| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dchrvmaeq0 | Structured version Visualization version GIF version | ||
| Description: The set 𝑊 is the collection of all non-principal Dirichlet characters such that the sum Σ𝑛 ∈ ℕ, 𝑋(𝑛) / 𝑛 is equal to zero. (Contributed by Mario Carneiro, 5-May-2016.) |
| Ref | Expression |
|---|---|
| rpvmasum.z | ⊢ 𝑍 = (ℤ/nℤ‘𝑁) |
| rpvmasum.l | ⊢ 𝐿 = (ℤRHom‘𝑍) |
| rpvmasum.a | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| rpvmasum.g | ⊢ 𝐺 = (DChr‘𝑁) |
| rpvmasum.d | ⊢ 𝐷 = (Base‘𝐺) |
| rpvmasum.1 | ⊢ 1 = (0g‘𝐺) |
| dchrisum.b | ⊢ (𝜑 → 𝑋 ∈ 𝐷) |
| dchrisum.n1 | ⊢ (𝜑 → 𝑋 ≠ 1 ) |
| dchrvmasumif.f | ⊢ 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑎)) / 𝑎)) |
| dchrvmasumif.c | ⊢ (𝜑 → 𝐶 ∈ (0[,)+∞)) |
| dchrvmasumif.s | ⊢ (𝜑 → seq1( + , 𝐹) ⇝ 𝑆) |
| dchrvmasumif.1 | ⊢ (𝜑 → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑆)) ≤ (𝐶 / 𝑦)) |
| dchrvmaeq0.w | ⊢ 𝑊 = {𝑦 ∈ (𝐷 ∖ { 1 }) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿‘𝑚)) / 𝑚) = 0} |
| Ref | Expression |
|---|---|
| dchrvmaeq0 | ⊢ (𝜑 → (𝑋 ∈ 𝑊 ↔ 𝑆 = 0)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dchrisum.b | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐷) | |
| 2 | dchrisum.n1 | . . . 4 ⊢ (𝜑 → 𝑋 ≠ 1 ) | |
| 3 | eldifsn 4767 | . . . 4 ⊢ (𝑋 ∈ (𝐷 ∖ { 1 }) ↔ (𝑋 ∈ 𝐷 ∧ 𝑋 ≠ 1 )) | |
| 4 | 1, 2, 3 | sylanbrc 583 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (𝐷 ∖ { 1 })) |
| 5 | fveq1 6880 | . . . . . . . 8 ⊢ (𝑦 = 𝑋 → (𝑦‘(𝐿‘𝑚)) = (𝑋‘(𝐿‘𝑚))) | |
| 6 | 5 | oveq1d 7425 | . . . . . . 7 ⊢ (𝑦 = 𝑋 → ((𝑦‘(𝐿‘𝑚)) / 𝑚) = ((𝑋‘(𝐿‘𝑚)) / 𝑚)) |
| 7 | 6 | sumeq2sdv 15724 | . . . . . 6 ⊢ (𝑦 = 𝑋 → Σ𝑚 ∈ ℕ ((𝑦‘(𝐿‘𝑚)) / 𝑚) = Σ𝑚 ∈ ℕ ((𝑋‘(𝐿‘𝑚)) / 𝑚)) |
| 8 | 7 | eqeq1d 2738 | . . . . 5 ⊢ (𝑦 = 𝑋 → (Σ𝑚 ∈ ℕ ((𝑦‘(𝐿‘𝑚)) / 𝑚) = 0 ↔ Σ𝑚 ∈ ℕ ((𝑋‘(𝐿‘𝑚)) / 𝑚) = 0)) |
| 9 | dchrvmaeq0.w | . . . . 5 ⊢ 𝑊 = {𝑦 ∈ (𝐷 ∖ { 1 }) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿‘𝑚)) / 𝑚) = 0} | |
| 10 | 8, 9 | elrab2 3679 | . . . 4 ⊢ (𝑋 ∈ 𝑊 ↔ (𝑋 ∈ (𝐷 ∖ { 1 }) ∧ Σ𝑚 ∈ ℕ ((𝑋‘(𝐿‘𝑚)) / 𝑚) = 0)) |
| 11 | 10 | baib 535 | . . 3 ⊢ (𝑋 ∈ (𝐷 ∖ { 1 }) → (𝑋 ∈ 𝑊 ↔ Σ𝑚 ∈ ℕ ((𝑋‘(𝐿‘𝑚)) / 𝑚) = 0)) |
| 12 | 4, 11 | syl 17 | . 2 ⊢ (𝜑 → (𝑋 ∈ 𝑊 ↔ Σ𝑚 ∈ ℕ ((𝑋‘(𝐿‘𝑚)) / 𝑚) = 0)) |
| 13 | nnuz 12900 | . . . 4 ⊢ ℕ = (ℤ≥‘1) | |
| 14 | 1zzd 12628 | . . . 4 ⊢ (𝜑 → 1 ∈ ℤ) | |
| 15 | 2fveq3 6886 | . . . . . . 7 ⊢ (𝑎 = 𝑚 → (𝑋‘(𝐿‘𝑎)) = (𝑋‘(𝐿‘𝑚))) | |
| 16 | id 22 | . . . . . . 7 ⊢ (𝑎 = 𝑚 → 𝑎 = 𝑚) | |
| 17 | 15, 16 | oveq12d 7428 | . . . . . 6 ⊢ (𝑎 = 𝑚 → ((𝑋‘(𝐿‘𝑎)) / 𝑎) = ((𝑋‘(𝐿‘𝑚)) / 𝑚)) |
| 18 | dchrvmasumif.f | . . . . . 6 ⊢ 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑎)) / 𝑎)) | |
| 19 | ovex 7443 | . . . . . 6 ⊢ ((𝑋‘(𝐿‘𝑚)) / 𝑚) ∈ V | |
| 20 | 17, 18, 19 | fvmpt 6991 | . . . . 5 ⊢ (𝑚 ∈ ℕ → (𝐹‘𝑚) = ((𝑋‘(𝐿‘𝑚)) / 𝑚)) |
| 21 | 20 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝐹‘𝑚) = ((𝑋‘(𝐿‘𝑚)) / 𝑚)) |
| 22 | rpvmasum.g | . . . . . 6 ⊢ 𝐺 = (DChr‘𝑁) | |
| 23 | rpvmasum.z | . . . . . 6 ⊢ 𝑍 = (ℤ/nℤ‘𝑁) | |
| 24 | rpvmasum.d | . . . . . 6 ⊢ 𝐷 = (Base‘𝐺) | |
| 25 | rpvmasum.l | . . . . . 6 ⊢ 𝐿 = (ℤRHom‘𝑍) | |
| 26 | 1 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → 𝑋 ∈ 𝐷) |
| 27 | nnz 12614 | . . . . . . 7 ⊢ (𝑚 ∈ ℕ → 𝑚 ∈ ℤ) | |
| 28 | 27 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ℤ) |
| 29 | 22, 23, 24, 25, 26, 28 | dchrzrhcl 27213 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝑋‘(𝐿‘𝑚)) ∈ ℂ) |
| 30 | nncn 12253 | . . . . . 6 ⊢ (𝑚 ∈ ℕ → 𝑚 ∈ ℂ) | |
| 31 | 30 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ℂ) |
| 32 | nnne0 12279 | . . . . . 6 ⊢ (𝑚 ∈ ℕ → 𝑚 ≠ 0) | |
| 33 | 32 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → 𝑚 ≠ 0) |
| 34 | 29, 31, 33 | divcld 12022 | . . . 4 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((𝑋‘(𝐿‘𝑚)) / 𝑚) ∈ ℂ) |
| 35 | dchrvmasumif.s | . . . 4 ⊢ (𝜑 → seq1( + , 𝐹) ⇝ 𝑆) | |
| 36 | 13, 14, 21, 34, 35 | isumclim 15778 | . . 3 ⊢ (𝜑 → Σ𝑚 ∈ ℕ ((𝑋‘(𝐿‘𝑚)) / 𝑚) = 𝑆) |
| 37 | 36 | eqeq1d 2738 | . 2 ⊢ (𝜑 → (Σ𝑚 ∈ ℕ ((𝑋‘(𝐿‘𝑚)) / 𝑚) = 0 ↔ 𝑆 = 0)) |
| 38 | 12, 37 | bitrd 279 | 1 ⊢ (𝜑 → (𝑋 ∈ 𝑊 ↔ 𝑆 = 0)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 ∀wral 3052 {crab 3420 ∖ cdif 3928 {csn 4606 class class class wbr 5124 ↦ cmpt 5206 ‘cfv 6536 (class class class)co 7410 ℂcc 11132 0cc0 11134 1c1 11135 + caddc 11137 +∞cpnf 11271 ≤ cle 11275 − cmin 11471 / cdiv 11899 ℕcn 12245 ℤcz 12593 [,)cico 13369 ⌊cfl 13812 seqcseq 14024 abscabs 15258 ⇝ cli 15505 Σcsu 15707 Basecbs 17233 0gc0g 17458 ℤRHomczrh 21465 ℤ/nℤczn 21468 DChrcdchr 27200 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-inf2 9660 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 ax-pre-sup 11212 ax-addf 11213 ax-mulf 11214 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-se 5612 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-tpos 8230 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8724 df-ec 8726 df-qs 8730 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-sup 9459 df-inf 9460 df-oi 9529 df-card 9958 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12507 df-z 12594 df-dec 12714 df-uz 12858 df-rp 13014 df-fz 13530 df-fzo 13677 df-seq 14025 df-exp 14085 df-hash 14354 df-cj 15123 df-re 15124 df-im 15125 df-sqrt 15259 df-abs 15260 df-clim 15509 df-sum 15708 df-struct 17171 df-sets 17188 df-slot 17206 df-ndx 17218 df-base 17234 df-ress 17257 df-plusg 17289 df-mulr 17290 df-starv 17291 df-sca 17292 df-vsca 17293 df-ip 17294 df-tset 17295 df-ple 17296 df-ds 17298 df-unif 17299 df-0g 17460 df-imas 17527 df-qus 17528 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-mhm 18766 df-grp 18924 df-minusg 18925 df-sbg 18926 df-mulg 19056 df-subg 19111 df-nsg 19112 df-eqg 19113 df-ghm 19201 df-cmn 19768 df-abl 19769 df-mgp 20106 df-rng 20118 df-ur 20147 df-ring 20200 df-cring 20201 df-oppr 20302 df-dvdsr 20322 df-unit 20323 df-rhm 20437 df-subrng 20511 df-subrg 20535 df-lmod 20824 df-lss 20894 df-lsp 20934 df-sra 21136 df-rgmod 21137 df-lidl 21174 df-rsp 21175 df-2idl 21216 df-cnfld 21321 df-zring 21413 df-zrh 21469 df-zn 21472 df-dchr 27201 |
| This theorem is referenced by: rpvmasum2 27480 dchrisum0re 27481 dchrisum0lem2 27486 dchrisumn0 27489 |
| Copyright terms: Public domain | W3C validator |