![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dchrisum0fmul | Structured version Visualization version GIF version |
Description: The function 𝐹, the divisor sum of a Dirichlet character, is a multiplicative function (but not completely multiplicative). Equation 9.4.27 of [Shapiro], p. 382. (Contributed by Mario Carneiro, 5-May-2016.) |
Ref | Expression |
---|---|
rpvmasum.z | ⊢ 𝑍 = (ℤ/nℤ‘𝑁) |
rpvmasum.l | ⊢ 𝐿 = (ℤRHom‘𝑍) |
rpvmasum.a | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
rpvmasum2.g | ⊢ 𝐺 = (DChr‘𝑁) |
rpvmasum2.d | ⊢ 𝐷 = (Base‘𝐺) |
rpvmasum2.1 | ⊢ 1 = (0g‘𝐺) |
dchrisum0f.f | ⊢ 𝐹 = (𝑏 ∈ ℕ ↦ Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝑏} (𝑋‘(𝐿‘𝑣))) |
dchrisum0f.x | ⊢ (𝜑 → 𝑋 ∈ 𝐷) |
dchrisum0fmul.a | ⊢ (𝜑 → 𝐴 ∈ ℕ) |
dchrisum0fmul.b | ⊢ (𝜑 → 𝐵 ∈ ℕ) |
dchrisum0fmul.m | ⊢ (𝜑 → (𝐴 gcd 𝐵) = 1) |
Ref | Expression |
---|---|
dchrisum0fmul | ⊢ (𝜑 → (𝐹‘(𝐴 · 𝐵)) = ((𝐹‘𝐴) · (𝐹‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dchrisum0fmul.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℕ) | |
2 | dchrisum0fmul.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℕ) | |
3 | dchrisum0fmul.m | . . 3 ⊢ (𝜑 → (𝐴 gcd 𝐵) = 1) | |
4 | eqid 2735 | . . 3 ⊢ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐴} = {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐴} | |
5 | eqid 2735 | . . 3 ⊢ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐵} = {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐵} | |
6 | eqid 2735 | . . 3 ⊢ {𝑞 ∈ ℕ ∣ 𝑞 ∥ (𝐴 · 𝐵)} = {𝑞 ∈ ℕ ∣ 𝑞 ∥ (𝐴 · 𝐵)} | |
7 | rpvmasum2.g | . . . 4 ⊢ 𝐺 = (DChr‘𝑁) | |
8 | rpvmasum.z | . . . 4 ⊢ 𝑍 = (ℤ/nℤ‘𝑁) | |
9 | rpvmasum2.d | . . . 4 ⊢ 𝐷 = (Base‘𝐺) | |
10 | rpvmasum.l | . . . 4 ⊢ 𝐿 = (ℤRHom‘𝑍) | |
11 | dchrisum0f.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐷) | |
12 | 11 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐴}) → 𝑋 ∈ 𝐷) |
13 | elrabi 3690 | . . . . . 6 ⊢ (𝑗 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐴} → 𝑗 ∈ ℕ) | |
14 | 13 | nnzd 12638 | . . . . 5 ⊢ (𝑗 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐴} → 𝑗 ∈ ℤ) |
15 | 14 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐴}) → 𝑗 ∈ ℤ) |
16 | 7, 8, 9, 10, 12, 15 | dchrzrhcl 27304 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐴}) → (𝑋‘(𝐿‘𝑗)) ∈ ℂ) |
17 | 11 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐵}) → 𝑋 ∈ 𝐷) |
18 | elrabi 3690 | . . . . . 6 ⊢ (𝑘 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐵} → 𝑘 ∈ ℕ) | |
19 | 18 | nnzd 12638 | . . . . 5 ⊢ (𝑘 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐵} → 𝑘 ∈ ℤ) |
20 | 19 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐵}) → 𝑘 ∈ ℤ) |
21 | 7, 8, 9, 10, 17, 20 | dchrzrhcl 27304 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐵}) → (𝑋‘(𝐿‘𝑘)) ∈ ℂ) |
22 | 14, 19 | anim12i 613 | . . . 4 ⊢ ((𝑗 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐴} ∧ 𝑘 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐵}) → (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) |
23 | 11 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → 𝑋 ∈ 𝐷) |
24 | simprl 771 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → 𝑗 ∈ ℤ) | |
25 | simprr 773 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → 𝑘 ∈ ℤ) | |
26 | 7, 8, 9, 10, 23, 24, 25 | dchrzrhmul 27305 | . . . . 5 ⊢ ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (𝑋‘(𝐿‘(𝑗 · 𝑘))) = ((𝑋‘(𝐿‘𝑗)) · (𝑋‘(𝐿‘𝑘)))) |
27 | 26 | eqcomd 2741 | . . . 4 ⊢ ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → ((𝑋‘(𝐿‘𝑗)) · (𝑋‘(𝐿‘𝑘))) = (𝑋‘(𝐿‘(𝑗 · 𝑘)))) |
28 | 22, 27 | sylan2 593 | . . 3 ⊢ ((𝜑 ∧ (𝑗 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐴} ∧ 𝑘 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐵})) → ((𝑋‘(𝐿‘𝑗)) · (𝑋‘(𝐿‘𝑘))) = (𝑋‘(𝐿‘(𝑗 · 𝑘)))) |
29 | 2fveq3 6912 | . . 3 ⊢ (𝑖 = (𝑗 · 𝑘) → (𝑋‘(𝐿‘𝑖)) = (𝑋‘(𝐿‘(𝑗 · 𝑘)))) | |
30 | 1, 2, 3, 4, 5, 6, 16, 21, 28, 29 | fsumdvdsmul 27253 | . 2 ⊢ (𝜑 → (Σ𝑗 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐴} (𝑋‘(𝐿‘𝑗)) · Σ𝑘 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐵} (𝑋‘(𝐿‘𝑘))) = Σ𝑖 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ (𝐴 · 𝐵)} (𝑋‘(𝐿‘𝑖))) |
31 | rpvmasum.a | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
32 | rpvmasum2.1 | . . . . 5 ⊢ 1 = (0g‘𝐺) | |
33 | dchrisum0f.f | . . . . 5 ⊢ 𝐹 = (𝑏 ∈ ℕ ↦ Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝑏} (𝑋‘(𝐿‘𝑣))) | |
34 | 8, 10, 31, 7, 9, 32, 33 | dchrisum0fval 27564 | . . . 4 ⊢ (𝐴 ∈ ℕ → (𝐹‘𝐴) = Σ𝑗 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐴} (𝑋‘(𝐿‘𝑗))) |
35 | 1, 34 | syl 17 | . . 3 ⊢ (𝜑 → (𝐹‘𝐴) = Σ𝑗 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐴} (𝑋‘(𝐿‘𝑗))) |
36 | 8, 10, 31, 7, 9, 32, 33 | dchrisum0fval 27564 | . . . 4 ⊢ (𝐵 ∈ ℕ → (𝐹‘𝐵) = Σ𝑘 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐵} (𝑋‘(𝐿‘𝑘))) |
37 | 2, 36 | syl 17 | . . 3 ⊢ (𝜑 → (𝐹‘𝐵) = Σ𝑘 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐵} (𝑋‘(𝐿‘𝑘))) |
38 | 35, 37 | oveq12d 7449 | . 2 ⊢ (𝜑 → ((𝐹‘𝐴) · (𝐹‘𝐵)) = (Σ𝑗 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐴} (𝑋‘(𝐿‘𝑗)) · Σ𝑘 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐵} (𝑋‘(𝐿‘𝑘)))) |
39 | 1, 2 | nnmulcld 12317 | . . 3 ⊢ (𝜑 → (𝐴 · 𝐵) ∈ ℕ) |
40 | 8, 10, 31, 7, 9, 32, 33 | dchrisum0fval 27564 | . . 3 ⊢ ((𝐴 · 𝐵) ∈ ℕ → (𝐹‘(𝐴 · 𝐵)) = Σ𝑖 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ (𝐴 · 𝐵)} (𝑋‘(𝐿‘𝑖))) |
41 | 39, 40 | syl 17 | . 2 ⊢ (𝜑 → (𝐹‘(𝐴 · 𝐵)) = Σ𝑖 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ (𝐴 · 𝐵)} (𝑋‘(𝐿‘𝑖))) |
42 | 30, 38, 41 | 3eqtr4rd 2786 | 1 ⊢ (𝜑 → (𝐹‘(𝐴 · 𝐵)) = ((𝐹‘𝐴) · (𝐹‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 {crab 3433 class class class wbr 5148 ↦ cmpt 5231 ‘cfv 6563 (class class class)co 7431 1c1 11154 · cmul 11158 ℕcn 12264 ℤcz 12611 Σcsu 15719 ∥ cdvds 16287 gcd cgcd 16528 Basecbs 17245 0gc0g 17486 ℤRHomczrh 21528 ℤ/nℤczn 21531 DChrcdchr 27291 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-inf2 9679 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 ax-addf 11232 ax-mulf 11233 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-tp 4636 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-se 5642 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-isom 6572 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-tpos 8250 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-er 8744 df-ec 8746 df-qs 8750 df-map 8867 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-sup 9480 df-inf 9481 df-oi 9548 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12612 df-dec 12732 df-uz 12877 df-rp 13033 df-fz 13545 df-fzo 13692 df-fl 13829 df-mod 13907 df-seq 14040 df-exp 14100 df-hash 14367 df-cj 15135 df-re 15136 df-im 15137 df-sqrt 15271 df-abs 15272 df-clim 15521 df-sum 15720 df-dvds 16288 df-gcd 16529 df-struct 17181 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-ress 17275 df-plusg 17311 df-mulr 17312 df-starv 17313 df-sca 17314 df-vsca 17315 df-ip 17316 df-tset 17317 df-ple 17318 df-ds 17320 df-unif 17321 df-0g 17488 df-imas 17555 df-qus 17556 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-mhm 18809 df-grp 18967 df-minusg 18968 df-sbg 18969 df-mulg 19099 df-subg 19154 df-nsg 19155 df-eqg 19156 df-ghm 19244 df-cmn 19815 df-abl 19816 df-mgp 20153 df-rng 20171 df-ur 20200 df-ring 20253 df-cring 20254 df-oppr 20351 df-dvdsr 20374 df-unit 20375 df-rhm 20489 df-subrng 20563 df-subrg 20587 df-lmod 20877 df-lss 20948 df-lsp 20988 df-sra 21190 df-rgmod 21191 df-lidl 21236 df-rsp 21237 df-2idl 21278 df-cnfld 21383 df-zring 21476 df-zrh 21532 df-zn 21535 df-dchr 27292 |
This theorem is referenced by: dchrisum0flblem2 27568 |
Copyright terms: Public domain | W3C validator |