MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrvmaeq0 Structured version   Visualization version   GIF version

Theorem dchrvmaeq0 27563
Description: The set 𝑊 is the collection of all non-principal Dirichlet characters such that the sum Σ𝑛 ∈ ℕ, 𝑋(𝑛) / 𝑛 is equal to zero. (Contributed by Mario Carneiro, 5-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z 𝑍 = (ℤ/nℤ‘𝑁)
rpvmasum.l 𝐿 = (ℤRHom‘𝑍)
rpvmasum.a (𝜑𝑁 ∈ ℕ)
rpvmasum.g 𝐺 = (DChr‘𝑁)
rpvmasum.d 𝐷 = (Base‘𝐺)
rpvmasum.1 1 = (0g𝐺)
dchrisum.b (𝜑𝑋𝐷)
dchrisum.n1 (𝜑𝑋1 )
dchrvmasumif.f 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))
dchrvmasumif.c (𝜑𝐶 ∈ (0[,)+∞))
dchrvmasumif.s (𝜑 → seq1( + , 𝐹) ⇝ 𝑆)
dchrvmasumif.1 (𝜑 → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑆)) ≤ (𝐶 / 𝑦))
dchrvmaeq0.w 𝑊 = {𝑦 ∈ (𝐷 ∖ { 1 }) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0}
Assertion
Ref Expression
dchrvmaeq0 (𝜑 → (𝑋𝑊𝑆 = 0))
Distinct variable groups:   𝑦,𝑚, 1   𝐶,𝑚,𝑦   𝑦,𝐹   𝑚,𝑎,𝑦   𝑚,𝑁,𝑦   𝜑,𝑚   𝑆,𝑚,𝑦   𝑚,𝑍,𝑦   𝐷,𝑚,𝑦   𝐿,𝑎,𝑚,𝑦   𝑋,𝑎,𝑚,𝑦   𝑚,𝐹
Allowed substitution hints:   𝜑(𝑦,𝑎)   𝐶(𝑎)   𝐷(𝑎)   𝑆(𝑎)   1 (𝑎)   𝐹(𝑎)   𝐺(𝑦,𝑚,𝑎)   𝑁(𝑎)   𝑊(𝑦,𝑚,𝑎)   𝑍(𝑎)

Proof of Theorem dchrvmaeq0
StepHypRef Expression
1 dchrisum.b . . . 4 (𝜑𝑋𝐷)
2 dchrisum.n1 . . . 4 (𝜑𝑋1 )
3 eldifsn 4791 . . . 4 (𝑋 ∈ (𝐷 ∖ { 1 }) ↔ (𝑋𝐷𝑋1 ))
41, 2, 3sylanbrc 583 . . 3 (𝜑𝑋 ∈ (𝐷 ∖ { 1 }))
5 fveq1 6906 . . . . . . . 8 (𝑦 = 𝑋 → (𝑦‘(𝐿𝑚)) = (𝑋‘(𝐿𝑚)))
65oveq1d 7446 . . . . . . 7 (𝑦 = 𝑋 → ((𝑦‘(𝐿𝑚)) / 𝑚) = ((𝑋‘(𝐿𝑚)) / 𝑚))
76sumeq2sdv 15736 . . . . . 6 (𝑦 = 𝑋 → Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = Σ𝑚 ∈ ℕ ((𝑋‘(𝐿𝑚)) / 𝑚))
87eqeq1d 2737 . . . . 5 (𝑦 = 𝑋 → (Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0 ↔ Σ𝑚 ∈ ℕ ((𝑋‘(𝐿𝑚)) / 𝑚) = 0))
9 dchrvmaeq0.w . . . . 5 𝑊 = {𝑦 ∈ (𝐷 ∖ { 1 }) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0}
108, 9elrab2 3698 . . . 4 (𝑋𝑊 ↔ (𝑋 ∈ (𝐷 ∖ { 1 }) ∧ Σ𝑚 ∈ ℕ ((𝑋‘(𝐿𝑚)) / 𝑚) = 0))
1110baib 535 . . 3 (𝑋 ∈ (𝐷 ∖ { 1 }) → (𝑋𝑊 ↔ Σ𝑚 ∈ ℕ ((𝑋‘(𝐿𝑚)) / 𝑚) = 0))
124, 11syl 17 . 2 (𝜑 → (𝑋𝑊 ↔ Σ𝑚 ∈ ℕ ((𝑋‘(𝐿𝑚)) / 𝑚) = 0))
13 nnuz 12919 . . . 4 ℕ = (ℤ‘1)
14 1zzd 12646 . . . 4 (𝜑 → 1 ∈ ℤ)
15 2fveq3 6912 . . . . . . 7 (𝑎 = 𝑚 → (𝑋‘(𝐿𝑎)) = (𝑋‘(𝐿𝑚)))
16 id 22 . . . . . . 7 (𝑎 = 𝑚𝑎 = 𝑚)
1715, 16oveq12d 7449 . . . . . 6 (𝑎 = 𝑚 → ((𝑋‘(𝐿𝑎)) / 𝑎) = ((𝑋‘(𝐿𝑚)) / 𝑚))
18 dchrvmasumif.f . . . . . 6 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))
19 ovex 7464 . . . . . 6 ((𝑋‘(𝐿𝑚)) / 𝑚) ∈ V
2017, 18, 19fvmpt 7016 . . . . 5 (𝑚 ∈ ℕ → (𝐹𝑚) = ((𝑋‘(𝐿𝑚)) / 𝑚))
2120adantl 481 . . . 4 ((𝜑𝑚 ∈ ℕ) → (𝐹𝑚) = ((𝑋‘(𝐿𝑚)) / 𝑚))
22 rpvmasum.g . . . . . 6 𝐺 = (DChr‘𝑁)
23 rpvmasum.z . . . . . 6 𝑍 = (ℤ/nℤ‘𝑁)
24 rpvmasum.d . . . . . 6 𝐷 = (Base‘𝐺)
25 rpvmasum.l . . . . . 6 𝐿 = (ℤRHom‘𝑍)
261adantr 480 . . . . . 6 ((𝜑𝑚 ∈ ℕ) → 𝑋𝐷)
27 nnz 12632 . . . . . . 7 (𝑚 ∈ ℕ → 𝑚 ∈ ℤ)
2827adantl 481 . . . . . 6 ((𝜑𝑚 ∈ ℕ) → 𝑚 ∈ ℤ)
2922, 23, 24, 25, 26, 28dchrzrhcl 27304 . . . . 5 ((𝜑𝑚 ∈ ℕ) → (𝑋‘(𝐿𝑚)) ∈ ℂ)
30 nncn 12272 . . . . . 6 (𝑚 ∈ ℕ → 𝑚 ∈ ℂ)
3130adantl 481 . . . . 5 ((𝜑𝑚 ∈ ℕ) → 𝑚 ∈ ℂ)
32 nnne0 12298 . . . . . 6 (𝑚 ∈ ℕ → 𝑚 ≠ 0)
3332adantl 481 . . . . 5 ((𝜑𝑚 ∈ ℕ) → 𝑚 ≠ 0)
3429, 31, 33divcld 12041 . . . 4 ((𝜑𝑚 ∈ ℕ) → ((𝑋‘(𝐿𝑚)) / 𝑚) ∈ ℂ)
35 dchrvmasumif.s . . . 4 (𝜑 → seq1( + , 𝐹) ⇝ 𝑆)
3613, 14, 21, 34, 35isumclim 15790 . . 3 (𝜑 → Σ𝑚 ∈ ℕ ((𝑋‘(𝐿𝑚)) / 𝑚) = 𝑆)
3736eqeq1d 2737 . 2 (𝜑 → (Σ𝑚 ∈ ℕ ((𝑋‘(𝐿𝑚)) / 𝑚) = 0 ↔ 𝑆 = 0))
3812, 37bitrd 279 1 (𝜑 → (𝑋𝑊𝑆 = 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wne 2938  wral 3059  {crab 3433  cdif 3960  {csn 4631   class class class wbr 5148  cmpt 5231  cfv 6563  (class class class)co 7431  cc 11151  0cc0 11153  1c1 11154   + caddc 11156  +∞cpnf 11290  cle 11294  cmin 11490   / cdiv 11918  cn 12264  cz 12611  [,)cico 13386  cfl 13827  seqcseq 14039  abscabs 15270  cli 15517  Σcsu 15719  Basecbs 17245  0gc0g 17486  ℤRHomczrh 21528  ℤ/nczn 21531  DChrcdchr 27291
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231  ax-addf 11232  ax-mulf 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-tpos 8250  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-ec 8746  df-qs 8750  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-inf 9481  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-rp 13033  df-fz 13545  df-fzo 13692  df-seq 14040  df-exp 14100  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-clim 15521  df-sum 15720  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-0g 17488  df-imas 17555  df-qus 17556  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-mhm 18809  df-grp 18967  df-minusg 18968  df-sbg 18969  df-mulg 19099  df-subg 19154  df-nsg 19155  df-eqg 19156  df-ghm 19244  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-ring 20253  df-cring 20254  df-oppr 20351  df-dvdsr 20374  df-unit 20375  df-rhm 20489  df-subrng 20563  df-subrg 20587  df-lmod 20877  df-lss 20948  df-lsp 20988  df-sra 21190  df-rgmod 21191  df-lidl 21236  df-rsp 21237  df-2idl 21278  df-cnfld 21383  df-zring 21476  df-zrh 21532  df-zn 21535  df-dchr 27292
This theorem is referenced by:  rpvmasum2  27571  dchrisum0re  27572  dchrisum0lem2  27577  dchrisumn0  27580
  Copyright terms: Public domain W3C validator