MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrvmaeq0 Structured version   Visualization version   GIF version

Theorem dchrvmaeq0 27472
Description: The set 𝑊 is the collection of all non-principal Dirichlet characters such that the sum Σ𝑛 ∈ ℕ, 𝑋(𝑛) / 𝑛 is equal to zero. (Contributed by Mario Carneiro, 5-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z 𝑍 = (ℤ/nℤ‘𝑁)
rpvmasum.l 𝐿 = (ℤRHom‘𝑍)
rpvmasum.a (𝜑𝑁 ∈ ℕ)
rpvmasum.g 𝐺 = (DChr‘𝑁)
rpvmasum.d 𝐷 = (Base‘𝐺)
rpvmasum.1 1 = (0g𝐺)
dchrisum.b (𝜑𝑋𝐷)
dchrisum.n1 (𝜑𝑋1 )
dchrvmasumif.f 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))
dchrvmasumif.c (𝜑𝐶 ∈ (0[,)+∞))
dchrvmasumif.s (𝜑 → seq1( + , 𝐹) ⇝ 𝑆)
dchrvmasumif.1 (𝜑 → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑆)) ≤ (𝐶 / 𝑦))
dchrvmaeq0.w 𝑊 = {𝑦 ∈ (𝐷 ∖ { 1 }) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0}
Assertion
Ref Expression
dchrvmaeq0 (𝜑 → (𝑋𝑊𝑆 = 0))
Distinct variable groups:   𝑦,𝑚, 1   𝐶,𝑚,𝑦   𝑦,𝐹   𝑚,𝑎,𝑦   𝑚,𝑁,𝑦   𝜑,𝑚   𝑆,𝑚,𝑦   𝑚,𝑍,𝑦   𝐷,𝑚,𝑦   𝐿,𝑎,𝑚,𝑦   𝑋,𝑎,𝑚,𝑦   𝑚,𝐹
Allowed substitution hints:   𝜑(𝑦,𝑎)   𝐶(𝑎)   𝐷(𝑎)   𝑆(𝑎)   1 (𝑎)   𝐹(𝑎)   𝐺(𝑦,𝑚,𝑎)   𝑁(𝑎)   𝑊(𝑦,𝑚,𝑎)   𝑍(𝑎)

Proof of Theorem dchrvmaeq0
StepHypRef Expression
1 dchrisum.b . . . 4 (𝜑𝑋𝐷)
2 dchrisum.n1 . . . 4 (𝜑𝑋1 )
3 eldifsn 4767 . . . 4 (𝑋 ∈ (𝐷 ∖ { 1 }) ↔ (𝑋𝐷𝑋1 ))
41, 2, 3sylanbrc 583 . . 3 (𝜑𝑋 ∈ (𝐷 ∖ { 1 }))
5 fveq1 6880 . . . . . . . 8 (𝑦 = 𝑋 → (𝑦‘(𝐿𝑚)) = (𝑋‘(𝐿𝑚)))
65oveq1d 7425 . . . . . . 7 (𝑦 = 𝑋 → ((𝑦‘(𝐿𝑚)) / 𝑚) = ((𝑋‘(𝐿𝑚)) / 𝑚))
76sumeq2sdv 15724 . . . . . 6 (𝑦 = 𝑋 → Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = Σ𝑚 ∈ ℕ ((𝑋‘(𝐿𝑚)) / 𝑚))
87eqeq1d 2738 . . . . 5 (𝑦 = 𝑋 → (Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0 ↔ Σ𝑚 ∈ ℕ ((𝑋‘(𝐿𝑚)) / 𝑚) = 0))
9 dchrvmaeq0.w . . . . 5 𝑊 = {𝑦 ∈ (𝐷 ∖ { 1 }) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0}
108, 9elrab2 3679 . . . 4 (𝑋𝑊 ↔ (𝑋 ∈ (𝐷 ∖ { 1 }) ∧ Σ𝑚 ∈ ℕ ((𝑋‘(𝐿𝑚)) / 𝑚) = 0))
1110baib 535 . . 3 (𝑋 ∈ (𝐷 ∖ { 1 }) → (𝑋𝑊 ↔ Σ𝑚 ∈ ℕ ((𝑋‘(𝐿𝑚)) / 𝑚) = 0))
124, 11syl 17 . 2 (𝜑 → (𝑋𝑊 ↔ Σ𝑚 ∈ ℕ ((𝑋‘(𝐿𝑚)) / 𝑚) = 0))
13 nnuz 12900 . . . 4 ℕ = (ℤ‘1)
14 1zzd 12628 . . . 4 (𝜑 → 1 ∈ ℤ)
15 2fveq3 6886 . . . . . . 7 (𝑎 = 𝑚 → (𝑋‘(𝐿𝑎)) = (𝑋‘(𝐿𝑚)))
16 id 22 . . . . . . 7 (𝑎 = 𝑚𝑎 = 𝑚)
1715, 16oveq12d 7428 . . . . . 6 (𝑎 = 𝑚 → ((𝑋‘(𝐿𝑎)) / 𝑎) = ((𝑋‘(𝐿𝑚)) / 𝑚))
18 dchrvmasumif.f . . . . . 6 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))
19 ovex 7443 . . . . . 6 ((𝑋‘(𝐿𝑚)) / 𝑚) ∈ V
2017, 18, 19fvmpt 6991 . . . . 5 (𝑚 ∈ ℕ → (𝐹𝑚) = ((𝑋‘(𝐿𝑚)) / 𝑚))
2120adantl 481 . . . 4 ((𝜑𝑚 ∈ ℕ) → (𝐹𝑚) = ((𝑋‘(𝐿𝑚)) / 𝑚))
22 rpvmasum.g . . . . . 6 𝐺 = (DChr‘𝑁)
23 rpvmasum.z . . . . . 6 𝑍 = (ℤ/nℤ‘𝑁)
24 rpvmasum.d . . . . . 6 𝐷 = (Base‘𝐺)
25 rpvmasum.l . . . . . 6 𝐿 = (ℤRHom‘𝑍)
261adantr 480 . . . . . 6 ((𝜑𝑚 ∈ ℕ) → 𝑋𝐷)
27 nnz 12614 . . . . . . 7 (𝑚 ∈ ℕ → 𝑚 ∈ ℤ)
2827adantl 481 . . . . . 6 ((𝜑𝑚 ∈ ℕ) → 𝑚 ∈ ℤ)
2922, 23, 24, 25, 26, 28dchrzrhcl 27213 . . . . 5 ((𝜑𝑚 ∈ ℕ) → (𝑋‘(𝐿𝑚)) ∈ ℂ)
30 nncn 12253 . . . . . 6 (𝑚 ∈ ℕ → 𝑚 ∈ ℂ)
3130adantl 481 . . . . 5 ((𝜑𝑚 ∈ ℕ) → 𝑚 ∈ ℂ)
32 nnne0 12279 . . . . . 6 (𝑚 ∈ ℕ → 𝑚 ≠ 0)
3332adantl 481 . . . . 5 ((𝜑𝑚 ∈ ℕ) → 𝑚 ≠ 0)
3429, 31, 33divcld 12022 . . . 4 ((𝜑𝑚 ∈ ℕ) → ((𝑋‘(𝐿𝑚)) / 𝑚) ∈ ℂ)
35 dchrvmasumif.s . . . 4 (𝜑 → seq1( + , 𝐹) ⇝ 𝑆)
3613, 14, 21, 34, 35isumclim 15778 . . 3 (𝜑 → Σ𝑚 ∈ ℕ ((𝑋‘(𝐿𝑚)) / 𝑚) = 𝑆)
3736eqeq1d 2738 . 2 (𝜑 → (Σ𝑚 ∈ ℕ ((𝑋‘(𝐿𝑚)) / 𝑚) = 0 ↔ 𝑆 = 0))
3812, 37bitrd 279 1 (𝜑 → (𝑋𝑊𝑆 = 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2933  wral 3052  {crab 3420  cdif 3928  {csn 4606   class class class wbr 5124  cmpt 5206  cfv 6536  (class class class)co 7410  cc 11132  0cc0 11134  1c1 11135   + caddc 11137  +∞cpnf 11271  cle 11275  cmin 11471   / cdiv 11899  cn 12245  cz 12593  [,)cico 13369  cfl 13812  seqcseq 14024  abscabs 15258  cli 15505  Σcsu 15707  Basecbs 17233  0gc0g 17458  ℤRHomczrh 21465  ℤ/nczn 21468  DChrcdchr 27200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212  ax-addf 11213  ax-mulf 11214
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-tpos 8230  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-ec 8726  df-qs 8730  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9459  df-inf 9460  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-rp 13014  df-fz 13530  df-fzo 13677  df-seq 14025  df-exp 14085  df-hash 14354  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-clim 15509  df-sum 15708  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-starv 17291  df-sca 17292  df-vsca 17293  df-ip 17294  df-tset 17295  df-ple 17296  df-ds 17298  df-unif 17299  df-0g 17460  df-imas 17527  df-qus 17528  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-mhm 18766  df-grp 18924  df-minusg 18925  df-sbg 18926  df-mulg 19056  df-subg 19111  df-nsg 19112  df-eqg 19113  df-ghm 19201  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118  df-ur 20147  df-ring 20200  df-cring 20201  df-oppr 20302  df-dvdsr 20322  df-unit 20323  df-rhm 20437  df-subrng 20511  df-subrg 20535  df-lmod 20824  df-lss 20894  df-lsp 20934  df-sra 21136  df-rgmod 21137  df-lidl 21174  df-rsp 21175  df-2idl 21216  df-cnfld 21321  df-zring 21413  df-zrh 21469  df-zn 21472  df-dchr 27201
This theorem is referenced by:  rpvmasum2  27480  dchrisum0re  27481  dchrisum0lem2  27486  dchrisumn0  27489
  Copyright terms: Public domain W3C validator