![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dchrvmaeq0 | Structured version Visualization version GIF version |
Description: The set π is the collection of all non-principal Dirichlet characters such that the sum Ξ£π β β, π(π) / π is equal to zero. (Contributed by Mario Carneiro, 5-May-2016.) |
Ref | Expression |
---|---|
rpvmasum.z | β’ π = (β€/nβ€βπ) |
rpvmasum.l | β’ πΏ = (β€RHomβπ) |
rpvmasum.a | β’ (π β π β β) |
rpvmasum.g | β’ πΊ = (DChrβπ) |
rpvmasum.d | β’ π· = (BaseβπΊ) |
rpvmasum.1 | β’ 1 = (0gβπΊ) |
dchrisum.b | β’ (π β π β π·) |
dchrisum.n1 | β’ (π β π β 1 ) |
dchrvmasumif.f | β’ πΉ = (π β β β¦ ((πβ(πΏβπ)) / π)) |
dchrvmasumif.c | β’ (π β πΆ β (0[,)+β)) |
dchrvmasumif.s | β’ (π β seq1( + , πΉ) β π) |
dchrvmasumif.1 | β’ (π β βπ¦ β (1[,)+β)(absβ((seq1( + , πΉ)β(ββπ¦)) β π)) β€ (πΆ / π¦)) |
dchrvmaeq0.w | β’ π = {π¦ β (π· β { 1 }) β£ Ξ£π β β ((π¦β(πΏβπ)) / π) = 0} |
Ref | Expression |
---|---|
dchrvmaeq0 | β’ (π β (π β π β π = 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dchrisum.b | . . . 4 β’ (π β π β π·) | |
2 | dchrisum.n1 | . . . 4 β’ (π β π β 1 ) | |
3 | eldifsn 4789 | . . . 4 β’ (π β (π· β { 1 }) β (π β π· β§ π β 1 )) | |
4 | 1, 2, 3 | sylanbrc 583 | . . 3 β’ (π β π β (π· β { 1 })) |
5 | fveq1 6887 | . . . . . . . 8 β’ (π¦ = π β (π¦β(πΏβπ)) = (πβ(πΏβπ))) | |
6 | 5 | oveq1d 7420 | . . . . . . 7 β’ (π¦ = π β ((π¦β(πΏβπ)) / π) = ((πβ(πΏβπ)) / π)) |
7 | 6 | sumeq2sdv 15646 | . . . . . 6 β’ (π¦ = π β Ξ£π β β ((π¦β(πΏβπ)) / π) = Ξ£π β β ((πβ(πΏβπ)) / π)) |
8 | 7 | eqeq1d 2734 | . . . . 5 β’ (π¦ = π β (Ξ£π β β ((π¦β(πΏβπ)) / π) = 0 β Ξ£π β β ((πβ(πΏβπ)) / π) = 0)) |
9 | dchrvmaeq0.w | . . . . 5 β’ π = {π¦ β (π· β { 1 }) β£ Ξ£π β β ((π¦β(πΏβπ)) / π) = 0} | |
10 | 8, 9 | elrab2 3685 | . . . 4 β’ (π β π β (π β (π· β { 1 }) β§ Ξ£π β β ((πβ(πΏβπ)) / π) = 0)) |
11 | 10 | baib 536 | . . 3 β’ (π β (π· β { 1 }) β (π β π β Ξ£π β β ((πβ(πΏβπ)) / π) = 0)) |
12 | 4, 11 | syl 17 | . 2 β’ (π β (π β π β Ξ£π β β ((πβ(πΏβπ)) / π) = 0)) |
13 | nnuz 12861 | . . . 4 β’ β = (β€β₯β1) | |
14 | 1zzd 12589 | . . . 4 β’ (π β 1 β β€) | |
15 | 2fveq3 6893 | . . . . . . 7 β’ (π = π β (πβ(πΏβπ)) = (πβ(πΏβπ))) | |
16 | id 22 | . . . . . . 7 β’ (π = π β π = π) | |
17 | 15, 16 | oveq12d 7423 | . . . . . 6 β’ (π = π β ((πβ(πΏβπ)) / π) = ((πβ(πΏβπ)) / π)) |
18 | dchrvmasumif.f | . . . . . 6 β’ πΉ = (π β β β¦ ((πβ(πΏβπ)) / π)) | |
19 | ovex 7438 | . . . . . 6 β’ ((πβ(πΏβπ)) / π) β V | |
20 | 17, 18, 19 | fvmpt 6995 | . . . . 5 β’ (π β β β (πΉβπ) = ((πβ(πΏβπ)) / π)) |
21 | 20 | adantl 482 | . . . 4 β’ ((π β§ π β β) β (πΉβπ) = ((πβ(πΏβπ)) / π)) |
22 | rpvmasum.g | . . . . . 6 β’ πΊ = (DChrβπ) | |
23 | rpvmasum.z | . . . . . 6 β’ π = (β€/nβ€βπ) | |
24 | rpvmasum.d | . . . . . 6 β’ π· = (BaseβπΊ) | |
25 | rpvmasum.l | . . . . . 6 β’ πΏ = (β€RHomβπ) | |
26 | 1 | adantr 481 | . . . . . 6 β’ ((π β§ π β β) β π β π·) |
27 | nnz 12575 | . . . . . . 7 β’ (π β β β π β β€) | |
28 | 27 | adantl 482 | . . . . . 6 β’ ((π β§ π β β) β π β β€) |
29 | 22, 23, 24, 25, 26, 28 | dchrzrhcl 26737 | . . . . 5 β’ ((π β§ π β β) β (πβ(πΏβπ)) β β) |
30 | nncn 12216 | . . . . . 6 β’ (π β β β π β β) | |
31 | 30 | adantl 482 | . . . . 5 β’ ((π β§ π β β) β π β β) |
32 | nnne0 12242 | . . . . . 6 β’ (π β β β π β 0) | |
33 | 32 | adantl 482 | . . . . 5 β’ ((π β§ π β β) β π β 0) |
34 | 29, 31, 33 | divcld 11986 | . . . 4 β’ ((π β§ π β β) β ((πβ(πΏβπ)) / π) β β) |
35 | dchrvmasumif.s | . . . 4 β’ (π β seq1( + , πΉ) β π) | |
36 | 13, 14, 21, 34, 35 | isumclim 15699 | . . 3 β’ (π β Ξ£π β β ((πβ(πΏβπ)) / π) = π) |
37 | 36 | eqeq1d 2734 | . 2 β’ (π β (Ξ£π β β ((πβ(πΏβπ)) / π) = 0 β π = 0)) |
38 | 12, 37 | bitrd 278 | 1 β’ (π β (π β π β π = 0)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 396 = wceq 1541 β wcel 2106 β wne 2940 βwral 3061 {crab 3432 β cdif 3944 {csn 4627 class class class wbr 5147 β¦ cmpt 5230 βcfv 6540 (class class class)co 7405 βcc 11104 0cc0 11106 1c1 11107 + caddc 11109 +βcpnf 11241 β€ cle 11245 β cmin 11440 / cdiv 11867 βcn 12208 β€cz 12554 [,)cico 13322 βcfl 13751 seqcseq 13962 abscabs 15177 β cli 15424 Ξ£csu 15628 Basecbs 17140 0gc0g 17381 β€RHomczrh 21040 β€/nβ€czn 21043 DChrcdchr 26724 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-inf2 9632 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 ax-addf 11185 ax-mulf 11186 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-se 5631 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-isom 6549 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-tpos 8207 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-er 8699 df-ec 8701 df-qs 8705 df-map 8818 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-sup 9433 df-inf 9434 df-oi 9501 df-card 9930 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 df-9 12278 df-n0 12469 df-z 12555 df-dec 12674 df-uz 12819 df-rp 12971 df-fz 13481 df-fzo 13624 df-seq 13963 df-exp 14024 df-hash 14287 df-cj 15042 df-re 15043 df-im 15044 df-sqrt 15178 df-abs 15179 df-clim 15428 df-sum 15629 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17141 df-ress 17170 df-plusg 17206 df-mulr 17207 df-starv 17208 df-sca 17209 df-vsca 17210 df-ip 17211 df-tset 17212 df-ple 17213 df-ds 17215 df-unif 17216 df-0g 17383 df-imas 17450 df-qus 17451 df-mgm 18557 df-sgrp 18606 df-mnd 18622 df-mhm 18667 df-grp 18818 df-minusg 18819 df-sbg 18820 df-mulg 18945 df-subg 18997 df-nsg 18998 df-eqg 18999 df-ghm 19084 df-cmn 19644 df-abl 19645 df-mgp 19982 df-ur 19999 df-ring 20051 df-cring 20052 df-oppr 20142 df-dvdsr 20163 df-unit 20164 df-rnghom 20243 df-subrg 20353 df-lmod 20465 df-lss 20535 df-lsp 20575 df-sra 20777 df-rgmod 20778 df-lidl 20779 df-rsp 20780 df-2idl 20849 df-cnfld 20937 df-zring 21010 df-zrh 21044 df-zn 21047 df-dchr 26725 |
This theorem is referenced by: rpvmasum2 27004 dchrisum0re 27005 dchrisum0lem2 27010 dchrisumn0 27013 |
Copyright terms: Public domain | W3C validator |