MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrvmaeq0 Structured version   Visualization version   GIF version

Theorem dchrvmaeq0 27448
Description: The set 𝑊 is the collection of all non-principal Dirichlet characters such that the sum Σ𝑛 ∈ ℕ, 𝑋(𝑛) / 𝑛 is equal to zero. (Contributed by Mario Carneiro, 5-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z 𝑍 = (ℤ/nℤ‘𝑁)
rpvmasum.l 𝐿 = (ℤRHom‘𝑍)
rpvmasum.a (𝜑𝑁 ∈ ℕ)
rpvmasum.g 𝐺 = (DChr‘𝑁)
rpvmasum.d 𝐷 = (Base‘𝐺)
rpvmasum.1 1 = (0g𝐺)
dchrisum.b (𝜑𝑋𝐷)
dchrisum.n1 (𝜑𝑋1 )
dchrvmasumif.f 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))
dchrvmasumif.c (𝜑𝐶 ∈ (0[,)+∞))
dchrvmasumif.s (𝜑 → seq1( + , 𝐹) ⇝ 𝑆)
dchrvmasumif.1 (𝜑 → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑆)) ≤ (𝐶 / 𝑦))
dchrvmaeq0.w 𝑊 = {𝑦 ∈ (𝐷 ∖ { 1 }) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0}
Assertion
Ref Expression
dchrvmaeq0 (𝜑 → (𝑋𝑊𝑆 = 0))
Distinct variable groups:   𝑦,𝑚, 1   𝐶,𝑚,𝑦   𝑦,𝐹   𝑚,𝑎,𝑦   𝑚,𝑁,𝑦   𝜑,𝑚   𝑆,𝑚,𝑦   𝑚,𝑍,𝑦   𝐷,𝑚,𝑦   𝐿,𝑎,𝑚,𝑦   𝑋,𝑎,𝑚,𝑦   𝑚,𝐹
Allowed substitution hints:   𝜑(𝑦,𝑎)   𝐶(𝑎)   𝐷(𝑎)   𝑆(𝑎)   1 (𝑎)   𝐹(𝑎)   𝐺(𝑦,𝑚,𝑎)   𝑁(𝑎)   𝑊(𝑦,𝑚,𝑎)   𝑍(𝑎)

Proof of Theorem dchrvmaeq0
StepHypRef Expression
1 dchrisum.b . . . 4 (𝜑𝑋𝐷)
2 dchrisum.n1 . . . 4 (𝜑𝑋1 )
3 eldifsn 4746 . . . 4 (𝑋 ∈ (𝐷 ∖ { 1 }) ↔ (𝑋𝐷𝑋1 ))
41, 2, 3sylanbrc 583 . . 3 (𝜑𝑋 ∈ (𝐷 ∖ { 1 }))
5 fveq1 6839 . . . . . . . 8 (𝑦 = 𝑋 → (𝑦‘(𝐿𝑚)) = (𝑋‘(𝐿𝑚)))
65oveq1d 7384 . . . . . . 7 (𝑦 = 𝑋 → ((𝑦‘(𝐿𝑚)) / 𝑚) = ((𝑋‘(𝐿𝑚)) / 𝑚))
76sumeq2sdv 15645 . . . . . 6 (𝑦 = 𝑋 → Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = Σ𝑚 ∈ ℕ ((𝑋‘(𝐿𝑚)) / 𝑚))
87eqeq1d 2731 . . . . 5 (𝑦 = 𝑋 → (Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0 ↔ Σ𝑚 ∈ ℕ ((𝑋‘(𝐿𝑚)) / 𝑚) = 0))
9 dchrvmaeq0.w . . . . 5 𝑊 = {𝑦 ∈ (𝐷 ∖ { 1 }) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0}
108, 9elrab2 3659 . . . 4 (𝑋𝑊 ↔ (𝑋 ∈ (𝐷 ∖ { 1 }) ∧ Σ𝑚 ∈ ℕ ((𝑋‘(𝐿𝑚)) / 𝑚) = 0))
1110baib 535 . . 3 (𝑋 ∈ (𝐷 ∖ { 1 }) → (𝑋𝑊 ↔ Σ𝑚 ∈ ℕ ((𝑋‘(𝐿𝑚)) / 𝑚) = 0))
124, 11syl 17 . 2 (𝜑 → (𝑋𝑊 ↔ Σ𝑚 ∈ ℕ ((𝑋‘(𝐿𝑚)) / 𝑚) = 0))
13 nnuz 12812 . . . 4 ℕ = (ℤ‘1)
14 1zzd 12540 . . . 4 (𝜑 → 1 ∈ ℤ)
15 2fveq3 6845 . . . . . . 7 (𝑎 = 𝑚 → (𝑋‘(𝐿𝑎)) = (𝑋‘(𝐿𝑚)))
16 id 22 . . . . . . 7 (𝑎 = 𝑚𝑎 = 𝑚)
1715, 16oveq12d 7387 . . . . . 6 (𝑎 = 𝑚 → ((𝑋‘(𝐿𝑎)) / 𝑎) = ((𝑋‘(𝐿𝑚)) / 𝑚))
18 dchrvmasumif.f . . . . . 6 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))
19 ovex 7402 . . . . . 6 ((𝑋‘(𝐿𝑚)) / 𝑚) ∈ V
2017, 18, 19fvmpt 6950 . . . . 5 (𝑚 ∈ ℕ → (𝐹𝑚) = ((𝑋‘(𝐿𝑚)) / 𝑚))
2120adantl 481 . . . 4 ((𝜑𝑚 ∈ ℕ) → (𝐹𝑚) = ((𝑋‘(𝐿𝑚)) / 𝑚))
22 rpvmasum.g . . . . . 6 𝐺 = (DChr‘𝑁)
23 rpvmasum.z . . . . . 6 𝑍 = (ℤ/nℤ‘𝑁)
24 rpvmasum.d . . . . . 6 𝐷 = (Base‘𝐺)
25 rpvmasum.l . . . . . 6 𝐿 = (ℤRHom‘𝑍)
261adantr 480 . . . . . 6 ((𝜑𝑚 ∈ ℕ) → 𝑋𝐷)
27 nnz 12526 . . . . . . 7 (𝑚 ∈ ℕ → 𝑚 ∈ ℤ)
2827adantl 481 . . . . . 6 ((𝜑𝑚 ∈ ℕ) → 𝑚 ∈ ℤ)
2922, 23, 24, 25, 26, 28dchrzrhcl 27189 . . . . 5 ((𝜑𝑚 ∈ ℕ) → (𝑋‘(𝐿𝑚)) ∈ ℂ)
30 nncn 12170 . . . . . 6 (𝑚 ∈ ℕ → 𝑚 ∈ ℂ)
3130adantl 481 . . . . 5 ((𝜑𝑚 ∈ ℕ) → 𝑚 ∈ ℂ)
32 nnne0 12196 . . . . . 6 (𝑚 ∈ ℕ → 𝑚 ≠ 0)
3332adantl 481 . . . . 5 ((𝜑𝑚 ∈ ℕ) → 𝑚 ≠ 0)
3429, 31, 33divcld 11934 . . . 4 ((𝜑𝑚 ∈ ℕ) → ((𝑋‘(𝐿𝑚)) / 𝑚) ∈ ℂ)
35 dchrvmasumif.s . . . 4 (𝜑 → seq1( + , 𝐹) ⇝ 𝑆)
3613, 14, 21, 34, 35isumclim 15699 . . 3 (𝜑 → Σ𝑚 ∈ ℕ ((𝑋‘(𝐿𝑚)) / 𝑚) = 𝑆)
3736eqeq1d 2731 . 2 (𝜑 → (Σ𝑚 ∈ ℕ ((𝑋‘(𝐿𝑚)) / 𝑚) = 0 ↔ 𝑆 = 0))
3812, 37bitrd 279 1 (𝜑 → (𝑋𝑊𝑆 = 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  {crab 3402  cdif 3908  {csn 4585   class class class wbr 5102  cmpt 5183  cfv 6499  (class class class)co 7369  cc 11042  0cc0 11044  1c1 11045   + caddc 11047  +∞cpnf 11181  cle 11185  cmin 11381   / cdiv 11811  cn 12162  cz 12505  [,)cico 13284  cfl 13728  seqcseq 13942  abscabs 15176  cli 15426  Σcsu 15628  Basecbs 17155  0gc0g 17378  ℤRHomczrh 21441  ℤ/nczn 21444  DChrcdchr 27176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123  ax-mulf 11124
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-tpos 8182  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-ec 8650  df-qs 8654  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-inf 9370  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-rp 12928  df-fz 13445  df-fzo 13592  df-seq 13943  df-exp 14003  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-clim 15430  df-sum 15629  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-0g 17380  df-imas 17447  df-qus 17448  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-mhm 18692  df-grp 18850  df-minusg 18851  df-sbg 18852  df-mulg 18982  df-subg 19037  df-nsg 19038  df-eqg 19039  df-ghm 19127  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-ring 20155  df-cring 20156  df-oppr 20257  df-dvdsr 20277  df-unit 20278  df-rhm 20392  df-subrng 20466  df-subrg 20490  df-lmod 20800  df-lss 20870  df-lsp 20910  df-sra 21112  df-rgmod 21113  df-lidl 21150  df-rsp 21151  df-2idl 21192  df-cnfld 21297  df-zring 21389  df-zrh 21445  df-zn 21448  df-dchr 27177
This theorem is referenced by:  rpvmasum2  27456  dchrisum0re  27457  dchrisum0lem2  27462  dchrisumn0  27465
  Copyright terms: Public domain W3C validator