![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dchrvmaeq0 | Structured version Visualization version GIF version |
Description: The set 𝑊 is the collection of all non-principal Dirichlet characters such that the sum Σ𝑛 ∈ ℕ, 𝑋(𝑛) / 𝑛 is equal to zero. (Contributed by Mario Carneiro, 5-May-2016.) |
Ref | Expression |
---|---|
rpvmasum.z | ⊢ 𝑍 = (ℤ/nℤ‘𝑁) |
rpvmasum.l | ⊢ 𝐿 = (ℤRHom‘𝑍) |
rpvmasum.a | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
rpvmasum.g | ⊢ 𝐺 = (DChr‘𝑁) |
rpvmasum.d | ⊢ 𝐷 = (Base‘𝐺) |
rpvmasum.1 | ⊢ 1 = (0g‘𝐺) |
dchrisum.b | ⊢ (𝜑 → 𝑋 ∈ 𝐷) |
dchrisum.n1 | ⊢ (𝜑 → 𝑋 ≠ 1 ) |
dchrvmasumif.f | ⊢ 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑎)) / 𝑎)) |
dchrvmasumif.c | ⊢ (𝜑 → 𝐶 ∈ (0[,)+∞)) |
dchrvmasumif.s | ⊢ (𝜑 → seq1( + , 𝐹) ⇝ 𝑆) |
dchrvmasumif.1 | ⊢ (𝜑 → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑆)) ≤ (𝐶 / 𝑦)) |
dchrvmaeq0.w | ⊢ 𝑊 = {𝑦 ∈ (𝐷 ∖ { 1 }) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿‘𝑚)) / 𝑚) = 0} |
Ref | Expression |
---|---|
dchrvmaeq0 | ⊢ (𝜑 → (𝑋 ∈ 𝑊 ↔ 𝑆 = 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dchrisum.b | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐷) | |
2 | dchrisum.n1 | . . . 4 ⊢ (𝜑 → 𝑋 ≠ 1 ) | |
3 | eldifsn 4811 | . . . 4 ⊢ (𝑋 ∈ (𝐷 ∖ { 1 }) ↔ (𝑋 ∈ 𝐷 ∧ 𝑋 ≠ 1 )) | |
4 | 1, 2, 3 | sylanbrc 582 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (𝐷 ∖ { 1 })) |
5 | fveq1 6919 | . . . . . . . 8 ⊢ (𝑦 = 𝑋 → (𝑦‘(𝐿‘𝑚)) = (𝑋‘(𝐿‘𝑚))) | |
6 | 5 | oveq1d 7463 | . . . . . . 7 ⊢ (𝑦 = 𝑋 → ((𝑦‘(𝐿‘𝑚)) / 𝑚) = ((𝑋‘(𝐿‘𝑚)) / 𝑚)) |
7 | 6 | sumeq2sdv 15751 | . . . . . 6 ⊢ (𝑦 = 𝑋 → Σ𝑚 ∈ ℕ ((𝑦‘(𝐿‘𝑚)) / 𝑚) = Σ𝑚 ∈ ℕ ((𝑋‘(𝐿‘𝑚)) / 𝑚)) |
8 | 7 | eqeq1d 2742 | . . . . 5 ⊢ (𝑦 = 𝑋 → (Σ𝑚 ∈ ℕ ((𝑦‘(𝐿‘𝑚)) / 𝑚) = 0 ↔ Σ𝑚 ∈ ℕ ((𝑋‘(𝐿‘𝑚)) / 𝑚) = 0)) |
9 | dchrvmaeq0.w | . . . . 5 ⊢ 𝑊 = {𝑦 ∈ (𝐷 ∖ { 1 }) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿‘𝑚)) / 𝑚) = 0} | |
10 | 8, 9 | elrab2 3711 | . . . 4 ⊢ (𝑋 ∈ 𝑊 ↔ (𝑋 ∈ (𝐷 ∖ { 1 }) ∧ Σ𝑚 ∈ ℕ ((𝑋‘(𝐿‘𝑚)) / 𝑚) = 0)) |
11 | 10 | baib 535 | . . 3 ⊢ (𝑋 ∈ (𝐷 ∖ { 1 }) → (𝑋 ∈ 𝑊 ↔ Σ𝑚 ∈ ℕ ((𝑋‘(𝐿‘𝑚)) / 𝑚) = 0)) |
12 | 4, 11 | syl 17 | . 2 ⊢ (𝜑 → (𝑋 ∈ 𝑊 ↔ Σ𝑚 ∈ ℕ ((𝑋‘(𝐿‘𝑚)) / 𝑚) = 0)) |
13 | nnuz 12946 | . . . 4 ⊢ ℕ = (ℤ≥‘1) | |
14 | 1zzd 12674 | . . . 4 ⊢ (𝜑 → 1 ∈ ℤ) | |
15 | 2fveq3 6925 | . . . . . . 7 ⊢ (𝑎 = 𝑚 → (𝑋‘(𝐿‘𝑎)) = (𝑋‘(𝐿‘𝑚))) | |
16 | id 22 | . . . . . . 7 ⊢ (𝑎 = 𝑚 → 𝑎 = 𝑚) | |
17 | 15, 16 | oveq12d 7466 | . . . . . 6 ⊢ (𝑎 = 𝑚 → ((𝑋‘(𝐿‘𝑎)) / 𝑎) = ((𝑋‘(𝐿‘𝑚)) / 𝑚)) |
18 | dchrvmasumif.f | . . . . . 6 ⊢ 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑎)) / 𝑎)) | |
19 | ovex 7481 | . . . . . 6 ⊢ ((𝑋‘(𝐿‘𝑚)) / 𝑚) ∈ V | |
20 | 17, 18, 19 | fvmpt 7029 | . . . . 5 ⊢ (𝑚 ∈ ℕ → (𝐹‘𝑚) = ((𝑋‘(𝐿‘𝑚)) / 𝑚)) |
21 | 20 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝐹‘𝑚) = ((𝑋‘(𝐿‘𝑚)) / 𝑚)) |
22 | rpvmasum.g | . . . . . 6 ⊢ 𝐺 = (DChr‘𝑁) | |
23 | rpvmasum.z | . . . . . 6 ⊢ 𝑍 = (ℤ/nℤ‘𝑁) | |
24 | rpvmasum.d | . . . . . 6 ⊢ 𝐷 = (Base‘𝐺) | |
25 | rpvmasum.l | . . . . . 6 ⊢ 𝐿 = (ℤRHom‘𝑍) | |
26 | 1 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → 𝑋 ∈ 𝐷) |
27 | nnz 12660 | . . . . . . 7 ⊢ (𝑚 ∈ ℕ → 𝑚 ∈ ℤ) | |
28 | 27 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ℤ) |
29 | 22, 23, 24, 25, 26, 28 | dchrzrhcl 27307 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝑋‘(𝐿‘𝑚)) ∈ ℂ) |
30 | nncn 12301 | . . . . . 6 ⊢ (𝑚 ∈ ℕ → 𝑚 ∈ ℂ) | |
31 | 30 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ℂ) |
32 | nnne0 12327 | . . . . . 6 ⊢ (𝑚 ∈ ℕ → 𝑚 ≠ 0) | |
33 | 32 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → 𝑚 ≠ 0) |
34 | 29, 31, 33 | divcld 12070 | . . . 4 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((𝑋‘(𝐿‘𝑚)) / 𝑚) ∈ ℂ) |
35 | dchrvmasumif.s | . . . 4 ⊢ (𝜑 → seq1( + , 𝐹) ⇝ 𝑆) | |
36 | 13, 14, 21, 34, 35 | isumclim 15805 | . . 3 ⊢ (𝜑 → Σ𝑚 ∈ ℕ ((𝑋‘(𝐿‘𝑚)) / 𝑚) = 𝑆) |
37 | 36 | eqeq1d 2742 | . 2 ⊢ (𝜑 → (Σ𝑚 ∈ ℕ ((𝑋‘(𝐿‘𝑚)) / 𝑚) = 0 ↔ 𝑆 = 0)) |
38 | 12, 37 | bitrd 279 | 1 ⊢ (𝜑 → (𝑋 ∈ 𝑊 ↔ 𝑆 = 0)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∀wral 3067 {crab 3443 ∖ cdif 3973 {csn 4648 class class class wbr 5166 ↦ cmpt 5249 ‘cfv 6573 (class class class)co 7448 ℂcc 11182 0cc0 11184 1c1 11185 + caddc 11187 +∞cpnf 11321 ≤ cle 11325 − cmin 11520 / cdiv 11947 ℕcn 12293 ℤcz 12639 [,)cico 13409 ⌊cfl 13841 seqcseq 14052 abscabs 15283 ⇝ cli 15530 Σcsu 15734 Basecbs 17258 0gc0g 17499 ℤRHomczrh 21533 ℤ/nℤczn 21536 DChrcdchr 27294 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 ax-addf 11263 ax-mulf 11264 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-tpos 8267 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-ec 8765 df-qs 8769 df-map 8886 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-sup 9511 df-inf 9512 df-oi 9579 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-rp 13058 df-fz 13568 df-fzo 13712 df-seq 14053 df-exp 14113 df-hash 14380 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-clim 15534 df-sum 15735 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-starv 17326 df-sca 17327 df-vsca 17328 df-ip 17329 df-tset 17330 df-ple 17331 df-ds 17333 df-unif 17334 df-0g 17501 df-imas 17568 df-qus 17569 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-mhm 18818 df-grp 18976 df-minusg 18977 df-sbg 18978 df-mulg 19108 df-subg 19163 df-nsg 19164 df-eqg 19165 df-ghm 19253 df-cmn 19824 df-abl 19825 df-mgp 20162 df-rng 20180 df-ur 20209 df-ring 20262 df-cring 20263 df-oppr 20360 df-dvdsr 20383 df-unit 20384 df-rhm 20498 df-subrng 20572 df-subrg 20597 df-lmod 20882 df-lss 20953 df-lsp 20993 df-sra 21195 df-rgmod 21196 df-lidl 21241 df-rsp 21242 df-2idl 21283 df-cnfld 21388 df-zring 21481 df-zrh 21537 df-zn 21540 df-dchr 27295 |
This theorem is referenced by: rpvmasum2 27574 dchrisum0re 27575 dchrisum0lem2 27580 dchrisumn0 27583 |
Copyright terms: Public domain | W3C validator |