MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrisum0 Structured version   Visualization version   GIF version

Theorem dchrisum0 27437
Description: The sum Σ𝑛 ∈ ℕ, 𝑋(𝑛) / 𝑛 is nonzero for all non-principal Dirichlet characters (i.e. the assumption 𝑋𝑊 is contradictory). This is the key result that allows to eliminate the conditionals from dchrmusum2 27411 and dchrvmasumif 27420. Lemma 9.4.4 of [Shapiro], p. 382. (Contributed by Mario Carneiro, 12-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z 𝑍 = (ℤ/nℤ‘𝑁)
rpvmasum.l 𝐿 = (ℤRHom‘𝑍)
rpvmasum.a (𝜑𝑁 ∈ ℕ)
rpvmasum2.g 𝐺 = (DChr‘𝑁)
rpvmasum2.d 𝐷 = (Base‘𝐺)
rpvmasum2.1 1 = (0g𝐺)
rpvmasum2.w 𝑊 = {𝑦 ∈ (𝐷 ∖ { 1 }) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0}
dchrisum0.b (𝜑𝑋𝑊)
Assertion
Ref Expression
dchrisum0 ¬ 𝜑
Distinct variable groups:   𝑦,𝑚, 1   𝑚,𝑁,𝑦   𝜑,𝑚   𝑚,𝑍,𝑦   𝐷,𝑚,𝑦   𝑚,𝐿,𝑦   𝑚,𝑋,𝑦
Allowed substitution hints:   𝜑(𝑦)   𝐺(𝑦,𝑚)   𝑊(𝑦,𝑚)

Proof of Theorem dchrisum0
Dummy variables 𝑘 𝑥 𝑧 𝑐 𝑖 𝑡 𝑑 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rpvmasum.z . 2 𝑍 = (ℤ/nℤ‘𝑁)
2 rpvmasum.l . 2 𝐿 = (ℤRHom‘𝑍)
3 rpvmasum.a . 2 (𝜑𝑁 ∈ ℕ)
4 rpvmasum2.g . 2 𝐺 = (DChr‘𝑁)
5 rpvmasum2.d . 2 𝐷 = (Base‘𝐺)
6 rpvmasum2.1 . 2 1 = (0g𝐺)
7 eqid 2730 . 2 (𝑏 ∈ ℕ ↦ Σ𝑦 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑏} (𝑋‘(𝐿𝑦))) = (𝑏 ∈ ℕ ↦ Σ𝑦 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑏} (𝑋‘(𝐿𝑦)))
8 rpvmasum2.w . . . . 5 𝑊 = {𝑦 ∈ (𝐷 ∖ { 1 }) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0}
98ssrab3 4047 . . . 4 𝑊 ⊆ (𝐷 ∖ { 1 })
10 difss 4101 . . . 4 (𝐷 ∖ { 1 }) ⊆ 𝐷
119, 10sstri 3958 . . 3 𝑊𝐷
12 dchrisum0.b . . 3 (𝜑𝑋𝑊)
1311, 12sselid 3946 . 2 (𝜑𝑋𝐷)
141, 2, 3, 4, 5, 6, 8, 12dchrisum0re 27430 . 2 (𝜑𝑋:(Base‘𝑍)⟶ℝ)
15 fveq2 6860 . . . . . . . 8 (𝑘 = (𝑚 · 𝑑) → (√‘𝑘) = (√‘(𝑚 · 𝑑)))
1615oveq2d 7405 . . . . . . 7 (𝑘 = (𝑚 · 𝑑) → ((𝑋‘(𝐿𝑚)) / (√‘𝑘)) = ((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑))))
17 rpre 12966 . . . . . . . 8 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
1817adantl 481 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ)
1913ad3antrrr 730 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑘}) → 𝑋𝐷)
20 elrabi 3656 . . . . . . . . . . . 12 (𝑚 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑘} → 𝑚 ∈ ℕ)
2120nnzd 12562 . . . . . . . . . . 11 (𝑚 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑘} → 𝑚 ∈ ℤ)
2221adantl 481 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑘}) → 𝑚 ∈ ℤ)
234, 1, 5, 2, 19, 22dchrzrhcl 27162 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑘}) → (𝑋‘(𝐿𝑚)) ∈ ℂ)
24 elfznn 13520 . . . . . . . . . . . . . 14 (𝑘 ∈ (1...(⌊‘𝑥)) → 𝑘 ∈ ℕ)
2524adantl 481 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → 𝑘 ∈ ℕ)
2625nnrpd 12999 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → 𝑘 ∈ ℝ+)
2726rpsqrtcld 15384 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → (√‘𝑘) ∈ ℝ+)
2827rpcnd 13003 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → (√‘𝑘) ∈ ℂ)
2928adantr 480 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑘}) → (√‘𝑘) ∈ ℂ)
3027rpne0d 13006 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → (√‘𝑘) ≠ 0)
3130adantr 480 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑘}) → (√‘𝑘) ≠ 0)
3223, 29, 31divcld 11964 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑘}) → ((𝑋‘(𝐿𝑚)) / (√‘𝑘)) ∈ ℂ)
3332anasss 466 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ 𝑚 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑘})) → ((𝑋‘(𝐿𝑚)) / (√‘𝑘)) ∈ ℂ)
3416, 18, 33dvdsflsumcom 27104 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → Σ𝑘 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑘} ((𝑋‘(𝐿𝑚)) / (√‘𝑘)) = Σ𝑚 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ (1...(⌊‘(𝑥 / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑))))
351, 2, 3, 4, 5, 6, 7dchrisum0fval 27422 . . . . . . . . . 10 (𝑘 ∈ ℕ → ((𝑏 ∈ ℕ ↦ Σ𝑦 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑏} (𝑋‘(𝐿𝑦)))‘𝑘) = Σ𝑚 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑘} (𝑋‘(𝐿𝑚)))
3625, 35syl 17 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → ((𝑏 ∈ ℕ ↦ Σ𝑦 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑏} (𝑋‘(𝐿𝑦)))‘𝑘) = Σ𝑚 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑘} (𝑋‘(𝐿𝑚)))
3736oveq1d 7404 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → (((𝑏 ∈ ℕ ↦ Σ𝑦 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑏} (𝑋‘(𝐿𝑦)))‘𝑘) / (√‘𝑘)) = (Σ𝑚 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑘} (𝑋‘(𝐿𝑚)) / (√‘𝑘)))
38 fzfid 13944 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → (1...𝑘) ∈ Fin)
39 dvdsssfz1 16294 . . . . . . . . . . 11 (𝑘 ∈ ℕ → {𝑖 ∈ ℕ ∣ 𝑖𝑘} ⊆ (1...𝑘))
4025, 39syl 17 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → {𝑖 ∈ ℕ ∣ 𝑖𝑘} ⊆ (1...𝑘))
4138, 40ssfid 9218 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → {𝑖 ∈ ℕ ∣ 𝑖𝑘} ∈ Fin)
4241, 28, 23, 30fsumdivc 15758 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → (Σ𝑚 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑘} (𝑋‘(𝐿𝑚)) / (√‘𝑘)) = Σ𝑚 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑘} ((𝑋‘(𝐿𝑚)) / (√‘𝑘)))
4337, 42eqtrd 2765 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → (((𝑏 ∈ ℕ ↦ Σ𝑦 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑏} (𝑋‘(𝐿𝑦)))‘𝑘) / (√‘𝑘)) = Σ𝑚 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑘} ((𝑋‘(𝐿𝑚)) / (√‘𝑘)))
4443sumeq2dv 15674 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → Σ𝑘 ∈ (1...(⌊‘𝑥))(((𝑏 ∈ ℕ ↦ Σ𝑦 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑏} (𝑋‘(𝐿𝑦)))‘𝑘) / (√‘𝑘)) = Σ𝑘 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑘} ((𝑋‘(𝐿𝑚)) / (√‘𝑘)))
45 rprege0 12973 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
4645adantl 481 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
47 resqrtth 15227 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) → ((√‘𝑥)↑2) = 𝑥)
4846, 47syl 17 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → ((√‘𝑥)↑2) = 𝑥)
4948fveq2d 6864 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → (⌊‘((√‘𝑥)↑2)) = (⌊‘𝑥))
5049oveq2d 7405 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → (1...(⌊‘((√‘𝑥)↑2))) = (1...(⌊‘𝑥)))
5148fvoveq1d 7411 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → (⌊‘(((√‘𝑥)↑2) / 𝑚)) = (⌊‘(𝑥 / 𝑚)))
5251oveq2d 7405 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → (1...(⌊‘(((√‘𝑥)↑2) / 𝑚))) = (1...(⌊‘(𝑥 / 𝑚))))
5352sumeq1d 15672 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → Σ𝑑 ∈ (1...(⌊‘(((√‘𝑥)↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑))) = Σ𝑑 ∈ (1...(⌊‘(𝑥 / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑))))
5453adantr 480 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘((√‘𝑥)↑2)))) → Σ𝑑 ∈ (1...(⌊‘(((√‘𝑥)↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑))) = Σ𝑑 ∈ (1...(⌊‘(𝑥 / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑))))
5550, 54sumeq12dv 15678 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → Σ𝑚 ∈ (1...(⌊‘((√‘𝑥)↑2)))Σ𝑑 ∈ (1...(⌊‘(((√‘𝑥)↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑))) = Σ𝑚 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ (1...(⌊‘(𝑥 / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑))))
5634, 44, 553eqtr4d 2775 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → Σ𝑘 ∈ (1...(⌊‘𝑥))(((𝑏 ∈ ℕ ↦ Σ𝑦 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑏} (𝑋‘(𝐿𝑦)))‘𝑘) / (√‘𝑘)) = Σ𝑚 ∈ (1...(⌊‘((√‘𝑥)↑2)))Σ𝑑 ∈ (1...(⌊‘(((√‘𝑥)↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑))))
5756mpteq2dva 5202 . . . 4 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑘 ∈ (1...(⌊‘𝑥))(((𝑏 ∈ ℕ ↦ Σ𝑦 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑏} (𝑋‘(𝐿𝑦)))‘𝑘) / (√‘𝑘))) = (𝑥 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘((√‘𝑥)↑2)))Σ𝑑 ∈ (1...(⌊‘(((√‘𝑥)↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑)))))
58 rpsqrtcl 15236 . . . . . 6 (𝑥 ∈ ℝ+ → (√‘𝑥) ∈ ℝ+)
5958adantl 481 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (√‘𝑥) ∈ ℝ+)
60 eqidd 2731 . . . . 5 (𝜑 → (𝑥 ∈ ℝ+ ↦ (√‘𝑥)) = (𝑥 ∈ ℝ+ ↦ (√‘𝑥)))
61 eqidd 2731 . . . . 5 (𝜑 → (𝑧 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘(𝑧↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑)))) = (𝑧 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘(𝑧↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑)))))
62 oveq1 7396 . . . . . . . 8 (𝑧 = (√‘𝑥) → (𝑧↑2) = ((√‘𝑥)↑2))
6362fveq2d 6864 . . . . . . 7 (𝑧 = (√‘𝑥) → (⌊‘(𝑧↑2)) = (⌊‘((√‘𝑥)↑2)))
6463oveq2d 7405 . . . . . 6 (𝑧 = (√‘𝑥) → (1...(⌊‘(𝑧↑2))) = (1...(⌊‘((√‘𝑥)↑2))))
6562fvoveq1d 7411 . . . . . . . . 9 (𝑧 = (√‘𝑥) → (⌊‘((𝑧↑2) / 𝑚)) = (⌊‘(((√‘𝑥)↑2) / 𝑚)))
6665oveq2d 7405 . . . . . . . 8 (𝑧 = (√‘𝑥) → (1...(⌊‘((𝑧↑2) / 𝑚))) = (1...(⌊‘(((√‘𝑥)↑2) / 𝑚))))
6766sumeq1d 15672 . . . . . . 7 (𝑧 = (√‘𝑥) → Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑))) = Σ𝑑 ∈ (1...(⌊‘(((√‘𝑥)↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑))))
6867adantr 480 . . . . . 6 ((𝑧 = (√‘𝑥) ∧ 𝑚 ∈ (1...(⌊‘(𝑧↑2)))) → Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑))) = Σ𝑑 ∈ (1...(⌊‘(((√‘𝑥)↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑))))
6964, 68sumeq12dv 15678 . . . . 5 (𝑧 = (√‘𝑥) → Σ𝑚 ∈ (1...(⌊‘(𝑧↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑))) = Σ𝑚 ∈ (1...(⌊‘((√‘𝑥)↑2)))Σ𝑑 ∈ (1...(⌊‘(((√‘𝑥)↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑))))
7059, 60, 61, 69fmptco 7103 . . . 4 (𝜑 → ((𝑧 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘(𝑧↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑)))) ∘ (𝑥 ∈ ℝ+ ↦ (√‘𝑥))) = (𝑥 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘((√‘𝑥)↑2)))Σ𝑑 ∈ (1...(⌊‘(((√‘𝑥)↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑)))))
7157, 70eqtr4d 2768 . . 3 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑘 ∈ (1...(⌊‘𝑥))(((𝑏 ∈ ℕ ↦ Σ𝑦 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑏} (𝑋‘(𝐿𝑦)))‘𝑘) / (√‘𝑘))) = ((𝑧 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘(𝑧↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑)))) ∘ (𝑥 ∈ ℝ+ ↦ (√‘𝑥))))
72 eqid 2730 . . . . . . . 8 (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎))) = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎)))
731, 2, 3, 4, 5, 6, 8, 12, 72dchrisum0lema 27431 . . . . . . 7 (𝜑 → ∃𝑡𝑐 ∈ (0[,)+∞)(seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎)))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎))))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / (√‘𝑦))))
743adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎)))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎))))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / (√‘𝑦))))) → 𝑁 ∈ ℕ)
7512adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎)))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎))))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / (√‘𝑦))))) → 𝑋𝑊)
76 simprl 770 . . . . . . . . . 10 ((𝜑 ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎)))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎))))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / (√‘𝑦))))) → 𝑐 ∈ (0[,)+∞))
77 simprrl 780 . . . . . . . . . 10 ((𝜑 ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎)))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎))))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / (√‘𝑦))))) → seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎)))) ⇝ 𝑡)
78 simprrr 781 . . . . . . . . . 10 ((𝜑 ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎)))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎))))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / (√‘𝑦))))) → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎))))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / (√‘𝑦)))
791, 2, 74, 4, 5, 6, 8, 75, 72, 76, 77, 78dchrisum0lem3 27436 . . . . . . . . 9 ((𝜑 ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎)))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎))))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / (√‘𝑦))))) → (𝑧 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘(𝑧↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑)))) ∈ 𝑂(1))
8079rexlimdvaa 3136 . . . . . . . 8 (𝜑 → (∃𝑐 ∈ (0[,)+∞)(seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎)))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎))))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / (√‘𝑦))) → (𝑧 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘(𝑧↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑)))) ∈ 𝑂(1)))
8180exlimdv 1933 . . . . . . 7 (𝜑 → (∃𝑡𝑐 ∈ (0[,)+∞)(seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎)))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎))))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / (√‘𝑦))) → (𝑧 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘(𝑧↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑)))) ∈ 𝑂(1)))
8273, 81mpd 15 . . . . . 6 (𝜑 → (𝑧 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘(𝑧↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑)))) ∈ 𝑂(1))
83 o1f 15501 . . . . . 6 ((𝑧 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘(𝑧↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑)))) ∈ 𝑂(1) → (𝑧 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘(𝑧↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑)))):dom (𝑧 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘(𝑧↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑))))⟶ℂ)
8482, 83syl 17 . . . . 5 (𝜑 → (𝑧 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘(𝑧↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑)))):dom (𝑧 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘(𝑧↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑))))⟶ℂ)
85 sumex 15660 . . . . . . 7 Σ𝑚 ∈ (1...(⌊‘(𝑧↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑))) ∈ V
86 eqid 2730 . . . . . . 7 (𝑧 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘(𝑧↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑)))) = (𝑧 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘(𝑧↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑))))
8785, 86dmmpti 6664 . . . . . 6 dom (𝑧 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘(𝑧↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑)))) = ℝ+
8887feq2i 6682 . . . . 5 ((𝑧 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘(𝑧↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑)))):dom (𝑧 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘(𝑧↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑))))⟶ℂ ↔ (𝑧 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘(𝑧↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑)))):ℝ+⟶ℂ)
8984, 88sylib 218 . . . 4 (𝜑 → (𝑧 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘(𝑧↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑)))):ℝ+⟶ℂ)
90 rpssre 12965 . . . . 5 + ⊆ ℝ
9190a1i 11 . . . 4 (𝜑 → ℝ+ ⊆ ℝ)
92 resqcl 14095 . . . . 5 (𝑡 ∈ ℝ → (𝑡↑2) ∈ ℝ)
93 0red 11183 . . . . . . . 8 (((𝜑𝑡 ∈ ℝ) ∧ (𝑥 ∈ ℝ+ ∧ (𝑡↑2) ≤ 𝑥)) → 0 ∈ ℝ)
94 simplr 768 . . . . . . . 8 (((𝜑𝑡 ∈ ℝ) ∧ (𝑥 ∈ ℝ+ ∧ (𝑡↑2) ≤ 𝑥)) → 𝑡 ∈ ℝ)
95 simplrr 777 . . . . . . . . . 10 ((((𝜑𝑡 ∈ ℝ) ∧ (𝑥 ∈ ℝ+ ∧ (𝑡↑2) ≤ 𝑥)) ∧ 0 ≤ 𝑡) → (𝑡↑2) ≤ 𝑥)
9645ad2antrl 728 . . . . . . . . . . . 12 (((𝜑𝑡 ∈ ℝ) ∧ (𝑥 ∈ ℝ+ ∧ (𝑡↑2) ≤ 𝑥)) → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
9796adantr 480 . . . . . . . . . . 11 ((((𝜑𝑡 ∈ ℝ) ∧ (𝑥 ∈ ℝ+ ∧ (𝑡↑2) ≤ 𝑥)) ∧ 0 ≤ 𝑡) → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
9897, 47syl 17 . . . . . . . . . 10 ((((𝜑𝑡 ∈ ℝ) ∧ (𝑥 ∈ ℝ+ ∧ (𝑡↑2) ≤ 𝑥)) ∧ 0 ≤ 𝑡) → ((√‘𝑥)↑2) = 𝑥)
9995, 98breqtrrd 5137 . . . . . . . . 9 ((((𝜑𝑡 ∈ ℝ) ∧ (𝑥 ∈ ℝ+ ∧ (𝑡↑2) ≤ 𝑥)) ∧ 0 ≤ 𝑡) → (𝑡↑2) ≤ ((√‘𝑥)↑2))
10094adantr 480 . . . . . . . . . 10 ((((𝜑𝑡 ∈ ℝ) ∧ (𝑥 ∈ ℝ+ ∧ (𝑡↑2) ≤ 𝑥)) ∧ 0 ≤ 𝑡) → 𝑡 ∈ ℝ)
10159rpred 13001 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ+) → (√‘𝑥) ∈ ℝ)
102101ad2ant2r 747 . . . . . . . . . . 11 (((𝜑𝑡 ∈ ℝ) ∧ (𝑥 ∈ ℝ+ ∧ (𝑡↑2) ≤ 𝑥)) → (√‘𝑥) ∈ ℝ)
103102adantr 480 . . . . . . . . . 10 ((((𝜑𝑡 ∈ ℝ) ∧ (𝑥 ∈ ℝ+ ∧ (𝑡↑2) ≤ 𝑥)) ∧ 0 ≤ 𝑡) → (√‘𝑥) ∈ ℝ)
104 simpr 484 . . . . . . . . . 10 ((((𝜑𝑡 ∈ ℝ) ∧ (𝑥 ∈ ℝ+ ∧ (𝑡↑2) ≤ 𝑥)) ∧ 0 ≤ 𝑡) → 0 ≤ 𝑡)
105 sqrtge0 15229 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) → 0 ≤ (√‘𝑥))
10696, 105syl 17 . . . . . . . . . . 11 (((𝜑𝑡 ∈ ℝ) ∧ (𝑥 ∈ ℝ+ ∧ (𝑡↑2) ≤ 𝑥)) → 0 ≤ (√‘𝑥))
107106adantr 480 . . . . . . . . . 10 ((((𝜑𝑡 ∈ ℝ) ∧ (𝑥 ∈ ℝ+ ∧ (𝑡↑2) ≤ 𝑥)) ∧ 0 ≤ 𝑡) → 0 ≤ (√‘𝑥))
108100, 103, 104, 107le2sqd 14228 . . . . . . . . 9 ((((𝜑𝑡 ∈ ℝ) ∧ (𝑥 ∈ ℝ+ ∧ (𝑡↑2) ≤ 𝑥)) ∧ 0 ≤ 𝑡) → (𝑡 ≤ (√‘𝑥) ↔ (𝑡↑2) ≤ ((√‘𝑥)↑2)))
10999, 108mpbird 257 . . . . . . . 8 ((((𝜑𝑡 ∈ ℝ) ∧ (𝑥 ∈ ℝ+ ∧ (𝑡↑2) ≤ 𝑥)) ∧ 0 ≤ 𝑡) → 𝑡 ≤ (√‘𝑥))
11094adantr 480 . . . . . . . . 9 ((((𝜑𝑡 ∈ ℝ) ∧ (𝑥 ∈ ℝ+ ∧ (𝑡↑2) ≤ 𝑥)) ∧ 𝑡 ≤ 0) → 𝑡 ∈ ℝ)
111 0red 11183 . . . . . . . . 9 ((((𝜑𝑡 ∈ ℝ) ∧ (𝑥 ∈ ℝ+ ∧ (𝑡↑2) ≤ 𝑥)) ∧ 𝑡 ≤ 0) → 0 ∈ ℝ)
112102adantr 480 . . . . . . . . 9 ((((𝜑𝑡 ∈ ℝ) ∧ (𝑥 ∈ ℝ+ ∧ (𝑡↑2) ≤ 𝑥)) ∧ 𝑡 ≤ 0) → (√‘𝑥) ∈ ℝ)
113 simpr 484 . . . . . . . . 9 ((((𝜑𝑡 ∈ ℝ) ∧ (𝑥 ∈ ℝ+ ∧ (𝑡↑2) ≤ 𝑥)) ∧ 𝑡 ≤ 0) → 𝑡 ≤ 0)
114106adantr 480 . . . . . . . . 9 ((((𝜑𝑡 ∈ ℝ) ∧ (𝑥 ∈ ℝ+ ∧ (𝑡↑2) ≤ 𝑥)) ∧ 𝑡 ≤ 0) → 0 ≤ (√‘𝑥))
115110, 111, 112, 113, 114letrd 11337 . . . . . . . 8 ((((𝜑𝑡 ∈ ℝ) ∧ (𝑥 ∈ ℝ+ ∧ (𝑡↑2) ≤ 𝑥)) ∧ 𝑡 ≤ 0) → 𝑡 ≤ (√‘𝑥))
11693, 94, 109, 115lecasei 11286 . . . . . . 7 (((𝜑𝑡 ∈ ℝ) ∧ (𝑥 ∈ ℝ+ ∧ (𝑡↑2) ≤ 𝑥)) → 𝑡 ≤ (√‘𝑥))
117116expr 456 . . . . . 6 (((𝜑𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → ((𝑡↑2) ≤ 𝑥𝑡 ≤ (√‘𝑥)))
118117ralrimiva 3126 . . . . 5 ((𝜑𝑡 ∈ ℝ) → ∀𝑥 ∈ ℝ+ ((𝑡↑2) ≤ 𝑥𝑡 ≤ (√‘𝑥)))
119 breq1 5112 . . . . . 6 (𝑐 = (𝑡↑2) → (𝑐𝑥 ↔ (𝑡↑2) ≤ 𝑥))
120119rspceaimv 3597 . . . . 5 (((𝑡↑2) ∈ ℝ ∧ ∀𝑥 ∈ ℝ+ ((𝑡↑2) ≤ 𝑥𝑡 ≤ (√‘𝑥))) → ∃𝑐 ∈ ℝ ∀𝑥 ∈ ℝ+ (𝑐𝑥𝑡 ≤ (√‘𝑥)))
12192, 118, 120syl2an2 686 . . . 4 ((𝜑𝑡 ∈ ℝ) → ∃𝑐 ∈ ℝ ∀𝑥 ∈ ℝ+ (𝑐𝑥𝑡 ≤ (√‘𝑥)))
12289, 82, 59, 91, 121o1compt 15559 . . 3 (𝜑 → ((𝑧 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘(𝑧↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑)))) ∘ (𝑥 ∈ ℝ+ ↦ (√‘𝑥))) ∈ 𝑂(1))
12371, 122eqeltrd 2829 . 2 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑘 ∈ (1...(⌊‘𝑥))(((𝑏 ∈ ℕ ↦ Σ𝑦 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑏} (𝑋‘(𝐿𝑦)))‘𝑘) / (√‘𝑘))) ∈ 𝑂(1))
1241, 2, 3, 4, 5, 6, 7, 13, 14, 123dchrisum0fno1 27428 1 ¬ 𝜑
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2109  wne 2926  wral 3045  wrex 3054  {crab 3408  cdif 3913  wss 3916  {csn 4591   class class class wbr 5109  cmpt 5190  dom cdm 5640  ccom 5644  wf 6509  cfv 6513  (class class class)co 7389  cc 11072  cr 11073  0cc0 11074  1c1 11075   + caddc 11077   · cmul 11079  +∞cpnf 11211  cle 11215  cmin 11411   / cdiv 11841  cn 12187  2c2 12242  cz 12535  +crp 12957  [,)cico 13314  ...cfz 13474  cfl 13758  seqcseq 13972  cexp 14032  csqrt 15205  abscabs 15206  cli 15456  𝑂(1)co1 15458  Σcsu 15658  cdvds 16228  Basecbs 17185  0gc0g 17408  ℤRHomczrh 21415  ℤ/nczn 21418  DChrcdchr 27149
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-inf2 9600  ax-cnex 11130  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151  ax-pre-sup 11152  ax-addf 11153  ax-mulf 11154
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-tp 4596  df-op 4598  df-uni 4874  df-int 4913  df-iun 4959  df-iin 4960  df-disj 5077  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-se 5594  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-isom 6522  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-of 7655  df-rpss 7701  df-om 7845  df-1st 7970  df-2nd 7971  df-supp 8142  df-tpos 8207  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-1o 8436  df-2o 8437  df-oadd 8440  df-omul 8441  df-er 8673  df-ec 8675  df-qs 8679  df-map 8803  df-pm 8804  df-ixp 8873  df-en 8921  df-dom 8922  df-sdom 8923  df-fin 8924  df-fsupp 9319  df-fi 9368  df-sup 9399  df-inf 9400  df-oi 9469  df-dju 9860  df-card 9898  df-acn 9901  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-sub 11413  df-neg 11414  df-div 11842  df-nn 12188  df-2 12250  df-3 12251  df-4 12252  df-5 12253  df-6 12254  df-7 12255  df-8 12256  df-9 12257  df-n0 12449  df-xnn0 12522  df-z 12536  df-dec 12656  df-uz 12800  df-q 12914  df-rp 12958  df-xneg 13078  df-xadd 13079  df-xmul 13080  df-ioo 13316  df-ioc 13317  df-ico 13318  df-icc 13319  df-fz 13475  df-fzo 13622  df-fl 13760  df-mod 13838  df-seq 13973  df-exp 14033  df-fac 14245  df-bc 14274  df-hash 14302  df-word 14485  df-concat 14542  df-s1 14567  df-shft 15039  df-cj 15071  df-re 15072  df-im 15073  df-sqrt 15207  df-abs 15208  df-limsup 15443  df-clim 15460  df-rlim 15461  df-o1 15462  df-lo1 15463  df-sum 15659  df-ef 16039  df-e 16040  df-sin 16041  df-cos 16042  df-tan 16043  df-pi 16044  df-dvds 16229  df-gcd 16471  df-prm 16648  df-numer 16711  df-denom 16712  df-phi 16742  df-pc 16814  df-struct 17123  df-sets 17140  df-slot 17158  df-ndx 17170  df-base 17186  df-ress 17207  df-plusg 17239  df-mulr 17240  df-starv 17241  df-sca 17242  df-vsca 17243  df-ip 17244  df-tset 17245  df-ple 17246  df-ds 17248  df-unif 17249  df-hom 17250  df-cco 17251  df-rest 17391  df-topn 17392  df-0g 17410  df-gsum 17411  df-topgen 17412  df-pt 17413  df-prds 17416  df-xrs 17471  df-qtop 17476  df-imas 17477  df-qus 17478  df-xps 17479  df-mre 17553  df-mrc 17554  df-acs 17556  df-mgm 18573  df-sgrp 18652  df-mnd 18668  df-mhm 18716  df-submnd 18717  df-grp 18874  df-minusg 18875  df-sbg 18876  df-mulg 19006  df-subg 19061  df-nsg 19062  df-eqg 19063  df-ghm 19151  df-gim 19197  df-ga 19228  df-cntz 19255  df-oppg 19284  df-od 19464  df-gex 19465  df-pgp 19466  df-lsm 19572  df-pj1 19573  df-cmn 19718  df-abl 19719  df-cyg 19814  df-dprd 19933  df-dpj 19934  df-mgp 20056  df-rng 20068  df-ur 20097  df-ring 20150  df-cring 20151  df-oppr 20252  df-dvdsr 20272  df-unit 20273  df-invr 20303  df-dvr 20316  df-rhm 20387  df-subrng 20461  df-subrg 20485  df-drng 20646  df-lmod 20774  df-lss 20844  df-lsp 20884  df-sra 21086  df-rgmod 21087  df-lidl 21124  df-rsp 21125  df-2idl 21166  df-psmet 21262  df-xmet 21263  df-met 21264  df-bl 21265  df-mopn 21266  df-fbas 21267  df-fg 21268  df-cnfld 21271  df-zring 21363  df-zrh 21419  df-zn 21422  df-top 22787  df-topon 22804  df-topsp 22826  df-bases 22839  df-cld 22912  df-ntr 22913  df-cls 22914  df-nei 22991  df-lp 23029  df-perf 23030  df-cn 23120  df-cnp 23121  df-haus 23208  df-cmp 23280  df-tx 23455  df-hmeo 23648  df-fil 23739  df-fm 23831  df-flim 23832  df-flf 23833  df-xms 24214  df-ms 24215  df-tms 24216  df-cncf 24777  df-0p 25577  df-limc 25773  df-dv 25774  df-ply 26099  df-idp 26100  df-coe 26101  df-dgr 26102  df-quot 26205  df-ulm 26292  df-log 26471  df-cxp 26472  df-atan 26783  df-em 26909  df-cht 27013  df-vma 27014  df-chp 27015  df-ppi 27016  df-mu 27017  df-dchr 27150
This theorem is referenced by:  dchrisumn0  27438  rpvmasum  27443
  Copyright terms: Public domain W3C validator