MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrisum0 Structured version   Visualization version   GIF version

Theorem dchrisum0 27481
Description: The sum Σ𝑛 ∈ ℕ, 𝑋(𝑛) / 𝑛 is nonzero for all non-principal Dirichlet characters (i.e. the assumption 𝑋𝑊 is contradictory). This is the key result that allows to eliminate the conditionals from dchrmusum2 27455 and dchrvmasumif 27464. Lemma 9.4.4 of [Shapiro], p. 382. (Contributed by Mario Carneiro, 12-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z 𝑍 = (ℤ/nℤ‘𝑁)
rpvmasum.l 𝐿 = (ℤRHom‘𝑍)
rpvmasum.a (𝜑𝑁 ∈ ℕ)
rpvmasum2.g 𝐺 = (DChr‘𝑁)
rpvmasum2.d 𝐷 = (Base‘𝐺)
rpvmasum2.1 1 = (0g𝐺)
rpvmasum2.w 𝑊 = {𝑦 ∈ (𝐷 ∖ { 1 }) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0}
dchrisum0.b (𝜑𝑋𝑊)
Assertion
Ref Expression
dchrisum0 ¬ 𝜑
Distinct variable groups:   𝑦,𝑚, 1   𝑚,𝑁,𝑦   𝜑,𝑚   𝑚,𝑍,𝑦   𝐷,𝑚,𝑦   𝑚,𝐿,𝑦   𝑚,𝑋,𝑦
Allowed substitution hints:   𝜑(𝑦)   𝐺(𝑦,𝑚)   𝑊(𝑦,𝑚)

Proof of Theorem dchrisum0
Dummy variables 𝑘 𝑥 𝑧 𝑐 𝑖 𝑡 𝑑 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rpvmasum.z . 2 𝑍 = (ℤ/nℤ‘𝑁)
2 rpvmasum.l . 2 𝐿 = (ℤRHom‘𝑍)
3 rpvmasum.a . 2 (𝜑𝑁 ∈ ℕ)
4 rpvmasum2.g . 2 𝐺 = (DChr‘𝑁)
5 rpvmasum2.d . 2 𝐷 = (Base‘𝐺)
6 rpvmasum2.1 . 2 1 = (0g𝐺)
7 eqid 2735 . 2 (𝑏 ∈ ℕ ↦ Σ𝑦 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑏} (𝑋‘(𝐿𝑦))) = (𝑏 ∈ ℕ ↦ Σ𝑦 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑏} (𝑋‘(𝐿𝑦)))
8 rpvmasum2.w . . . . 5 𝑊 = {𝑦 ∈ (𝐷 ∖ { 1 }) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0}
98ssrab3 4057 . . . 4 𝑊 ⊆ (𝐷 ∖ { 1 })
10 difss 4111 . . . 4 (𝐷 ∖ { 1 }) ⊆ 𝐷
119, 10sstri 3968 . . 3 𝑊𝐷
12 dchrisum0.b . . 3 (𝜑𝑋𝑊)
1311, 12sselid 3956 . 2 (𝜑𝑋𝐷)
141, 2, 3, 4, 5, 6, 8, 12dchrisum0re 27474 . 2 (𝜑𝑋:(Base‘𝑍)⟶ℝ)
15 fveq2 6875 . . . . . . . 8 (𝑘 = (𝑚 · 𝑑) → (√‘𝑘) = (√‘(𝑚 · 𝑑)))
1615oveq2d 7419 . . . . . . 7 (𝑘 = (𝑚 · 𝑑) → ((𝑋‘(𝐿𝑚)) / (√‘𝑘)) = ((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑))))
17 rpre 13015 . . . . . . . 8 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
1817adantl 481 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ)
1913ad3antrrr 730 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑘}) → 𝑋𝐷)
20 elrabi 3666 . . . . . . . . . . . 12 (𝑚 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑘} → 𝑚 ∈ ℕ)
2120nnzd 12613 . . . . . . . . . . 11 (𝑚 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑘} → 𝑚 ∈ ℤ)
2221adantl 481 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑘}) → 𝑚 ∈ ℤ)
234, 1, 5, 2, 19, 22dchrzrhcl 27206 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑘}) → (𝑋‘(𝐿𝑚)) ∈ ℂ)
24 elfznn 13568 . . . . . . . . . . . . . 14 (𝑘 ∈ (1...(⌊‘𝑥)) → 𝑘 ∈ ℕ)
2524adantl 481 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → 𝑘 ∈ ℕ)
2625nnrpd 13047 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → 𝑘 ∈ ℝ+)
2726rpsqrtcld 15428 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → (√‘𝑘) ∈ ℝ+)
2827rpcnd 13051 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → (√‘𝑘) ∈ ℂ)
2928adantr 480 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑘}) → (√‘𝑘) ∈ ℂ)
3027rpne0d 13054 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → (√‘𝑘) ≠ 0)
3130adantr 480 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑘}) → (√‘𝑘) ≠ 0)
3223, 29, 31divcld 12015 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑘}) → ((𝑋‘(𝐿𝑚)) / (√‘𝑘)) ∈ ℂ)
3332anasss 466 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ 𝑚 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑘})) → ((𝑋‘(𝐿𝑚)) / (√‘𝑘)) ∈ ℂ)
3416, 18, 33dvdsflsumcom 27148 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → Σ𝑘 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑘} ((𝑋‘(𝐿𝑚)) / (√‘𝑘)) = Σ𝑚 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ (1...(⌊‘(𝑥 / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑))))
351, 2, 3, 4, 5, 6, 7dchrisum0fval 27466 . . . . . . . . . 10 (𝑘 ∈ ℕ → ((𝑏 ∈ ℕ ↦ Σ𝑦 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑏} (𝑋‘(𝐿𝑦)))‘𝑘) = Σ𝑚 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑘} (𝑋‘(𝐿𝑚)))
3625, 35syl 17 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → ((𝑏 ∈ ℕ ↦ Σ𝑦 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑏} (𝑋‘(𝐿𝑦)))‘𝑘) = Σ𝑚 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑘} (𝑋‘(𝐿𝑚)))
3736oveq1d 7418 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → (((𝑏 ∈ ℕ ↦ Σ𝑦 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑏} (𝑋‘(𝐿𝑦)))‘𝑘) / (√‘𝑘)) = (Σ𝑚 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑘} (𝑋‘(𝐿𝑚)) / (√‘𝑘)))
38 fzfid 13989 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → (1...𝑘) ∈ Fin)
39 dvdsssfz1 16335 . . . . . . . . . . 11 (𝑘 ∈ ℕ → {𝑖 ∈ ℕ ∣ 𝑖𝑘} ⊆ (1...𝑘))
4025, 39syl 17 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → {𝑖 ∈ ℕ ∣ 𝑖𝑘} ⊆ (1...𝑘))
4138, 40ssfid 9271 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → {𝑖 ∈ ℕ ∣ 𝑖𝑘} ∈ Fin)
4241, 28, 23, 30fsumdivc 15800 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → (Σ𝑚 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑘} (𝑋‘(𝐿𝑚)) / (√‘𝑘)) = Σ𝑚 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑘} ((𝑋‘(𝐿𝑚)) / (√‘𝑘)))
4337, 42eqtrd 2770 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → (((𝑏 ∈ ℕ ↦ Σ𝑦 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑏} (𝑋‘(𝐿𝑦)))‘𝑘) / (√‘𝑘)) = Σ𝑚 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑘} ((𝑋‘(𝐿𝑚)) / (√‘𝑘)))
4443sumeq2dv 15716 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → Σ𝑘 ∈ (1...(⌊‘𝑥))(((𝑏 ∈ ℕ ↦ Σ𝑦 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑏} (𝑋‘(𝐿𝑦)))‘𝑘) / (√‘𝑘)) = Σ𝑘 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑘} ((𝑋‘(𝐿𝑚)) / (√‘𝑘)))
45 rprege0 13022 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
4645adantl 481 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
47 resqrtth 15272 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) → ((√‘𝑥)↑2) = 𝑥)
4846, 47syl 17 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → ((√‘𝑥)↑2) = 𝑥)
4948fveq2d 6879 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → (⌊‘((√‘𝑥)↑2)) = (⌊‘𝑥))
5049oveq2d 7419 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → (1...(⌊‘((√‘𝑥)↑2))) = (1...(⌊‘𝑥)))
5148fvoveq1d 7425 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → (⌊‘(((√‘𝑥)↑2) / 𝑚)) = (⌊‘(𝑥 / 𝑚)))
5251oveq2d 7419 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → (1...(⌊‘(((√‘𝑥)↑2) / 𝑚))) = (1...(⌊‘(𝑥 / 𝑚))))
5352sumeq1d 15714 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → Σ𝑑 ∈ (1...(⌊‘(((√‘𝑥)↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑))) = Σ𝑑 ∈ (1...(⌊‘(𝑥 / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑))))
5453adantr 480 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘((√‘𝑥)↑2)))) → Σ𝑑 ∈ (1...(⌊‘(((√‘𝑥)↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑))) = Σ𝑑 ∈ (1...(⌊‘(𝑥 / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑))))
5550, 54sumeq12dv 15720 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → Σ𝑚 ∈ (1...(⌊‘((√‘𝑥)↑2)))Σ𝑑 ∈ (1...(⌊‘(((√‘𝑥)↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑))) = Σ𝑚 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ (1...(⌊‘(𝑥 / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑))))
5634, 44, 553eqtr4d 2780 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → Σ𝑘 ∈ (1...(⌊‘𝑥))(((𝑏 ∈ ℕ ↦ Σ𝑦 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑏} (𝑋‘(𝐿𝑦)))‘𝑘) / (√‘𝑘)) = Σ𝑚 ∈ (1...(⌊‘((√‘𝑥)↑2)))Σ𝑑 ∈ (1...(⌊‘(((√‘𝑥)↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑))))
5756mpteq2dva 5214 . . . 4 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑘 ∈ (1...(⌊‘𝑥))(((𝑏 ∈ ℕ ↦ Σ𝑦 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑏} (𝑋‘(𝐿𝑦)))‘𝑘) / (√‘𝑘))) = (𝑥 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘((√‘𝑥)↑2)))Σ𝑑 ∈ (1...(⌊‘(((√‘𝑥)↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑)))))
58 rpsqrtcl 15281 . . . . . 6 (𝑥 ∈ ℝ+ → (√‘𝑥) ∈ ℝ+)
5958adantl 481 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (√‘𝑥) ∈ ℝ+)
60 eqidd 2736 . . . . 5 (𝜑 → (𝑥 ∈ ℝ+ ↦ (√‘𝑥)) = (𝑥 ∈ ℝ+ ↦ (√‘𝑥)))
61 eqidd 2736 . . . . 5 (𝜑 → (𝑧 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘(𝑧↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑)))) = (𝑧 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘(𝑧↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑)))))
62 oveq1 7410 . . . . . . . 8 (𝑧 = (√‘𝑥) → (𝑧↑2) = ((√‘𝑥)↑2))
6362fveq2d 6879 . . . . . . 7 (𝑧 = (√‘𝑥) → (⌊‘(𝑧↑2)) = (⌊‘((√‘𝑥)↑2)))
6463oveq2d 7419 . . . . . 6 (𝑧 = (√‘𝑥) → (1...(⌊‘(𝑧↑2))) = (1...(⌊‘((√‘𝑥)↑2))))
6562fvoveq1d 7425 . . . . . . . . 9 (𝑧 = (√‘𝑥) → (⌊‘((𝑧↑2) / 𝑚)) = (⌊‘(((√‘𝑥)↑2) / 𝑚)))
6665oveq2d 7419 . . . . . . . 8 (𝑧 = (√‘𝑥) → (1...(⌊‘((𝑧↑2) / 𝑚))) = (1...(⌊‘(((√‘𝑥)↑2) / 𝑚))))
6766sumeq1d 15714 . . . . . . 7 (𝑧 = (√‘𝑥) → Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑))) = Σ𝑑 ∈ (1...(⌊‘(((√‘𝑥)↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑))))
6867adantr 480 . . . . . 6 ((𝑧 = (√‘𝑥) ∧ 𝑚 ∈ (1...(⌊‘(𝑧↑2)))) → Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑))) = Σ𝑑 ∈ (1...(⌊‘(((√‘𝑥)↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑))))
6964, 68sumeq12dv 15720 . . . . 5 (𝑧 = (√‘𝑥) → Σ𝑚 ∈ (1...(⌊‘(𝑧↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑))) = Σ𝑚 ∈ (1...(⌊‘((√‘𝑥)↑2)))Σ𝑑 ∈ (1...(⌊‘(((√‘𝑥)↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑))))
7059, 60, 61, 69fmptco 7118 . . . 4 (𝜑 → ((𝑧 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘(𝑧↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑)))) ∘ (𝑥 ∈ ℝ+ ↦ (√‘𝑥))) = (𝑥 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘((√‘𝑥)↑2)))Σ𝑑 ∈ (1...(⌊‘(((√‘𝑥)↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑)))))
7157, 70eqtr4d 2773 . . 3 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑘 ∈ (1...(⌊‘𝑥))(((𝑏 ∈ ℕ ↦ Σ𝑦 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑏} (𝑋‘(𝐿𝑦)))‘𝑘) / (√‘𝑘))) = ((𝑧 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘(𝑧↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑)))) ∘ (𝑥 ∈ ℝ+ ↦ (√‘𝑥))))
72 eqid 2735 . . . . . . . 8 (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎))) = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎)))
731, 2, 3, 4, 5, 6, 8, 12, 72dchrisum0lema 27475 . . . . . . 7 (𝜑 → ∃𝑡𝑐 ∈ (0[,)+∞)(seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎)))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎))))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / (√‘𝑦))))
743adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎)))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎))))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / (√‘𝑦))))) → 𝑁 ∈ ℕ)
7512adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎)))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎))))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / (√‘𝑦))))) → 𝑋𝑊)
76 simprl 770 . . . . . . . . . 10 ((𝜑 ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎)))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎))))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / (√‘𝑦))))) → 𝑐 ∈ (0[,)+∞))
77 simprrl 780 . . . . . . . . . 10 ((𝜑 ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎)))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎))))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / (√‘𝑦))))) → seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎)))) ⇝ 𝑡)
78 simprrr 781 . . . . . . . . . 10 ((𝜑 ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎)))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎))))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / (√‘𝑦))))) → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎))))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / (√‘𝑦)))
791, 2, 74, 4, 5, 6, 8, 75, 72, 76, 77, 78dchrisum0lem3 27480 . . . . . . . . 9 ((𝜑 ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎)))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎))))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / (√‘𝑦))))) → (𝑧 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘(𝑧↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑)))) ∈ 𝑂(1))
8079rexlimdvaa 3142 . . . . . . . 8 (𝜑 → (∃𝑐 ∈ (0[,)+∞)(seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎)))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎))))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / (√‘𝑦))) → (𝑧 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘(𝑧↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑)))) ∈ 𝑂(1)))
8180exlimdv 1933 . . . . . . 7 (𝜑 → (∃𝑡𝑐 ∈ (0[,)+∞)(seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎)))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎))))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / (√‘𝑦))) → (𝑧 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘(𝑧↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑)))) ∈ 𝑂(1)))
8273, 81mpd 15 . . . . . 6 (𝜑 → (𝑧 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘(𝑧↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑)))) ∈ 𝑂(1))
83 o1f 15543 . . . . . 6 ((𝑧 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘(𝑧↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑)))) ∈ 𝑂(1) → (𝑧 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘(𝑧↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑)))):dom (𝑧 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘(𝑧↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑))))⟶ℂ)
8482, 83syl 17 . . . . 5 (𝜑 → (𝑧 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘(𝑧↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑)))):dom (𝑧 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘(𝑧↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑))))⟶ℂ)
85 sumex 15702 . . . . . . 7 Σ𝑚 ∈ (1...(⌊‘(𝑧↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑))) ∈ V
86 eqid 2735 . . . . . . 7 (𝑧 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘(𝑧↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑)))) = (𝑧 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘(𝑧↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑))))
8785, 86dmmpti 6681 . . . . . 6 dom (𝑧 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘(𝑧↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑)))) = ℝ+
8887feq2i 6697 . . . . 5 ((𝑧 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘(𝑧↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑)))):dom (𝑧 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘(𝑧↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑))))⟶ℂ ↔ (𝑧 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘(𝑧↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑)))):ℝ+⟶ℂ)
8984, 88sylib 218 . . . 4 (𝜑 → (𝑧 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘(𝑧↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑)))):ℝ+⟶ℂ)
90 rpssre 13014 . . . . 5 + ⊆ ℝ
9190a1i 11 . . . 4 (𝜑 → ℝ+ ⊆ ℝ)
92 resqcl 14140 . . . . 5 (𝑡 ∈ ℝ → (𝑡↑2) ∈ ℝ)
93 0red 11236 . . . . . . . 8 (((𝜑𝑡 ∈ ℝ) ∧ (𝑥 ∈ ℝ+ ∧ (𝑡↑2) ≤ 𝑥)) → 0 ∈ ℝ)
94 simplr 768 . . . . . . . 8 (((𝜑𝑡 ∈ ℝ) ∧ (𝑥 ∈ ℝ+ ∧ (𝑡↑2) ≤ 𝑥)) → 𝑡 ∈ ℝ)
95 simplrr 777 . . . . . . . . . 10 ((((𝜑𝑡 ∈ ℝ) ∧ (𝑥 ∈ ℝ+ ∧ (𝑡↑2) ≤ 𝑥)) ∧ 0 ≤ 𝑡) → (𝑡↑2) ≤ 𝑥)
9645ad2antrl 728 . . . . . . . . . . . 12 (((𝜑𝑡 ∈ ℝ) ∧ (𝑥 ∈ ℝ+ ∧ (𝑡↑2) ≤ 𝑥)) → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
9796adantr 480 . . . . . . . . . . 11 ((((𝜑𝑡 ∈ ℝ) ∧ (𝑥 ∈ ℝ+ ∧ (𝑡↑2) ≤ 𝑥)) ∧ 0 ≤ 𝑡) → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
9897, 47syl 17 . . . . . . . . . 10 ((((𝜑𝑡 ∈ ℝ) ∧ (𝑥 ∈ ℝ+ ∧ (𝑡↑2) ≤ 𝑥)) ∧ 0 ≤ 𝑡) → ((√‘𝑥)↑2) = 𝑥)
9995, 98breqtrrd 5147 . . . . . . . . 9 ((((𝜑𝑡 ∈ ℝ) ∧ (𝑥 ∈ ℝ+ ∧ (𝑡↑2) ≤ 𝑥)) ∧ 0 ≤ 𝑡) → (𝑡↑2) ≤ ((√‘𝑥)↑2))
10094adantr 480 . . . . . . . . . 10 ((((𝜑𝑡 ∈ ℝ) ∧ (𝑥 ∈ ℝ+ ∧ (𝑡↑2) ≤ 𝑥)) ∧ 0 ≤ 𝑡) → 𝑡 ∈ ℝ)
10159rpred 13049 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ+) → (√‘𝑥) ∈ ℝ)
102101ad2ant2r 747 . . . . . . . . . . 11 (((𝜑𝑡 ∈ ℝ) ∧ (𝑥 ∈ ℝ+ ∧ (𝑡↑2) ≤ 𝑥)) → (√‘𝑥) ∈ ℝ)
103102adantr 480 . . . . . . . . . 10 ((((𝜑𝑡 ∈ ℝ) ∧ (𝑥 ∈ ℝ+ ∧ (𝑡↑2) ≤ 𝑥)) ∧ 0 ≤ 𝑡) → (√‘𝑥) ∈ ℝ)
104 simpr 484 . . . . . . . . . 10 ((((𝜑𝑡 ∈ ℝ) ∧ (𝑥 ∈ ℝ+ ∧ (𝑡↑2) ≤ 𝑥)) ∧ 0 ≤ 𝑡) → 0 ≤ 𝑡)
105 sqrtge0 15274 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) → 0 ≤ (√‘𝑥))
10696, 105syl 17 . . . . . . . . . . 11 (((𝜑𝑡 ∈ ℝ) ∧ (𝑥 ∈ ℝ+ ∧ (𝑡↑2) ≤ 𝑥)) → 0 ≤ (√‘𝑥))
107106adantr 480 . . . . . . . . . 10 ((((𝜑𝑡 ∈ ℝ) ∧ (𝑥 ∈ ℝ+ ∧ (𝑡↑2) ≤ 𝑥)) ∧ 0 ≤ 𝑡) → 0 ≤ (√‘𝑥))
108100, 103, 104, 107le2sqd 14273 . . . . . . . . 9 ((((𝜑𝑡 ∈ ℝ) ∧ (𝑥 ∈ ℝ+ ∧ (𝑡↑2) ≤ 𝑥)) ∧ 0 ≤ 𝑡) → (𝑡 ≤ (√‘𝑥) ↔ (𝑡↑2) ≤ ((√‘𝑥)↑2)))
10999, 108mpbird 257 . . . . . . . 8 ((((𝜑𝑡 ∈ ℝ) ∧ (𝑥 ∈ ℝ+ ∧ (𝑡↑2) ≤ 𝑥)) ∧ 0 ≤ 𝑡) → 𝑡 ≤ (√‘𝑥))
11094adantr 480 . . . . . . . . 9 ((((𝜑𝑡 ∈ ℝ) ∧ (𝑥 ∈ ℝ+ ∧ (𝑡↑2) ≤ 𝑥)) ∧ 𝑡 ≤ 0) → 𝑡 ∈ ℝ)
111 0red 11236 . . . . . . . . 9 ((((𝜑𝑡 ∈ ℝ) ∧ (𝑥 ∈ ℝ+ ∧ (𝑡↑2) ≤ 𝑥)) ∧ 𝑡 ≤ 0) → 0 ∈ ℝ)
112102adantr 480 . . . . . . . . 9 ((((𝜑𝑡 ∈ ℝ) ∧ (𝑥 ∈ ℝ+ ∧ (𝑡↑2) ≤ 𝑥)) ∧ 𝑡 ≤ 0) → (√‘𝑥) ∈ ℝ)
113 simpr 484 . . . . . . . . 9 ((((𝜑𝑡 ∈ ℝ) ∧ (𝑥 ∈ ℝ+ ∧ (𝑡↑2) ≤ 𝑥)) ∧ 𝑡 ≤ 0) → 𝑡 ≤ 0)
114106adantr 480 . . . . . . . . 9 ((((𝜑𝑡 ∈ ℝ) ∧ (𝑥 ∈ ℝ+ ∧ (𝑡↑2) ≤ 𝑥)) ∧ 𝑡 ≤ 0) → 0 ≤ (√‘𝑥))
115110, 111, 112, 113, 114letrd 11390 . . . . . . . 8 ((((𝜑𝑡 ∈ ℝ) ∧ (𝑥 ∈ ℝ+ ∧ (𝑡↑2) ≤ 𝑥)) ∧ 𝑡 ≤ 0) → 𝑡 ≤ (√‘𝑥))
11693, 94, 109, 115lecasei 11339 . . . . . . 7 (((𝜑𝑡 ∈ ℝ) ∧ (𝑥 ∈ ℝ+ ∧ (𝑡↑2) ≤ 𝑥)) → 𝑡 ≤ (√‘𝑥))
117116expr 456 . . . . . 6 (((𝜑𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → ((𝑡↑2) ≤ 𝑥𝑡 ≤ (√‘𝑥)))
118117ralrimiva 3132 . . . . 5 ((𝜑𝑡 ∈ ℝ) → ∀𝑥 ∈ ℝ+ ((𝑡↑2) ≤ 𝑥𝑡 ≤ (√‘𝑥)))
119 breq1 5122 . . . . . 6 (𝑐 = (𝑡↑2) → (𝑐𝑥 ↔ (𝑡↑2) ≤ 𝑥))
120119rspceaimv 3607 . . . . 5 (((𝑡↑2) ∈ ℝ ∧ ∀𝑥 ∈ ℝ+ ((𝑡↑2) ≤ 𝑥𝑡 ≤ (√‘𝑥))) → ∃𝑐 ∈ ℝ ∀𝑥 ∈ ℝ+ (𝑐𝑥𝑡 ≤ (√‘𝑥)))
12192, 118, 120syl2an2 686 . . . 4 ((𝜑𝑡 ∈ ℝ) → ∃𝑐 ∈ ℝ ∀𝑥 ∈ ℝ+ (𝑐𝑥𝑡 ≤ (√‘𝑥)))
12289, 82, 59, 91, 121o1compt 15601 . . 3 (𝜑 → ((𝑧 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘(𝑧↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑)))) ∘ (𝑥 ∈ ℝ+ ↦ (√‘𝑥))) ∈ 𝑂(1))
12371, 122eqeltrd 2834 . 2 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑘 ∈ (1...(⌊‘𝑥))(((𝑏 ∈ ℕ ↦ Σ𝑦 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑏} (𝑋‘(𝐿𝑦)))‘𝑘) / (√‘𝑘))) ∈ 𝑂(1))
1241, 2, 3, 4, 5, 6, 7, 13, 14, 123dchrisum0fno1 27472 1 ¬ 𝜑
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2108  wne 2932  wral 3051  wrex 3060  {crab 3415  cdif 3923  wss 3926  {csn 4601   class class class wbr 5119  cmpt 5201  dom cdm 5654  ccom 5658  wf 6526  cfv 6530  (class class class)co 7403  cc 11125  cr 11126  0cc0 11127  1c1 11128   + caddc 11130   · cmul 11132  +∞cpnf 11264  cle 11268  cmin 11464   / cdiv 11892  cn 12238  2c2 12293  cz 12586  +crp 13006  [,)cico 13362  ...cfz 13522  cfl 13805  seqcseq 14017  cexp 14077  csqrt 15250  abscabs 15251  cli 15498  𝑂(1)co1 15500  Σcsu 15700  cdvds 16270  Basecbs 17226  0gc0g 17451  ℤRHomczrh 21458  ℤ/nczn 21461  DChrcdchr 27193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-inf2 9653  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204  ax-pre-sup 11205  ax-addf 11206  ax-mulf 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-disj 5087  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-isom 6539  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-of 7669  df-rpss 7715  df-om 7860  df-1st 7986  df-2nd 7987  df-supp 8158  df-tpos 8223  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-2o 8479  df-oadd 8482  df-omul 8483  df-er 8717  df-ec 8719  df-qs 8723  df-map 8840  df-pm 8841  df-ixp 8910  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-fsupp 9372  df-fi 9421  df-sup 9452  df-inf 9453  df-oi 9522  df-dju 9913  df-card 9951  df-acn 9954  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-div 11893  df-nn 12239  df-2 12301  df-3 12302  df-4 12303  df-5 12304  df-6 12305  df-7 12306  df-8 12307  df-9 12308  df-n0 12500  df-xnn0 12573  df-z 12587  df-dec 12707  df-uz 12851  df-q 12963  df-rp 13007  df-xneg 13126  df-xadd 13127  df-xmul 13128  df-ioo 13364  df-ioc 13365  df-ico 13366  df-icc 13367  df-fz 13523  df-fzo 13670  df-fl 13807  df-mod 13885  df-seq 14018  df-exp 14078  df-fac 14290  df-bc 14319  df-hash 14347  df-word 14530  df-concat 14587  df-s1 14612  df-shft 15084  df-cj 15116  df-re 15117  df-im 15118  df-sqrt 15252  df-abs 15253  df-limsup 15485  df-clim 15502  df-rlim 15503  df-o1 15504  df-lo1 15505  df-sum 15701  df-ef 16081  df-e 16082  df-sin 16083  df-cos 16084  df-tan 16085  df-pi 16086  df-dvds 16271  df-gcd 16512  df-prm 16689  df-numer 16752  df-denom 16753  df-phi 16783  df-pc 16855  df-struct 17164  df-sets 17181  df-slot 17199  df-ndx 17211  df-base 17227  df-ress 17250  df-plusg 17282  df-mulr 17283  df-starv 17284  df-sca 17285  df-vsca 17286  df-ip 17287  df-tset 17288  df-ple 17289  df-ds 17291  df-unif 17292  df-hom 17293  df-cco 17294  df-rest 17434  df-topn 17435  df-0g 17453  df-gsum 17454  df-topgen 17455  df-pt 17456  df-prds 17459  df-xrs 17514  df-qtop 17519  df-imas 17520  df-qus 17521  df-xps 17522  df-mre 17596  df-mrc 17597  df-acs 17599  df-mgm 18616  df-sgrp 18695  df-mnd 18711  df-mhm 18759  df-submnd 18760  df-grp 18917  df-minusg 18918  df-sbg 18919  df-mulg 19049  df-subg 19104  df-nsg 19105  df-eqg 19106  df-ghm 19194  df-gim 19240  df-ga 19271  df-cntz 19298  df-oppg 19327  df-od 19507  df-gex 19508  df-pgp 19509  df-lsm 19615  df-pj1 19616  df-cmn 19761  df-abl 19762  df-cyg 19857  df-dprd 19976  df-dpj 19977  df-mgp 20099  df-rng 20111  df-ur 20140  df-ring 20193  df-cring 20194  df-oppr 20295  df-dvdsr 20315  df-unit 20316  df-invr 20346  df-dvr 20359  df-rhm 20430  df-subrng 20504  df-subrg 20528  df-drng 20689  df-lmod 20817  df-lss 20887  df-lsp 20927  df-sra 21129  df-rgmod 21130  df-lidl 21167  df-rsp 21168  df-2idl 21209  df-psmet 21305  df-xmet 21306  df-met 21307  df-bl 21308  df-mopn 21309  df-fbas 21310  df-fg 21311  df-cnfld 21314  df-zring 21406  df-zrh 21462  df-zn 21465  df-top 22830  df-topon 22847  df-topsp 22869  df-bases 22882  df-cld 22955  df-ntr 22956  df-cls 22957  df-nei 23034  df-lp 23072  df-perf 23073  df-cn 23163  df-cnp 23164  df-haus 23251  df-cmp 23323  df-tx 23498  df-hmeo 23691  df-fil 23782  df-fm 23874  df-flim 23875  df-flf 23876  df-xms 24257  df-ms 24258  df-tms 24259  df-cncf 24820  df-0p 25621  df-limc 25817  df-dv 25818  df-ply 26143  df-idp 26144  df-coe 26145  df-dgr 26146  df-quot 26249  df-ulm 26336  df-log 26515  df-cxp 26516  df-atan 26827  df-em 26953  df-cht 27057  df-vma 27058  df-chp 27059  df-ppi 27060  df-mu 27061  df-dchr 27194
This theorem is referenced by:  dchrisumn0  27482  rpvmasum  27487
  Copyright terms: Public domain W3C validator