ π β₯ π΄} (πβ(πΏβπ)) Β· Ξ£π β {π β β β£ π β₯ π΅} (πβ(πΏβπ)))) |
39 | 1, 2 | nnmulcld 12287 | . . 3 β’ (π β (π΄ Β· π΅) β β) |
40 | 8, 10, 31, 7, 9, 32, 33 | dchrisum0fval 27425 | . . 3 β’ ((π΄ Β· π΅) β β β (πΉβ(π΄ Β· π΅)) = Ξ£π β {π β β β£ π β₯ (π΄ Β· π΅)} (πβ(πΏβπ))) |
41 | 39, 40 | syl 17 | . 2 β’ (π β (πΉβ(π΄ Β· π΅)) = Ξ£π β {π β β β£ π β₯ (π΄ Β· π΅)} (πβ(πΏβπ))) |
42 | 30, 38, 41 | 3eqtr4rd 2778 | 1 β’ (π β (πΉβ(π΄ Β· π΅)) = ((πΉβπ΄) Β· (πΉβπ΅))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1534 β wcel 2099 {crab 3427 class class class wbr 5142 β¦ cmpt 5225 βcfv 6542 (class class class)co 7414 1c1 11131 Β· cmul 11135 βcn 12234 β€cz 12580 Ξ£csu 15656 β₯ cdvds 16222 gcd cgcd 16460 Basecbs 17171 0gc0g 17412 β€RHomczrh 21412 β€/nβ€czn 21415 DChrcdchr 27152 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-inf2 9656 ax-cnex 11186 ax-resscn 11187 ax-1cn 11188 ax-icn 11189 ax-addcl 11190 ax-addrcl 11191 ax-mulcl 11192 ax-mulrcl 11193 ax-mulcom 11194 ax-addass 11195 ax-mulass 11196 ax-distr 11197 ax-i2m1 11198 ax-1ne0 11199 ax-1rid 11200 ax-rnegex 11201 ax-rrecex 11202 ax-cnre 11203 ax-pre-lttri 11204 ax-pre-lttrn 11205 ax-pre-ltadd 11206 ax-pre-mulgt0 11207 ax-pre-sup 11208 ax-addf 11209 ax-mulf 11210 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-se 5628 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-1st 7987 df-2nd 7988 df-tpos 8225 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8718 df-ec 8720 df-qs 8724 df-map 8838 df-en 8956 df-dom 8957 df-sdom 8958 df-fin 8959 df-sup 9457 df-inf 9458 df-oi 9525 df-card 9954 df-pnf 11272 df-mnf 11273 df-xr 11274 df-ltxr 11275 df-le 11276 df-sub 11468 df-neg 11469 df-div 11894 df-nn 12235 df-2 12297 df-3 12298 df-4 12299 df-5 12300 df-6 12301 df-7 12302 df-8 12303 df-9 12304 df-n0 12495 df-z 12581 df-dec 12700 df-uz 12845 df-rp 12999 df-fz 13509 df-fzo 13652 df-fl 13781 df-mod 13859 df-seq 13991 df-exp 14051 df-hash 14314 df-cj 15070 df-re 15071 df-im 15072 df-sqrt 15206 df-abs 15207 df-clim 15456 df-sum 15657 df-dvds 16223 df-gcd 16461 df-struct 17107 df-sets 17124 df-slot 17142 df-ndx 17154 df-base 17172 df-ress 17201 df-plusg 17237 df-mulr 17238 df-starv 17239 df-sca 17240 df-vsca 17241 df-ip 17242 df-tset 17243 df-ple 17244 df-ds 17246 df-unif 17247 df-0g 17414 df-imas 17481 df-qus 17482 df-mgm 18591 df-sgrp 18670 df-mnd 18686 df-mhm 18731 df-grp 18884 df-minusg 18885 df-sbg 18886 df-mulg 19015 df-subg 19069 df-nsg 19070 df-eqg 19071 df-ghm 19159 df-cmn 19728 df-abl 19729 df-mgp 20066 df-rng 20084 df-ur 20113 df-ring 20166 df-cring 20167 df-oppr 20262 df-dvdsr 20285 df-unit 20286 df-rhm 20400 df-subrng 20472 df-subrg 20497 df-lmod 20734 df-lss 20805 df-lsp 20845 df-sra 21047 df-rgmod 21048 df-lidl 21093 df-rsp 21094 df-2idl 21133 df-cnfld 21267 df-zring 21360 df-zrh 21416 df-zn 21419 df-dchr 27153 |
This theorem is referenced by: dchrisum0flblem2 27429 |
Copyright terms: Public domain | W3C validator |