MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrisum0 Structured version   Visualization version   GIF version

Theorem dchrisum0 27565
Description: The sum Σ𝑛 ∈ ℕ, 𝑋(𝑛) / 𝑛 is nonzero for all non-principal Dirichlet characters (i.e. the assumption 𝑋𝑊 is contradictory). This is the key result that allows to eliminate the conditionals from dchrmusum2 27539 and dchrvmasumif 27548. Lemma 9.4.4 of [Shapiro], p. 382. (Contributed by Mario Carneiro, 12-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z 𝑍 = (ℤ/nℤ‘𝑁)
rpvmasum.l 𝐿 = (ℤRHom‘𝑍)
rpvmasum.a (𝜑𝑁 ∈ ℕ)
rpvmasum2.g 𝐺 = (DChr‘𝑁)
rpvmasum2.d 𝐷 = (Base‘𝐺)
rpvmasum2.1 1 = (0g𝐺)
rpvmasum2.w 𝑊 = {𝑦 ∈ (𝐷 ∖ { 1 }) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0}
dchrisum0.b (𝜑𝑋𝑊)
Assertion
Ref Expression
dchrisum0 ¬ 𝜑
Distinct variable groups:   𝑦,𝑚, 1   𝑚,𝑁,𝑦   𝜑,𝑚   𝑚,𝑍,𝑦   𝐷,𝑚,𝑦   𝑚,𝐿,𝑦   𝑚,𝑋,𝑦
Allowed substitution hints:   𝜑(𝑦)   𝐺(𝑦,𝑚)   𝑊(𝑦,𝑚)

Proof of Theorem dchrisum0
Dummy variables 𝑘 𝑥 𝑧 𝑐 𝑖 𝑡 𝑑 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rpvmasum.z . 2 𝑍 = (ℤ/nℤ‘𝑁)
2 rpvmasum.l . 2 𝐿 = (ℤRHom‘𝑍)
3 rpvmasum.a . 2 (𝜑𝑁 ∈ ℕ)
4 rpvmasum2.g . 2 𝐺 = (DChr‘𝑁)
5 rpvmasum2.d . 2 𝐷 = (Base‘𝐺)
6 rpvmasum2.1 . 2 1 = (0g𝐺)
7 eqid 2736 . 2 (𝑏 ∈ ℕ ↦ Σ𝑦 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑏} (𝑋‘(𝐿𝑦))) = (𝑏 ∈ ℕ ↦ Σ𝑦 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑏} (𝑋‘(𝐿𝑦)))
8 rpvmasum2.w . . . . 5 𝑊 = {𝑦 ∈ (𝐷 ∖ { 1 }) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0}
98ssrab3 4081 . . . 4 𝑊 ⊆ (𝐷 ∖ { 1 })
10 difss 4135 . . . 4 (𝐷 ∖ { 1 }) ⊆ 𝐷
119, 10sstri 3992 . . 3 𝑊𝐷
12 dchrisum0.b . . 3 (𝜑𝑋𝑊)
1311, 12sselid 3980 . 2 (𝜑𝑋𝐷)
141, 2, 3, 4, 5, 6, 8, 12dchrisum0re 27558 . 2 (𝜑𝑋:(Base‘𝑍)⟶ℝ)
15 fveq2 6905 . . . . . . . 8 (𝑘 = (𝑚 · 𝑑) → (√‘𝑘) = (√‘(𝑚 · 𝑑)))
1615oveq2d 7448 . . . . . . 7 (𝑘 = (𝑚 · 𝑑) → ((𝑋‘(𝐿𝑚)) / (√‘𝑘)) = ((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑))))
17 rpre 13044 . . . . . . . 8 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
1817adantl 481 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ)
1913ad3antrrr 730 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑘}) → 𝑋𝐷)
20 elrabi 3686 . . . . . . . . . . . 12 (𝑚 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑘} → 𝑚 ∈ ℕ)
2120nnzd 12642 . . . . . . . . . . 11 (𝑚 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑘} → 𝑚 ∈ ℤ)
2221adantl 481 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑘}) → 𝑚 ∈ ℤ)
234, 1, 5, 2, 19, 22dchrzrhcl 27290 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑘}) → (𝑋‘(𝐿𝑚)) ∈ ℂ)
24 elfznn 13594 . . . . . . . . . . . . . 14 (𝑘 ∈ (1...(⌊‘𝑥)) → 𝑘 ∈ ℕ)
2524adantl 481 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → 𝑘 ∈ ℕ)
2625nnrpd 13076 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → 𝑘 ∈ ℝ+)
2726rpsqrtcld 15451 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → (√‘𝑘) ∈ ℝ+)
2827rpcnd 13080 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → (√‘𝑘) ∈ ℂ)
2928adantr 480 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑘}) → (√‘𝑘) ∈ ℂ)
3027rpne0d 13083 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → (√‘𝑘) ≠ 0)
3130adantr 480 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑘}) → (√‘𝑘) ≠ 0)
3223, 29, 31divcld 12044 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑘}) → ((𝑋‘(𝐿𝑚)) / (√‘𝑘)) ∈ ℂ)
3332anasss 466 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ 𝑚 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑘})) → ((𝑋‘(𝐿𝑚)) / (√‘𝑘)) ∈ ℂ)
3416, 18, 33dvdsflsumcom 27232 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → Σ𝑘 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑘} ((𝑋‘(𝐿𝑚)) / (√‘𝑘)) = Σ𝑚 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ (1...(⌊‘(𝑥 / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑))))
351, 2, 3, 4, 5, 6, 7dchrisum0fval 27550 . . . . . . . . . 10 (𝑘 ∈ ℕ → ((𝑏 ∈ ℕ ↦ Σ𝑦 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑏} (𝑋‘(𝐿𝑦)))‘𝑘) = Σ𝑚 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑘} (𝑋‘(𝐿𝑚)))
3625, 35syl 17 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → ((𝑏 ∈ ℕ ↦ Σ𝑦 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑏} (𝑋‘(𝐿𝑦)))‘𝑘) = Σ𝑚 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑘} (𝑋‘(𝐿𝑚)))
3736oveq1d 7447 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → (((𝑏 ∈ ℕ ↦ Σ𝑦 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑏} (𝑋‘(𝐿𝑦)))‘𝑘) / (√‘𝑘)) = (Σ𝑚 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑘} (𝑋‘(𝐿𝑚)) / (√‘𝑘)))
38 fzfid 14015 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → (1...𝑘) ∈ Fin)
39 dvdsssfz1 16356 . . . . . . . . . . 11 (𝑘 ∈ ℕ → {𝑖 ∈ ℕ ∣ 𝑖𝑘} ⊆ (1...𝑘))
4025, 39syl 17 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → {𝑖 ∈ ℕ ∣ 𝑖𝑘} ⊆ (1...𝑘))
4138, 40ssfid 9302 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → {𝑖 ∈ ℕ ∣ 𝑖𝑘} ∈ Fin)
4241, 28, 23, 30fsumdivc 15823 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → (Σ𝑚 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑘} (𝑋‘(𝐿𝑚)) / (√‘𝑘)) = Σ𝑚 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑘} ((𝑋‘(𝐿𝑚)) / (√‘𝑘)))
4337, 42eqtrd 2776 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → (((𝑏 ∈ ℕ ↦ Σ𝑦 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑏} (𝑋‘(𝐿𝑦)))‘𝑘) / (√‘𝑘)) = Σ𝑚 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑘} ((𝑋‘(𝐿𝑚)) / (√‘𝑘)))
4443sumeq2dv 15739 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → Σ𝑘 ∈ (1...(⌊‘𝑥))(((𝑏 ∈ ℕ ↦ Σ𝑦 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑏} (𝑋‘(𝐿𝑦)))‘𝑘) / (√‘𝑘)) = Σ𝑘 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑘} ((𝑋‘(𝐿𝑚)) / (√‘𝑘)))
45 rprege0 13051 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
4645adantl 481 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
47 resqrtth 15295 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) → ((√‘𝑥)↑2) = 𝑥)
4846, 47syl 17 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → ((√‘𝑥)↑2) = 𝑥)
4948fveq2d 6909 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → (⌊‘((√‘𝑥)↑2)) = (⌊‘𝑥))
5049oveq2d 7448 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → (1...(⌊‘((√‘𝑥)↑2))) = (1...(⌊‘𝑥)))
5148fvoveq1d 7454 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → (⌊‘(((√‘𝑥)↑2) / 𝑚)) = (⌊‘(𝑥 / 𝑚)))
5251oveq2d 7448 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → (1...(⌊‘(((√‘𝑥)↑2) / 𝑚))) = (1...(⌊‘(𝑥 / 𝑚))))
5352sumeq1d 15737 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → Σ𝑑 ∈ (1...(⌊‘(((√‘𝑥)↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑))) = Σ𝑑 ∈ (1...(⌊‘(𝑥 / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑))))
5453adantr 480 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘((√‘𝑥)↑2)))) → Σ𝑑 ∈ (1...(⌊‘(((√‘𝑥)↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑))) = Σ𝑑 ∈ (1...(⌊‘(𝑥 / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑))))
5550, 54sumeq12dv 15743 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → Σ𝑚 ∈ (1...(⌊‘((√‘𝑥)↑2)))Σ𝑑 ∈ (1...(⌊‘(((√‘𝑥)↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑))) = Σ𝑚 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ (1...(⌊‘(𝑥 / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑))))
5634, 44, 553eqtr4d 2786 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → Σ𝑘 ∈ (1...(⌊‘𝑥))(((𝑏 ∈ ℕ ↦ Σ𝑦 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑏} (𝑋‘(𝐿𝑦)))‘𝑘) / (√‘𝑘)) = Σ𝑚 ∈ (1...(⌊‘((√‘𝑥)↑2)))Σ𝑑 ∈ (1...(⌊‘(((√‘𝑥)↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑))))
5756mpteq2dva 5241 . . . 4 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑘 ∈ (1...(⌊‘𝑥))(((𝑏 ∈ ℕ ↦ Σ𝑦 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑏} (𝑋‘(𝐿𝑦)))‘𝑘) / (√‘𝑘))) = (𝑥 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘((√‘𝑥)↑2)))Σ𝑑 ∈ (1...(⌊‘(((√‘𝑥)↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑)))))
58 rpsqrtcl 15304 . . . . . 6 (𝑥 ∈ ℝ+ → (√‘𝑥) ∈ ℝ+)
5958adantl 481 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (√‘𝑥) ∈ ℝ+)
60 eqidd 2737 . . . . 5 (𝜑 → (𝑥 ∈ ℝ+ ↦ (√‘𝑥)) = (𝑥 ∈ ℝ+ ↦ (√‘𝑥)))
61 eqidd 2737 . . . . 5 (𝜑 → (𝑧 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘(𝑧↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑)))) = (𝑧 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘(𝑧↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑)))))
62 oveq1 7439 . . . . . . . 8 (𝑧 = (√‘𝑥) → (𝑧↑2) = ((√‘𝑥)↑2))
6362fveq2d 6909 . . . . . . 7 (𝑧 = (√‘𝑥) → (⌊‘(𝑧↑2)) = (⌊‘((√‘𝑥)↑2)))
6463oveq2d 7448 . . . . . 6 (𝑧 = (√‘𝑥) → (1...(⌊‘(𝑧↑2))) = (1...(⌊‘((√‘𝑥)↑2))))
6562fvoveq1d 7454 . . . . . . . . 9 (𝑧 = (√‘𝑥) → (⌊‘((𝑧↑2) / 𝑚)) = (⌊‘(((√‘𝑥)↑2) / 𝑚)))
6665oveq2d 7448 . . . . . . . 8 (𝑧 = (√‘𝑥) → (1...(⌊‘((𝑧↑2) / 𝑚))) = (1...(⌊‘(((√‘𝑥)↑2) / 𝑚))))
6766sumeq1d 15737 . . . . . . 7 (𝑧 = (√‘𝑥) → Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑))) = Σ𝑑 ∈ (1...(⌊‘(((√‘𝑥)↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑))))
6867adantr 480 . . . . . 6 ((𝑧 = (√‘𝑥) ∧ 𝑚 ∈ (1...(⌊‘(𝑧↑2)))) → Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑))) = Σ𝑑 ∈ (1...(⌊‘(((√‘𝑥)↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑))))
6964, 68sumeq12dv 15743 . . . . 5 (𝑧 = (√‘𝑥) → Σ𝑚 ∈ (1...(⌊‘(𝑧↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑))) = Σ𝑚 ∈ (1...(⌊‘((√‘𝑥)↑2)))Σ𝑑 ∈ (1...(⌊‘(((√‘𝑥)↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑))))
7059, 60, 61, 69fmptco 7148 . . . 4 (𝜑 → ((𝑧 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘(𝑧↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑)))) ∘ (𝑥 ∈ ℝ+ ↦ (√‘𝑥))) = (𝑥 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘((√‘𝑥)↑2)))Σ𝑑 ∈ (1...(⌊‘(((√‘𝑥)↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑)))))
7157, 70eqtr4d 2779 . . 3 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑘 ∈ (1...(⌊‘𝑥))(((𝑏 ∈ ℕ ↦ Σ𝑦 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑏} (𝑋‘(𝐿𝑦)))‘𝑘) / (√‘𝑘))) = ((𝑧 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘(𝑧↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑)))) ∘ (𝑥 ∈ ℝ+ ↦ (√‘𝑥))))
72 eqid 2736 . . . . . . . 8 (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎))) = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎)))
731, 2, 3, 4, 5, 6, 8, 12, 72dchrisum0lema 27559 . . . . . . 7 (𝜑 → ∃𝑡𝑐 ∈ (0[,)+∞)(seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎)))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎))))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / (√‘𝑦))))
743adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎)))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎))))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / (√‘𝑦))))) → 𝑁 ∈ ℕ)
7512adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎)))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎))))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / (√‘𝑦))))) → 𝑋𝑊)
76 simprl 770 . . . . . . . . . 10 ((𝜑 ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎)))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎))))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / (√‘𝑦))))) → 𝑐 ∈ (0[,)+∞))
77 simprrl 780 . . . . . . . . . 10 ((𝜑 ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎)))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎))))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / (√‘𝑦))))) → seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎)))) ⇝ 𝑡)
78 simprrr 781 . . . . . . . . . 10 ((𝜑 ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎)))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎))))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / (√‘𝑦))))) → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎))))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / (√‘𝑦)))
791, 2, 74, 4, 5, 6, 8, 75, 72, 76, 77, 78dchrisum0lem3 27564 . . . . . . . . 9 ((𝜑 ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎)))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎))))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / (√‘𝑦))))) → (𝑧 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘(𝑧↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑)))) ∈ 𝑂(1))
8079rexlimdvaa 3155 . . . . . . . 8 (𝜑 → (∃𝑐 ∈ (0[,)+∞)(seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎)))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎))))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / (√‘𝑦))) → (𝑧 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘(𝑧↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑)))) ∈ 𝑂(1)))
8180exlimdv 1932 . . . . . . 7 (𝜑 → (∃𝑡𝑐 ∈ (0[,)+∞)(seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎)))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎))))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / (√‘𝑦))) → (𝑧 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘(𝑧↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑)))) ∈ 𝑂(1)))
8273, 81mpd 15 . . . . . 6 (𝜑 → (𝑧 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘(𝑧↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑)))) ∈ 𝑂(1))
83 o1f 15566 . . . . . 6 ((𝑧 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘(𝑧↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑)))) ∈ 𝑂(1) → (𝑧 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘(𝑧↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑)))):dom (𝑧 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘(𝑧↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑))))⟶ℂ)
8482, 83syl 17 . . . . 5 (𝜑 → (𝑧 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘(𝑧↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑)))):dom (𝑧 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘(𝑧↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑))))⟶ℂ)
85 sumex 15725 . . . . . . 7 Σ𝑚 ∈ (1...(⌊‘(𝑧↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑))) ∈ V
86 eqid 2736 . . . . . . 7 (𝑧 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘(𝑧↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑)))) = (𝑧 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘(𝑧↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑))))
8785, 86dmmpti 6711 . . . . . 6 dom (𝑧 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘(𝑧↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑)))) = ℝ+
8887feq2i 6727 . . . . 5 ((𝑧 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘(𝑧↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑)))):dom (𝑧 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘(𝑧↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑))))⟶ℂ ↔ (𝑧 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘(𝑧↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑)))):ℝ+⟶ℂ)
8984, 88sylib 218 . . . 4 (𝜑 → (𝑧 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘(𝑧↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑)))):ℝ+⟶ℂ)
90 rpssre 13043 . . . . 5 + ⊆ ℝ
9190a1i 11 . . . 4 (𝜑 → ℝ+ ⊆ ℝ)
92 resqcl 14165 . . . . 5 (𝑡 ∈ ℝ → (𝑡↑2) ∈ ℝ)
93 0red 11265 . . . . . . . 8 (((𝜑𝑡 ∈ ℝ) ∧ (𝑥 ∈ ℝ+ ∧ (𝑡↑2) ≤ 𝑥)) → 0 ∈ ℝ)
94 simplr 768 . . . . . . . 8 (((𝜑𝑡 ∈ ℝ) ∧ (𝑥 ∈ ℝ+ ∧ (𝑡↑2) ≤ 𝑥)) → 𝑡 ∈ ℝ)
95 simplrr 777 . . . . . . . . . 10 ((((𝜑𝑡 ∈ ℝ) ∧ (𝑥 ∈ ℝ+ ∧ (𝑡↑2) ≤ 𝑥)) ∧ 0 ≤ 𝑡) → (𝑡↑2) ≤ 𝑥)
9645ad2antrl 728 . . . . . . . . . . . 12 (((𝜑𝑡 ∈ ℝ) ∧ (𝑥 ∈ ℝ+ ∧ (𝑡↑2) ≤ 𝑥)) → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
9796adantr 480 . . . . . . . . . . 11 ((((𝜑𝑡 ∈ ℝ) ∧ (𝑥 ∈ ℝ+ ∧ (𝑡↑2) ≤ 𝑥)) ∧ 0 ≤ 𝑡) → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
9897, 47syl 17 . . . . . . . . . 10 ((((𝜑𝑡 ∈ ℝ) ∧ (𝑥 ∈ ℝ+ ∧ (𝑡↑2) ≤ 𝑥)) ∧ 0 ≤ 𝑡) → ((√‘𝑥)↑2) = 𝑥)
9995, 98breqtrrd 5170 . . . . . . . . 9 ((((𝜑𝑡 ∈ ℝ) ∧ (𝑥 ∈ ℝ+ ∧ (𝑡↑2) ≤ 𝑥)) ∧ 0 ≤ 𝑡) → (𝑡↑2) ≤ ((√‘𝑥)↑2))
10094adantr 480 . . . . . . . . . 10 ((((𝜑𝑡 ∈ ℝ) ∧ (𝑥 ∈ ℝ+ ∧ (𝑡↑2) ≤ 𝑥)) ∧ 0 ≤ 𝑡) → 𝑡 ∈ ℝ)
10159rpred 13078 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ+) → (√‘𝑥) ∈ ℝ)
102101ad2ant2r 747 . . . . . . . . . . 11 (((𝜑𝑡 ∈ ℝ) ∧ (𝑥 ∈ ℝ+ ∧ (𝑡↑2) ≤ 𝑥)) → (√‘𝑥) ∈ ℝ)
103102adantr 480 . . . . . . . . . 10 ((((𝜑𝑡 ∈ ℝ) ∧ (𝑥 ∈ ℝ+ ∧ (𝑡↑2) ≤ 𝑥)) ∧ 0 ≤ 𝑡) → (√‘𝑥) ∈ ℝ)
104 simpr 484 . . . . . . . . . 10 ((((𝜑𝑡 ∈ ℝ) ∧ (𝑥 ∈ ℝ+ ∧ (𝑡↑2) ≤ 𝑥)) ∧ 0 ≤ 𝑡) → 0 ≤ 𝑡)
105 sqrtge0 15297 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) → 0 ≤ (√‘𝑥))
10696, 105syl 17 . . . . . . . . . . 11 (((𝜑𝑡 ∈ ℝ) ∧ (𝑥 ∈ ℝ+ ∧ (𝑡↑2) ≤ 𝑥)) → 0 ≤ (√‘𝑥))
107106adantr 480 . . . . . . . . . 10 ((((𝜑𝑡 ∈ ℝ) ∧ (𝑥 ∈ ℝ+ ∧ (𝑡↑2) ≤ 𝑥)) ∧ 0 ≤ 𝑡) → 0 ≤ (√‘𝑥))
108100, 103, 104, 107le2sqd 14297 . . . . . . . . 9 ((((𝜑𝑡 ∈ ℝ) ∧ (𝑥 ∈ ℝ+ ∧ (𝑡↑2) ≤ 𝑥)) ∧ 0 ≤ 𝑡) → (𝑡 ≤ (√‘𝑥) ↔ (𝑡↑2) ≤ ((√‘𝑥)↑2)))
10999, 108mpbird 257 . . . . . . . 8 ((((𝜑𝑡 ∈ ℝ) ∧ (𝑥 ∈ ℝ+ ∧ (𝑡↑2) ≤ 𝑥)) ∧ 0 ≤ 𝑡) → 𝑡 ≤ (√‘𝑥))
11094adantr 480 . . . . . . . . 9 ((((𝜑𝑡 ∈ ℝ) ∧ (𝑥 ∈ ℝ+ ∧ (𝑡↑2) ≤ 𝑥)) ∧ 𝑡 ≤ 0) → 𝑡 ∈ ℝ)
111 0red 11265 . . . . . . . . 9 ((((𝜑𝑡 ∈ ℝ) ∧ (𝑥 ∈ ℝ+ ∧ (𝑡↑2) ≤ 𝑥)) ∧ 𝑡 ≤ 0) → 0 ∈ ℝ)
112102adantr 480 . . . . . . . . 9 ((((𝜑𝑡 ∈ ℝ) ∧ (𝑥 ∈ ℝ+ ∧ (𝑡↑2) ≤ 𝑥)) ∧ 𝑡 ≤ 0) → (√‘𝑥) ∈ ℝ)
113 simpr 484 . . . . . . . . 9 ((((𝜑𝑡 ∈ ℝ) ∧ (𝑥 ∈ ℝ+ ∧ (𝑡↑2) ≤ 𝑥)) ∧ 𝑡 ≤ 0) → 𝑡 ≤ 0)
114106adantr 480 . . . . . . . . 9 ((((𝜑𝑡 ∈ ℝ) ∧ (𝑥 ∈ ℝ+ ∧ (𝑡↑2) ≤ 𝑥)) ∧ 𝑡 ≤ 0) → 0 ≤ (√‘𝑥))
115110, 111, 112, 113, 114letrd 11419 . . . . . . . 8 ((((𝜑𝑡 ∈ ℝ) ∧ (𝑥 ∈ ℝ+ ∧ (𝑡↑2) ≤ 𝑥)) ∧ 𝑡 ≤ 0) → 𝑡 ≤ (√‘𝑥))
11693, 94, 109, 115lecasei 11368 . . . . . . 7 (((𝜑𝑡 ∈ ℝ) ∧ (𝑥 ∈ ℝ+ ∧ (𝑡↑2) ≤ 𝑥)) → 𝑡 ≤ (√‘𝑥))
117116expr 456 . . . . . 6 (((𝜑𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → ((𝑡↑2) ≤ 𝑥𝑡 ≤ (√‘𝑥)))
118117ralrimiva 3145 . . . . 5 ((𝜑𝑡 ∈ ℝ) → ∀𝑥 ∈ ℝ+ ((𝑡↑2) ≤ 𝑥𝑡 ≤ (√‘𝑥)))
119 breq1 5145 . . . . . 6 (𝑐 = (𝑡↑2) → (𝑐𝑥 ↔ (𝑡↑2) ≤ 𝑥))
120119rspceaimv 3627 . . . . 5 (((𝑡↑2) ∈ ℝ ∧ ∀𝑥 ∈ ℝ+ ((𝑡↑2) ≤ 𝑥𝑡 ≤ (√‘𝑥))) → ∃𝑐 ∈ ℝ ∀𝑥 ∈ ℝ+ (𝑐𝑥𝑡 ≤ (√‘𝑥)))
12192, 118, 120syl2an2 686 . . . 4 ((𝜑𝑡 ∈ ℝ) → ∃𝑐 ∈ ℝ ∀𝑥 ∈ ℝ+ (𝑐𝑥𝑡 ≤ (√‘𝑥)))
12289, 82, 59, 91, 121o1compt 15624 . . 3 (𝜑 → ((𝑧 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘(𝑧↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑)))) ∘ (𝑥 ∈ ℝ+ ↦ (√‘𝑥))) ∈ 𝑂(1))
12371, 122eqeltrd 2840 . 2 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑘 ∈ (1...(⌊‘𝑥))(((𝑏 ∈ ℕ ↦ Σ𝑦 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑏} (𝑋‘(𝐿𝑦)))‘𝑘) / (√‘𝑘))) ∈ 𝑂(1))
1241, 2, 3, 4, 5, 6, 7, 13, 14, 123dchrisum0fno1 27556 1 ¬ 𝜑
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wex 1778  wcel 2107  wne 2939  wral 3060  wrex 3069  {crab 3435  cdif 3947  wss 3950  {csn 4625   class class class wbr 5142  cmpt 5224  dom cdm 5684  ccom 5688  wf 6556  cfv 6560  (class class class)co 7432  cc 11154  cr 11155  0cc0 11156  1c1 11157   + caddc 11159   · cmul 11161  +∞cpnf 11293  cle 11297  cmin 11493   / cdiv 11921  cn 12267  2c2 12322  cz 12615  +crp 13035  [,)cico 13390  ...cfz 13548  cfl 13831  seqcseq 14043  cexp 14103  csqrt 15273  abscabs 15274  cli 15521  𝑂(1)co1 15523  Σcsu 15723  cdvds 16291  Basecbs 17248  0gc0g 17485  ℤRHomczrh 21511  ℤ/nczn 21514  DChrcdchr 27277
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-inf2 9682  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233  ax-pre-sup 11234  ax-addf 11235  ax-mulf 11236
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-iin 4993  df-disj 5110  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-se 5637  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-isom 6569  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-of 7698  df-rpss 7744  df-om 7889  df-1st 8015  df-2nd 8016  df-supp 8187  df-tpos 8252  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-2o 8508  df-oadd 8511  df-omul 8512  df-er 8746  df-ec 8748  df-qs 8752  df-map 8869  df-pm 8870  df-ixp 8939  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-fsupp 9403  df-fi 9452  df-sup 9483  df-inf 9484  df-oi 9551  df-dju 9942  df-card 9980  df-acn 9983  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-div 11922  df-nn 12268  df-2 12330  df-3 12331  df-4 12332  df-5 12333  df-6 12334  df-7 12335  df-8 12336  df-9 12337  df-n0 12529  df-xnn0 12602  df-z 12616  df-dec 12736  df-uz 12880  df-q 12992  df-rp 13036  df-xneg 13155  df-xadd 13156  df-xmul 13157  df-ioo 13392  df-ioc 13393  df-ico 13394  df-icc 13395  df-fz 13549  df-fzo 13696  df-fl 13833  df-mod 13911  df-seq 14044  df-exp 14104  df-fac 14314  df-bc 14343  df-hash 14371  df-word 14554  df-concat 14610  df-s1 14635  df-shft 15107  df-cj 15139  df-re 15140  df-im 15141  df-sqrt 15275  df-abs 15276  df-limsup 15508  df-clim 15525  df-rlim 15526  df-o1 15527  df-lo1 15528  df-sum 15724  df-ef 16104  df-e 16105  df-sin 16106  df-cos 16107  df-tan 16108  df-pi 16109  df-dvds 16292  df-gcd 16533  df-prm 16710  df-numer 16773  df-denom 16774  df-phi 16804  df-pc 16876  df-struct 17185  df-sets 17202  df-slot 17220  df-ndx 17232  df-base 17249  df-ress 17276  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-rest 17468  df-topn 17469  df-0g 17487  df-gsum 17488  df-topgen 17489  df-pt 17490  df-prds 17493  df-xrs 17548  df-qtop 17553  df-imas 17554  df-qus 17555  df-xps 17556  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18654  df-sgrp 18733  df-mnd 18749  df-mhm 18797  df-submnd 18798  df-grp 18955  df-minusg 18956  df-sbg 18957  df-mulg 19087  df-subg 19142  df-nsg 19143  df-eqg 19144  df-ghm 19232  df-gim 19278  df-ga 19309  df-cntz 19336  df-oppg 19365  df-od 19547  df-gex 19548  df-pgp 19549  df-lsm 19655  df-pj1 19656  df-cmn 19801  df-abl 19802  df-cyg 19897  df-dprd 20016  df-dpj 20017  df-mgp 20139  df-rng 20151  df-ur 20180  df-ring 20233  df-cring 20234  df-oppr 20335  df-dvdsr 20358  df-unit 20359  df-invr 20389  df-dvr 20402  df-rhm 20473  df-subrng 20547  df-subrg 20571  df-drng 20732  df-lmod 20861  df-lss 20931  df-lsp 20971  df-sra 21173  df-rgmod 21174  df-lidl 21219  df-rsp 21220  df-2idl 21261  df-psmet 21357  df-xmet 21358  df-met 21359  df-bl 21360  df-mopn 21361  df-fbas 21362  df-fg 21363  df-cnfld 21366  df-zring 21459  df-zrh 21515  df-zn 21518  df-top 22901  df-topon 22918  df-topsp 22940  df-bases 22954  df-cld 23028  df-ntr 23029  df-cls 23030  df-nei 23107  df-lp 23145  df-perf 23146  df-cn 23236  df-cnp 23237  df-haus 23324  df-cmp 23396  df-tx 23571  df-hmeo 23764  df-fil 23855  df-fm 23947  df-flim 23948  df-flf 23949  df-xms 24331  df-ms 24332  df-tms 24333  df-cncf 24905  df-0p 25706  df-limc 25902  df-dv 25903  df-ply 26228  df-idp 26229  df-coe 26230  df-dgr 26231  df-quot 26334  df-ulm 26421  df-log 26599  df-cxp 26600  df-atan 26911  df-em 27037  df-cht 27141  df-vma 27142  df-chp 27143  df-ppi 27144  df-mu 27145  df-dchr 27278
This theorem is referenced by:  dchrisumn0  27566  rpvmasum  27571
  Copyright terms: Public domain W3C validator