MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrvmaeq0 Structured version   Visualization version   GIF version

Theorem dchrvmaeq0 27557
Description: The set 𝑊 is the collection of all non-principal Dirichlet characters such that the sum Σ𝑛 ∈ ℕ, 𝑋(𝑛) / 𝑛 is equal to zero. (Contributed by Mario Carneiro, 5-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z 𝑍 = (ℤ/nℤ‘𝑁)
rpvmasum.l 𝐿 = (ℤRHom‘𝑍)
rpvmasum.a (𝜑𝑁 ∈ ℕ)
rpvmasum.g 𝐺 = (DChr‘𝑁)
rpvmasum.d 𝐷 = (Base‘𝐺)
rpvmasum.1 1 = (0g𝐺)
dchrisum.b (𝜑𝑋𝐷)
dchrisum.n1 (𝜑𝑋1 )
dchrvmasumif.f 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))
dchrvmasumif.c (𝜑𝐶 ∈ (0[,)+∞))
dchrvmasumif.s (𝜑 → seq1( + , 𝐹) ⇝ 𝑆)
dchrvmasumif.1 (𝜑 → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑆)) ≤ (𝐶 / 𝑦))
dchrvmaeq0.w 𝑊 = {𝑦 ∈ (𝐷 ∖ { 1 }) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0}
Assertion
Ref Expression
dchrvmaeq0 (𝜑 → (𝑋𝑊𝑆 = 0))
Distinct variable groups:   𝑦,𝑚, 1   𝐶,𝑚,𝑦   𝑦,𝐹   𝑚,𝑎,𝑦   𝑚,𝑁,𝑦   𝜑,𝑚   𝑆,𝑚,𝑦   𝑚,𝑍,𝑦   𝐷,𝑚,𝑦   𝐿,𝑎,𝑚,𝑦   𝑋,𝑎,𝑚,𝑦   𝑚,𝐹
Allowed substitution hints:   𝜑(𝑦,𝑎)   𝐶(𝑎)   𝐷(𝑎)   𝑆(𝑎)   1 (𝑎)   𝐹(𝑎)   𝐺(𝑦,𝑚,𝑎)   𝑁(𝑎)   𝑊(𝑦,𝑚,𝑎)   𝑍(𝑎)

Proof of Theorem dchrvmaeq0
StepHypRef Expression
1 dchrisum.b . . . 4 (𝜑𝑋𝐷)
2 dchrisum.n1 . . . 4 (𝜑𝑋1 )
3 eldifsn 4811 . . . 4 (𝑋 ∈ (𝐷 ∖ { 1 }) ↔ (𝑋𝐷𝑋1 ))
41, 2, 3sylanbrc 582 . . 3 (𝜑𝑋 ∈ (𝐷 ∖ { 1 }))
5 fveq1 6918 . . . . . . . 8 (𝑦 = 𝑋 → (𝑦‘(𝐿𝑚)) = (𝑋‘(𝐿𝑚)))
65oveq1d 7460 . . . . . . 7 (𝑦 = 𝑋 → ((𝑦‘(𝐿𝑚)) / 𝑚) = ((𝑋‘(𝐿𝑚)) / 𝑚))
76sumeq2sdv 15747 . . . . . 6 (𝑦 = 𝑋 → Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = Σ𝑚 ∈ ℕ ((𝑋‘(𝐿𝑚)) / 𝑚))
87eqeq1d 2736 . . . . 5 (𝑦 = 𝑋 → (Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0 ↔ Σ𝑚 ∈ ℕ ((𝑋‘(𝐿𝑚)) / 𝑚) = 0))
9 dchrvmaeq0.w . . . . 5 𝑊 = {𝑦 ∈ (𝐷 ∖ { 1 }) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0}
108, 9elrab2 3706 . . . 4 (𝑋𝑊 ↔ (𝑋 ∈ (𝐷 ∖ { 1 }) ∧ Σ𝑚 ∈ ℕ ((𝑋‘(𝐿𝑚)) / 𝑚) = 0))
1110baib 535 . . 3 (𝑋 ∈ (𝐷 ∖ { 1 }) → (𝑋𝑊 ↔ Σ𝑚 ∈ ℕ ((𝑋‘(𝐿𝑚)) / 𝑚) = 0))
124, 11syl 17 . 2 (𝜑 → (𝑋𝑊 ↔ Σ𝑚 ∈ ℕ ((𝑋‘(𝐿𝑚)) / 𝑚) = 0))
13 nnuz 12942 . . . 4 ℕ = (ℤ‘1)
14 1zzd 12670 . . . 4 (𝜑 → 1 ∈ ℤ)
15 2fveq3 6924 . . . . . . 7 (𝑎 = 𝑚 → (𝑋‘(𝐿𝑎)) = (𝑋‘(𝐿𝑚)))
16 id 22 . . . . . . 7 (𝑎 = 𝑚𝑎 = 𝑚)
1715, 16oveq12d 7463 . . . . . 6 (𝑎 = 𝑚 → ((𝑋‘(𝐿𝑎)) / 𝑎) = ((𝑋‘(𝐿𝑚)) / 𝑚))
18 dchrvmasumif.f . . . . . 6 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))
19 ovex 7478 . . . . . 6 ((𝑋‘(𝐿𝑚)) / 𝑚) ∈ V
2017, 18, 19fvmpt 7027 . . . . 5 (𝑚 ∈ ℕ → (𝐹𝑚) = ((𝑋‘(𝐿𝑚)) / 𝑚))
2120adantl 481 . . . 4 ((𝜑𝑚 ∈ ℕ) → (𝐹𝑚) = ((𝑋‘(𝐿𝑚)) / 𝑚))
22 rpvmasum.g . . . . . 6 𝐺 = (DChr‘𝑁)
23 rpvmasum.z . . . . . 6 𝑍 = (ℤ/nℤ‘𝑁)
24 rpvmasum.d . . . . . 6 𝐷 = (Base‘𝐺)
25 rpvmasum.l . . . . . 6 𝐿 = (ℤRHom‘𝑍)
261adantr 480 . . . . . 6 ((𝜑𝑚 ∈ ℕ) → 𝑋𝐷)
27 nnz 12656 . . . . . . 7 (𝑚 ∈ ℕ → 𝑚 ∈ ℤ)
2827adantl 481 . . . . . 6 ((𝜑𝑚 ∈ ℕ) → 𝑚 ∈ ℤ)
2922, 23, 24, 25, 26, 28dchrzrhcl 27298 . . . . 5 ((𝜑𝑚 ∈ ℕ) → (𝑋‘(𝐿𝑚)) ∈ ℂ)
30 nncn 12297 . . . . . 6 (𝑚 ∈ ℕ → 𝑚 ∈ ℂ)
3130adantl 481 . . . . 5 ((𝜑𝑚 ∈ ℕ) → 𝑚 ∈ ℂ)
32 nnne0 12323 . . . . . 6 (𝑚 ∈ ℕ → 𝑚 ≠ 0)
3332adantl 481 . . . . 5 ((𝜑𝑚 ∈ ℕ) → 𝑚 ≠ 0)
3429, 31, 33divcld 12066 . . . 4 ((𝜑𝑚 ∈ ℕ) → ((𝑋‘(𝐿𝑚)) / 𝑚) ∈ ℂ)
35 dchrvmasumif.s . . . 4 (𝜑 → seq1( + , 𝐹) ⇝ 𝑆)
3613, 14, 21, 34, 35isumclim 15801 . . 3 (𝜑 → Σ𝑚 ∈ ℕ ((𝑋‘(𝐿𝑚)) / 𝑚) = 𝑆)
3736eqeq1d 2736 . 2 (𝜑 → (Σ𝑚 ∈ ℕ ((𝑋‘(𝐿𝑚)) / 𝑚) = 0 ↔ 𝑆 = 0))
3812, 37bitrd 279 1 (𝜑 → (𝑋𝑊𝑆 = 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2103  wne 2942  wral 3063  {crab 3438  cdif 3967  {csn 4648   class class class wbr 5169  cmpt 5252  cfv 6572  (class class class)co 7445  cc 11178  0cc0 11180  1c1 11181   + caddc 11183  +∞cpnf 11317  cle 11321  cmin 11516   / cdiv 11943  cn 12289  cz 12635  [,)cico 13405  cfl 13837  seqcseq 14048  abscabs 15279  cli 15526  Σcsu 15730  Basecbs 17253  0gc0g 17494  ℤRHomczrh 21528  ℤ/nczn 21531  DChrcdchr 27285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2105  ax-9 2113  ax-10 2136  ax-11 2153  ax-12 2173  ax-ext 2705  ax-rep 5306  ax-sep 5320  ax-nul 5327  ax-pow 5386  ax-pr 5450  ax-un 7766  ax-inf2 9706  ax-cnex 11236  ax-resscn 11237  ax-1cn 11238  ax-icn 11239  ax-addcl 11240  ax-addrcl 11241  ax-mulcl 11242  ax-mulrcl 11243  ax-mulcom 11244  ax-addass 11245  ax-mulass 11246  ax-distr 11247  ax-i2m1 11248  ax-1ne0 11249  ax-1rid 11250  ax-rnegex 11251  ax-rrecex 11252  ax-cnre 11253  ax-pre-lttri 11254  ax-pre-lttrn 11255  ax-pre-ltadd 11256  ax-pre-mulgt0 11257  ax-pre-sup 11258  ax-addf 11259  ax-mulf 11260
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2890  df-ne 2943  df-nel 3049  df-ral 3064  df-rex 3073  df-rmo 3383  df-reu 3384  df-rab 3439  df-v 3484  df-sbc 3799  df-csb 3916  df-dif 3973  df-un 3975  df-in 3977  df-ss 3987  df-pss 3990  df-nul 4348  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4973  df-iun 5021  df-br 5170  df-opab 5232  df-mpt 5253  df-tr 5287  df-id 5597  df-eprel 5603  df-po 5611  df-so 5612  df-fr 5654  df-se 5655  df-we 5656  df-xp 5705  df-rel 5706  df-cnv 5707  df-co 5708  df-dm 5709  df-rn 5710  df-res 5711  df-ima 5712  df-pred 6331  df-ord 6397  df-on 6398  df-lim 6399  df-suc 6400  df-iota 6524  df-fun 6574  df-fn 6575  df-f 6576  df-f1 6577  df-fo 6578  df-f1o 6579  df-fv 6580  df-isom 6581  df-riota 7401  df-ov 7448  df-oprab 7449  df-mpo 7450  df-om 7900  df-1st 8026  df-2nd 8027  df-tpos 8263  df-frecs 8318  df-wrecs 8349  df-recs 8423  df-rdg 8462  df-1o 8518  df-er 8759  df-ec 8761  df-qs 8765  df-map 8882  df-en 9000  df-dom 9001  df-sdom 9002  df-fin 9003  df-sup 9507  df-inf 9508  df-oi 9575  df-card 10004  df-pnf 11322  df-mnf 11323  df-xr 11324  df-ltxr 11325  df-le 11326  df-sub 11518  df-neg 11519  df-div 11944  df-nn 12290  df-2 12352  df-3 12353  df-4 12354  df-5 12355  df-6 12356  df-7 12357  df-8 12358  df-9 12359  df-n0 12550  df-z 12636  df-dec 12755  df-uz 12900  df-rp 13054  df-fz 13564  df-fzo 13708  df-seq 14049  df-exp 14109  df-hash 14376  df-cj 15144  df-re 15145  df-im 15146  df-sqrt 15280  df-abs 15281  df-clim 15530  df-sum 15731  df-struct 17189  df-sets 17206  df-slot 17224  df-ndx 17236  df-base 17254  df-ress 17283  df-plusg 17319  df-mulr 17320  df-starv 17321  df-sca 17322  df-vsca 17323  df-ip 17324  df-tset 17325  df-ple 17326  df-ds 17328  df-unif 17329  df-0g 17496  df-imas 17563  df-qus 17564  df-mgm 18673  df-sgrp 18752  df-mnd 18768  df-mhm 18813  df-grp 18971  df-minusg 18972  df-sbg 18973  df-mulg 19103  df-subg 19158  df-nsg 19159  df-eqg 19160  df-ghm 19248  df-cmn 19819  df-abl 19820  df-mgp 20157  df-rng 20175  df-ur 20204  df-ring 20257  df-cring 20258  df-oppr 20355  df-dvdsr 20378  df-unit 20379  df-rhm 20493  df-subrng 20567  df-subrg 20592  df-lmod 20877  df-lss 20948  df-lsp 20988  df-sra 21190  df-rgmod 21191  df-lidl 21236  df-rsp 21237  df-2idl 21278  df-cnfld 21383  df-zring 21476  df-zrh 21532  df-zn 21535  df-dchr 27286
This theorem is referenced by:  rpvmasum2  27565  dchrisum0re  27566  dchrisum0lem2  27571  dchrisumn0  27574
  Copyright terms: Public domain W3C validator