Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dchrvmaeq0 | Structured version Visualization version GIF version |
Description: The set 𝑊 is the collection of all non-principal Dirichlet characters such that the sum Σ𝑛 ∈ ℕ, 𝑋(𝑛) / 𝑛 is equal to zero. (Contributed by Mario Carneiro, 5-May-2016.) |
Ref | Expression |
---|---|
rpvmasum.z | ⊢ 𝑍 = (ℤ/nℤ‘𝑁) |
rpvmasum.l | ⊢ 𝐿 = (ℤRHom‘𝑍) |
rpvmasum.a | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
rpvmasum.g | ⊢ 𝐺 = (DChr‘𝑁) |
rpvmasum.d | ⊢ 𝐷 = (Base‘𝐺) |
rpvmasum.1 | ⊢ 1 = (0g‘𝐺) |
dchrisum.b | ⊢ (𝜑 → 𝑋 ∈ 𝐷) |
dchrisum.n1 | ⊢ (𝜑 → 𝑋 ≠ 1 ) |
dchrvmasumif.f | ⊢ 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑎)) / 𝑎)) |
dchrvmasumif.c | ⊢ (𝜑 → 𝐶 ∈ (0[,)+∞)) |
dchrvmasumif.s | ⊢ (𝜑 → seq1( + , 𝐹) ⇝ 𝑆) |
dchrvmasumif.1 | ⊢ (𝜑 → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑆)) ≤ (𝐶 / 𝑦)) |
dchrvmaeq0.w | ⊢ 𝑊 = {𝑦 ∈ (𝐷 ∖ { 1 }) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿‘𝑚)) / 𝑚) = 0} |
Ref | Expression |
---|---|
dchrvmaeq0 | ⊢ (𝜑 → (𝑋 ∈ 𝑊 ↔ 𝑆 = 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dchrisum.b | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐷) | |
2 | dchrisum.n1 | . . . 4 ⊢ (𝜑 → 𝑋 ≠ 1 ) | |
3 | eldifsn 4725 | . . . 4 ⊢ (𝑋 ∈ (𝐷 ∖ { 1 }) ↔ (𝑋 ∈ 𝐷 ∧ 𝑋 ≠ 1 )) | |
4 | 1, 2, 3 | sylanbrc 582 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (𝐷 ∖ { 1 })) |
5 | fveq1 6767 | . . . . . . . 8 ⊢ (𝑦 = 𝑋 → (𝑦‘(𝐿‘𝑚)) = (𝑋‘(𝐿‘𝑚))) | |
6 | 5 | oveq1d 7283 | . . . . . . 7 ⊢ (𝑦 = 𝑋 → ((𝑦‘(𝐿‘𝑚)) / 𝑚) = ((𝑋‘(𝐿‘𝑚)) / 𝑚)) |
7 | 6 | sumeq2sdv 15397 | . . . . . 6 ⊢ (𝑦 = 𝑋 → Σ𝑚 ∈ ℕ ((𝑦‘(𝐿‘𝑚)) / 𝑚) = Σ𝑚 ∈ ℕ ((𝑋‘(𝐿‘𝑚)) / 𝑚)) |
8 | 7 | eqeq1d 2741 | . . . . 5 ⊢ (𝑦 = 𝑋 → (Σ𝑚 ∈ ℕ ((𝑦‘(𝐿‘𝑚)) / 𝑚) = 0 ↔ Σ𝑚 ∈ ℕ ((𝑋‘(𝐿‘𝑚)) / 𝑚) = 0)) |
9 | dchrvmaeq0.w | . . . . 5 ⊢ 𝑊 = {𝑦 ∈ (𝐷 ∖ { 1 }) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿‘𝑚)) / 𝑚) = 0} | |
10 | 8, 9 | elrab2 3628 | . . . 4 ⊢ (𝑋 ∈ 𝑊 ↔ (𝑋 ∈ (𝐷 ∖ { 1 }) ∧ Σ𝑚 ∈ ℕ ((𝑋‘(𝐿‘𝑚)) / 𝑚) = 0)) |
11 | 10 | baib 535 | . . 3 ⊢ (𝑋 ∈ (𝐷 ∖ { 1 }) → (𝑋 ∈ 𝑊 ↔ Σ𝑚 ∈ ℕ ((𝑋‘(𝐿‘𝑚)) / 𝑚) = 0)) |
12 | 4, 11 | syl 17 | . 2 ⊢ (𝜑 → (𝑋 ∈ 𝑊 ↔ Σ𝑚 ∈ ℕ ((𝑋‘(𝐿‘𝑚)) / 𝑚) = 0)) |
13 | nnuz 12603 | . . . 4 ⊢ ℕ = (ℤ≥‘1) | |
14 | 1zzd 12334 | . . . 4 ⊢ (𝜑 → 1 ∈ ℤ) | |
15 | 2fveq3 6773 | . . . . . . 7 ⊢ (𝑎 = 𝑚 → (𝑋‘(𝐿‘𝑎)) = (𝑋‘(𝐿‘𝑚))) | |
16 | id 22 | . . . . . . 7 ⊢ (𝑎 = 𝑚 → 𝑎 = 𝑚) | |
17 | 15, 16 | oveq12d 7286 | . . . . . 6 ⊢ (𝑎 = 𝑚 → ((𝑋‘(𝐿‘𝑎)) / 𝑎) = ((𝑋‘(𝐿‘𝑚)) / 𝑚)) |
18 | dchrvmasumif.f | . . . . . 6 ⊢ 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑎)) / 𝑎)) | |
19 | ovex 7301 | . . . . . 6 ⊢ ((𝑋‘(𝐿‘𝑚)) / 𝑚) ∈ V | |
20 | 17, 18, 19 | fvmpt 6869 | . . . . 5 ⊢ (𝑚 ∈ ℕ → (𝐹‘𝑚) = ((𝑋‘(𝐿‘𝑚)) / 𝑚)) |
21 | 20 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝐹‘𝑚) = ((𝑋‘(𝐿‘𝑚)) / 𝑚)) |
22 | rpvmasum.g | . . . . . 6 ⊢ 𝐺 = (DChr‘𝑁) | |
23 | rpvmasum.z | . . . . . 6 ⊢ 𝑍 = (ℤ/nℤ‘𝑁) | |
24 | rpvmasum.d | . . . . . 6 ⊢ 𝐷 = (Base‘𝐺) | |
25 | rpvmasum.l | . . . . . 6 ⊢ 𝐿 = (ℤRHom‘𝑍) | |
26 | 1 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → 𝑋 ∈ 𝐷) |
27 | nnz 12325 | . . . . . . 7 ⊢ (𝑚 ∈ ℕ → 𝑚 ∈ ℤ) | |
28 | 27 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ℤ) |
29 | 22, 23, 24, 25, 26, 28 | dchrzrhcl 26374 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝑋‘(𝐿‘𝑚)) ∈ ℂ) |
30 | nncn 11964 | . . . . . 6 ⊢ (𝑚 ∈ ℕ → 𝑚 ∈ ℂ) | |
31 | 30 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ℂ) |
32 | nnne0 11990 | . . . . . 6 ⊢ (𝑚 ∈ ℕ → 𝑚 ≠ 0) | |
33 | 32 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → 𝑚 ≠ 0) |
34 | 29, 31, 33 | divcld 11734 | . . . 4 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((𝑋‘(𝐿‘𝑚)) / 𝑚) ∈ ℂ) |
35 | dchrvmasumif.s | . . . 4 ⊢ (𝜑 → seq1( + , 𝐹) ⇝ 𝑆) | |
36 | 13, 14, 21, 34, 35 | isumclim 15450 | . . 3 ⊢ (𝜑 → Σ𝑚 ∈ ℕ ((𝑋‘(𝐿‘𝑚)) / 𝑚) = 𝑆) |
37 | 36 | eqeq1d 2741 | . 2 ⊢ (𝜑 → (Σ𝑚 ∈ ℕ ((𝑋‘(𝐿‘𝑚)) / 𝑚) = 0 ↔ 𝑆 = 0)) |
38 | 12, 37 | bitrd 278 | 1 ⊢ (𝜑 → (𝑋 ∈ 𝑊 ↔ 𝑆 = 0)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1541 ∈ wcel 2109 ≠ wne 2944 ∀wral 3065 {crab 3069 ∖ cdif 3888 {csn 4566 class class class wbr 5078 ↦ cmpt 5161 ‘cfv 6430 (class class class)co 7268 ℂcc 10853 0cc0 10855 1c1 10856 + caddc 10858 +∞cpnf 10990 ≤ cle 10994 − cmin 11188 / cdiv 11615 ℕcn 11956 ℤcz 12302 [,)cico 13063 ⌊cfl 13491 seqcseq 13702 abscabs 14926 ⇝ cli 15174 Σcsu 15378 Basecbs 16893 0gc0g 17131 ℤRHomczrh 20682 ℤ/nℤczn 20685 DChrcdchr 26361 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-inf2 9360 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 ax-pre-sup 10933 ax-addf 10934 ax-mulf 10935 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-int 4885 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-se 5544 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-isom 6439 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-1st 7817 df-2nd 7818 df-tpos 8026 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-1o 8281 df-er 8472 df-ec 8474 df-qs 8478 df-map 8591 df-en 8708 df-dom 8709 df-sdom 8710 df-fin 8711 df-sup 9162 df-inf 9163 df-oi 9230 df-card 9681 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-div 11616 df-nn 11957 df-2 12019 df-3 12020 df-4 12021 df-5 12022 df-6 12023 df-7 12024 df-8 12025 df-9 12026 df-n0 12217 df-z 12303 df-dec 12420 df-uz 12565 df-rp 12713 df-fz 13222 df-fzo 13365 df-seq 13703 df-exp 13764 df-hash 14026 df-cj 14791 df-re 14792 df-im 14793 df-sqrt 14927 df-abs 14928 df-clim 15178 df-sum 15379 df-struct 16829 df-sets 16846 df-slot 16864 df-ndx 16876 df-base 16894 df-ress 16923 df-plusg 16956 df-mulr 16957 df-starv 16958 df-sca 16959 df-vsca 16960 df-ip 16961 df-tset 16962 df-ple 16963 df-ds 16965 df-unif 16966 df-0g 17133 df-imas 17200 df-qus 17201 df-mgm 18307 df-sgrp 18356 df-mnd 18367 df-mhm 18411 df-grp 18561 df-minusg 18562 df-sbg 18563 df-mulg 18682 df-subg 18733 df-nsg 18734 df-eqg 18735 df-ghm 18813 df-cmn 19369 df-abl 19370 df-mgp 19702 df-ur 19719 df-ring 19766 df-cring 19767 df-oppr 19843 df-dvdsr 19864 df-unit 19865 df-rnghom 19940 df-subrg 20003 df-lmod 20106 df-lss 20175 df-lsp 20215 df-sra 20415 df-rgmod 20416 df-lidl 20417 df-rsp 20418 df-2idl 20484 df-cnfld 20579 df-zring 20652 df-zrh 20686 df-zn 20689 df-dchr 26362 |
This theorem is referenced by: rpvmasum2 26641 dchrisum0re 26642 dchrisum0lem2 26647 dchrisumn0 26650 |
Copyright terms: Public domain | W3C validator |