MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrisum0 Structured version   Visualization version   GIF version

Theorem dchrisum0 27582
Description: The sum Σ𝑛 ∈ ℕ, 𝑋(𝑛) / 𝑛 is nonzero for all non-principal Dirichlet characters (i.e. the assumption 𝑋𝑊 is contradictory). This is the key result that allows to eliminate the conditionals from dchrmusum2 27556 and dchrvmasumif 27565. Lemma 9.4.4 of [Shapiro], p. 382. (Contributed by Mario Carneiro, 12-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z 𝑍 = (ℤ/nℤ‘𝑁)
rpvmasum.l 𝐿 = (ℤRHom‘𝑍)
rpvmasum.a (𝜑𝑁 ∈ ℕ)
rpvmasum2.g 𝐺 = (DChr‘𝑁)
rpvmasum2.d 𝐷 = (Base‘𝐺)
rpvmasum2.1 1 = (0g𝐺)
rpvmasum2.w 𝑊 = {𝑦 ∈ (𝐷 ∖ { 1 }) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0}
dchrisum0.b (𝜑𝑋𝑊)
Assertion
Ref Expression
dchrisum0 ¬ 𝜑
Distinct variable groups:   𝑦,𝑚, 1   𝑚,𝑁,𝑦   𝜑,𝑚   𝑚,𝑍,𝑦   𝐷,𝑚,𝑦   𝑚,𝐿,𝑦   𝑚,𝑋,𝑦
Allowed substitution hints:   𝜑(𝑦)   𝐺(𝑦,𝑚)   𝑊(𝑦,𝑚)

Proof of Theorem dchrisum0
Dummy variables 𝑘 𝑥 𝑧 𝑐 𝑖 𝑡 𝑑 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rpvmasum.z . 2 𝑍 = (ℤ/nℤ‘𝑁)
2 rpvmasum.l . 2 𝐿 = (ℤRHom‘𝑍)
3 rpvmasum.a . 2 (𝜑𝑁 ∈ ℕ)
4 rpvmasum2.g . 2 𝐺 = (DChr‘𝑁)
5 rpvmasum2.d . 2 𝐷 = (Base‘𝐺)
6 rpvmasum2.1 . 2 1 = (0g𝐺)
7 eqid 2740 . 2 (𝑏 ∈ ℕ ↦ Σ𝑦 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑏} (𝑋‘(𝐿𝑦))) = (𝑏 ∈ ℕ ↦ Σ𝑦 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑏} (𝑋‘(𝐿𝑦)))
8 rpvmasum2.w . . . . 5 𝑊 = {𝑦 ∈ (𝐷 ∖ { 1 }) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0}
98ssrab3 4105 . . . 4 𝑊 ⊆ (𝐷 ∖ { 1 })
10 difss 4159 . . . 4 (𝐷 ∖ { 1 }) ⊆ 𝐷
119, 10sstri 4018 . . 3 𝑊𝐷
12 dchrisum0.b . . 3 (𝜑𝑋𝑊)
1311, 12sselid 4006 . 2 (𝜑𝑋𝐷)
141, 2, 3, 4, 5, 6, 8, 12dchrisum0re 27575 . 2 (𝜑𝑋:(Base‘𝑍)⟶ℝ)
15 fveq2 6920 . . . . . . . 8 (𝑘 = (𝑚 · 𝑑) → (√‘𝑘) = (√‘(𝑚 · 𝑑)))
1615oveq2d 7464 . . . . . . 7 (𝑘 = (𝑚 · 𝑑) → ((𝑋‘(𝐿𝑚)) / (√‘𝑘)) = ((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑))))
17 rpre 13065 . . . . . . . 8 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
1817adantl 481 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ)
1913ad3antrrr 729 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑘}) → 𝑋𝐷)
20 elrabi 3703 . . . . . . . . . . . 12 (𝑚 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑘} → 𝑚 ∈ ℕ)
2120nnzd 12666 . . . . . . . . . . 11 (𝑚 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑘} → 𝑚 ∈ ℤ)
2221adantl 481 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑘}) → 𝑚 ∈ ℤ)
234, 1, 5, 2, 19, 22dchrzrhcl 27307 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑘}) → (𝑋‘(𝐿𝑚)) ∈ ℂ)
24 elfznn 13613 . . . . . . . . . . . . . 14 (𝑘 ∈ (1...(⌊‘𝑥)) → 𝑘 ∈ ℕ)
2524adantl 481 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → 𝑘 ∈ ℕ)
2625nnrpd 13097 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → 𝑘 ∈ ℝ+)
2726rpsqrtcld 15460 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → (√‘𝑘) ∈ ℝ+)
2827rpcnd 13101 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → (√‘𝑘) ∈ ℂ)
2928adantr 480 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑘}) → (√‘𝑘) ∈ ℂ)
3027rpne0d 13104 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → (√‘𝑘) ≠ 0)
3130adantr 480 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑘}) → (√‘𝑘) ≠ 0)
3223, 29, 31divcld 12070 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑘}) → ((𝑋‘(𝐿𝑚)) / (√‘𝑘)) ∈ ℂ)
3332anasss 466 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ 𝑚 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑘})) → ((𝑋‘(𝐿𝑚)) / (√‘𝑘)) ∈ ℂ)
3416, 18, 33dvdsflsumcom 27249 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → Σ𝑘 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑘} ((𝑋‘(𝐿𝑚)) / (√‘𝑘)) = Σ𝑚 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ (1...(⌊‘(𝑥 / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑))))
351, 2, 3, 4, 5, 6, 7dchrisum0fval 27567 . . . . . . . . . 10 (𝑘 ∈ ℕ → ((𝑏 ∈ ℕ ↦ Σ𝑦 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑏} (𝑋‘(𝐿𝑦)))‘𝑘) = Σ𝑚 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑘} (𝑋‘(𝐿𝑚)))
3625, 35syl 17 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → ((𝑏 ∈ ℕ ↦ Σ𝑦 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑏} (𝑋‘(𝐿𝑦)))‘𝑘) = Σ𝑚 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑘} (𝑋‘(𝐿𝑚)))
3736oveq1d 7463 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → (((𝑏 ∈ ℕ ↦ Σ𝑦 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑏} (𝑋‘(𝐿𝑦)))‘𝑘) / (√‘𝑘)) = (Σ𝑚 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑘} (𝑋‘(𝐿𝑚)) / (√‘𝑘)))
38 fzfid 14024 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → (1...𝑘) ∈ Fin)
39 dvdsssfz1 16366 . . . . . . . . . . 11 (𝑘 ∈ ℕ → {𝑖 ∈ ℕ ∣ 𝑖𝑘} ⊆ (1...𝑘))
4025, 39syl 17 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → {𝑖 ∈ ℕ ∣ 𝑖𝑘} ⊆ (1...𝑘))
4138, 40ssfid 9329 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → {𝑖 ∈ ℕ ∣ 𝑖𝑘} ∈ Fin)
4241, 28, 23, 30fsumdivc 15834 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → (Σ𝑚 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑘} (𝑋‘(𝐿𝑚)) / (√‘𝑘)) = Σ𝑚 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑘} ((𝑋‘(𝐿𝑚)) / (√‘𝑘)))
4337, 42eqtrd 2780 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → (((𝑏 ∈ ℕ ↦ Σ𝑦 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑏} (𝑋‘(𝐿𝑦)))‘𝑘) / (√‘𝑘)) = Σ𝑚 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑘} ((𝑋‘(𝐿𝑚)) / (√‘𝑘)))
4443sumeq2dv 15750 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → Σ𝑘 ∈ (1...(⌊‘𝑥))(((𝑏 ∈ ℕ ↦ Σ𝑦 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑏} (𝑋‘(𝐿𝑦)))‘𝑘) / (√‘𝑘)) = Σ𝑘 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑘} ((𝑋‘(𝐿𝑚)) / (√‘𝑘)))
45 rprege0 13072 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
4645adantl 481 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
47 resqrtth 15304 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) → ((√‘𝑥)↑2) = 𝑥)
4846, 47syl 17 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → ((√‘𝑥)↑2) = 𝑥)
4948fveq2d 6924 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → (⌊‘((√‘𝑥)↑2)) = (⌊‘𝑥))
5049oveq2d 7464 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → (1...(⌊‘((√‘𝑥)↑2))) = (1...(⌊‘𝑥)))
5148fvoveq1d 7470 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → (⌊‘(((√‘𝑥)↑2) / 𝑚)) = (⌊‘(𝑥 / 𝑚)))
5251oveq2d 7464 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → (1...(⌊‘(((√‘𝑥)↑2) / 𝑚))) = (1...(⌊‘(𝑥 / 𝑚))))
5352sumeq1d 15748 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → Σ𝑑 ∈ (1...(⌊‘(((√‘𝑥)↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑))) = Σ𝑑 ∈ (1...(⌊‘(𝑥 / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑))))
5453adantr 480 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘((√‘𝑥)↑2)))) → Σ𝑑 ∈ (1...(⌊‘(((√‘𝑥)↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑))) = Σ𝑑 ∈ (1...(⌊‘(𝑥 / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑))))
5550, 54sumeq12dv 15754 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → Σ𝑚 ∈ (1...(⌊‘((√‘𝑥)↑2)))Σ𝑑 ∈ (1...(⌊‘(((√‘𝑥)↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑))) = Σ𝑚 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ (1...(⌊‘(𝑥 / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑))))
5634, 44, 553eqtr4d 2790 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → Σ𝑘 ∈ (1...(⌊‘𝑥))(((𝑏 ∈ ℕ ↦ Σ𝑦 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑏} (𝑋‘(𝐿𝑦)))‘𝑘) / (√‘𝑘)) = Σ𝑚 ∈ (1...(⌊‘((√‘𝑥)↑2)))Σ𝑑 ∈ (1...(⌊‘(((√‘𝑥)↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑))))
5756mpteq2dva 5266 . . . 4 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑘 ∈ (1...(⌊‘𝑥))(((𝑏 ∈ ℕ ↦ Σ𝑦 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑏} (𝑋‘(𝐿𝑦)))‘𝑘) / (√‘𝑘))) = (𝑥 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘((√‘𝑥)↑2)))Σ𝑑 ∈ (1...(⌊‘(((√‘𝑥)↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑)))))
58 rpsqrtcl 15313 . . . . . 6 (𝑥 ∈ ℝ+ → (√‘𝑥) ∈ ℝ+)
5958adantl 481 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (√‘𝑥) ∈ ℝ+)
60 eqidd 2741 . . . . 5 (𝜑 → (𝑥 ∈ ℝ+ ↦ (√‘𝑥)) = (𝑥 ∈ ℝ+ ↦ (√‘𝑥)))
61 eqidd 2741 . . . . 5 (𝜑 → (𝑧 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘(𝑧↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑)))) = (𝑧 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘(𝑧↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑)))))
62 oveq1 7455 . . . . . . . 8 (𝑧 = (√‘𝑥) → (𝑧↑2) = ((√‘𝑥)↑2))
6362fveq2d 6924 . . . . . . 7 (𝑧 = (√‘𝑥) → (⌊‘(𝑧↑2)) = (⌊‘((√‘𝑥)↑2)))
6463oveq2d 7464 . . . . . 6 (𝑧 = (√‘𝑥) → (1...(⌊‘(𝑧↑2))) = (1...(⌊‘((√‘𝑥)↑2))))
6562fvoveq1d 7470 . . . . . . . . 9 (𝑧 = (√‘𝑥) → (⌊‘((𝑧↑2) / 𝑚)) = (⌊‘(((√‘𝑥)↑2) / 𝑚)))
6665oveq2d 7464 . . . . . . . 8 (𝑧 = (√‘𝑥) → (1...(⌊‘((𝑧↑2) / 𝑚))) = (1...(⌊‘(((√‘𝑥)↑2) / 𝑚))))
6766sumeq1d 15748 . . . . . . 7 (𝑧 = (√‘𝑥) → Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑))) = Σ𝑑 ∈ (1...(⌊‘(((√‘𝑥)↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑))))
6867adantr 480 . . . . . 6 ((𝑧 = (√‘𝑥) ∧ 𝑚 ∈ (1...(⌊‘(𝑧↑2)))) → Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑))) = Σ𝑑 ∈ (1...(⌊‘(((√‘𝑥)↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑))))
6964, 68sumeq12dv 15754 . . . . 5 (𝑧 = (√‘𝑥) → Σ𝑚 ∈ (1...(⌊‘(𝑧↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑))) = Σ𝑚 ∈ (1...(⌊‘((√‘𝑥)↑2)))Σ𝑑 ∈ (1...(⌊‘(((√‘𝑥)↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑))))
7059, 60, 61, 69fmptco 7163 . . . 4 (𝜑 → ((𝑧 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘(𝑧↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑)))) ∘ (𝑥 ∈ ℝ+ ↦ (√‘𝑥))) = (𝑥 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘((√‘𝑥)↑2)))Σ𝑑 ∈ (1...(⌊‘(((√‘𝑥)↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑)))))
7157, 70eqtr4d 2783 . . 3 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑘 ∈ (1...(⌊‘𝑥))(((𝑏 ∈ ℕ ↦ Σ𝑦 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑏} (𝑋‘(𝐿𝑦)))‘𝑘) / (√‘𝑘))) = ((𝑧 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘(𝑧↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑)))) ∘ (𝑥 ∈ ℝ+ ↦ (√‘𝑥))))
72 eqid 2740 . . . . . . . 8 (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎))) = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎)))
731, 2, 3, 4, 5, 6, 8, 12, 72dchrisum0lema 27576 . . . . . . 7 (𝜑 → ∃𝑡𝑐 ∈ (0[,)+∞)(seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎)))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎))))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / (√‘𝑦))))
743adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎)))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎))))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / (√‘𝑦))))) → 𝑁 ∈ ℕ)
7512adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎)))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎))))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / (√‘𝑦))))) → 𝑋𝑊)
76 simprl 770 . . . . . . . . . 10 ((𝜑 ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎)))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎))))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / (√‘𝑦))))) → 𝑐 ∈ (0[,)+∞))
77 simprrl 780 . . . . . . . . . 10 ((𝜑 ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎)))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎))))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / (√‘𝑦))))) → seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎)))) ⇝ 𝑡)
78 simprrr 781 . . . . . . . . . 10 ((𝜑 ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎)))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎))))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / (√‘𝑦))))) → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎))))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / (√‘𝑦)))
791, 2, 74, 4, 5, 6, 8, 75, 72, 76, 77, 78dchrisum0lem3 27581 . . . . . . . . 9 ((𝜑 ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎)))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎))))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / (√‘𝑦))))) → (𝑧 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘(𝑧↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑)))) ∈ 𝑂(1))
8079rexlimdvaa 3162 . . . . . . . 8 (𝜑 → (∃𝑐 ∈ (0[,)+∞)(seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎)))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎))))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / (√‘𝑦))) → (𝑧 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘(𝑧↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑)))) ∈ 𝑂(1)))
8180exlimdv 1932 . . . . . . 7 (𝜑 → (∃𝑡𝑐 ∈ (0[,)+∞)(seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎)))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎))))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / (√‘𝑦))) → (𝑧 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘(𝑧↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑)))) ∈ 𝑂(1)))
8273, 81mpd 15 . . . . . 6 (𝜑 → (𝑧 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘(𝑧↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑)))) ∈ 𝑂(1))
83 o1f 15575 . . . . . 6 ((𝑧 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘(𝑧↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑)))) ∈ 𝑂(1) → (𝑧 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘(𝑧↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑)))):dom (𝑧 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘(𝑧↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑))))⟶ℂ)
8482, 83syl 17 . . . . 5 (𝜑 → (𝑧 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘(𝑧↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑)))):dom (𝑧 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘(𝑧↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑))))⟶ℂ)
85 sumex 15736 . . . . . . 7 Σ𝑚 ∈ (1...(⌊‘(𝑧↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑))) ∈ V
86 eqid 2740 . . . . . . 7 (𝑧 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘(𝑧↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑)))) = (𝑧 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘(𝑧↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑))))
8785, 86dmmpti 6724 . . . . . 6 dom (𝑧 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘(𝑧↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑)))) = ℝ+
8887feq2i 6739 . . . . 5 ((𝑧 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘(𝑧↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑)))):dom (𝑧 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘(𝑧↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑))))⟶ℂ ↔ (𝑧 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘(𝑧↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑)))):ℝ+⟶ℂ)
8984, 88sylib 218 . . . 4 (𝜑 → (𝑧 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘(𝑧↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑)))):ℝ+⟶ℂ)
90 rpssre 13064 . . . . 5 + ⊆ ℝ
9190a1i 11 . . . 4 (𝜑 → ℝ+ ⊆ ℝ)
92 resqcl 14174 . . . . 5 (𝑡 ∈ ℝ → (𝑡↑2) ∈ ℝ)
93 0red 11293 . . . . . . . 8 (((𝜑𝑡 ∈ ℝ) ∧ (𝑥 ∈ ℝ+ ∧ (𝑡↑2) ≤ 𝑥)) → 0 ∈ ℝ)
94 simplr 768 . . . . . . . 8 (((𝜑𝑡 ∈ ℝ) ∧ (𝑥 ∈ ℝ+ ∧ (𝑡↑2) ≤ 𝑥)) → 𝑡 ∈ ℝ)
95 simplrr 777 . . . . . . . . . 10 ((((𝜑𝑡 ∈ ℝ) ∧ (𝑥 ∈ ℝ+ ∧ (𝑡↑2) ≤ 𝑥)) ∧ 0 ≤ 𝑡) → (𝑡↑2) ≤ 𝑥)
9645ad2antrl 727 . . . . . . . . . . . 12 (((𝜑𝑡 ∈ ℝ) ∧ (𝑥 ∈ ℝ+ ∧ (𝑡↑2) ≤ 𝑥)) → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
9796adantr 480 . . . . . . . . . . 11 ((((𝜑𝑡 ∈ ℝ) ∧ (𝑥 ∈ ℝ+ ∧ (𝑡↑2) ≤ 𝑥)) ∧ 0 ≤ 𝑡) → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
9897, 47syl 17 . . . . . . . . . 10 ((((𝜑𝑡 ∈ ℝ) ∧ (𝑥 ∈ ℝ+ ∧ (𝑡↑2) ≤ 𝑥)) ∧ 0 ≤ 𝑡) → ((√‘𝑥)↑2) = 𝑥)
9995, 98breqtrrd 5194 . . . . . . . . 9 ((((𝜑𝑡 ∈ ℝ) ∧ (𝑥 ∈ ℝ+ ∧ (𝑡↑2) ≤ 𝑥)) ∧ 0 ≤ 𝑡) → (𝑡↑2) ≤ ((√‘𝑥)↑2))
10094adantr 480 . . . . . . . . . 10 ((((𝜑𝑡 ∈ ℝ) ∧ (𝑥 ∈ ℝ+ ∧ (𝑡↑2) ≤ 𝑥)) ∧ 0 ≤ 𝑡) → 𝑡 ∈ ℝ)
10159rpred 13099 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ+) → (√‘𝑥) ∈ ℝ)
102101ad2ant2r 746 . . . . . . . . . . 11 (((𝜑𝑡 ∈ ℝ) ∧ (𝑥 ∈ ℝ+ ∧ (𝑡↑2) ≤ 𝑥)) → (√‘𝑥) ∈ ℝ)
103102adantr 480 . . . . . . . . . 10 ((((𝜑𝑡 ∈ ℝ) ∧ (𝑥 ∈ ℝ+ ∧ (𝑡↑2) ≤ 𝑥)) ∧ 0 ≤ 𝑡) → (√‘𝑥) ∈ ℝ)
104 simpr 484 . . . . . . . . . 10 ((((𝜑𝑡 ∈ ℝ) ∧ (𝑥 ∈ ℝ+ ∧ (𝑡↑2) ≤ 𝑥)) ∧ 0 ≤ 𝑡) → 0 ≤ 𝑡)
105 sqrtge0 15306 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) → 0 ≤ (√‘𝑥))
10696, 105syl 17 . . . . . . . . . . 11 (((𝜑𝑡 ∈ ℝ) ∧ (𝑥 ∈ ℝ+ ∧ (𝑡↑2) ≤ 𝑥)) → 0 ≤ (√‘𝑥))
107106adantr 480 . . . . . . . . . 10 ((((𝜑𝑡 ∈ ℝ) ∧ (𝑥 ∈ ℝ+ ∧ (𝑡↑2) ≤ 𝑥)) ∧ 0 ≤ 𝑡) → 0 ≤ (√‘𝑥))
108100, 103, 104, 107le2sqd 14306 . . . . . . . . 9 ((((𝜑𝑡 ∈ ℝ) ∧ (𝑥 ∈ ℝ+ ∧ (𝑡↑2) ≤ 𝑥)) ∧ 0 ≤ 𝑡) → (𝑡 ≤ (√‘𝑥) ↔ (𝑡↑2) ≤ ((√‘𝑥)↑2)))
10999, 108mpbird 257 . . . . . . . 8 ((((𝜑𝑡 ∈ ℝ) ∧ (𝑥 ∈ ℝ+ ∧ (𝑡↑2) ≤ 𝑥)) ∧ 0 ≤ 𝑡) → 𝑡 ≤ (√‘𝑥))
11094adantr 480 . . . . . . . . 9 ((((𝜑𝑡 ∈ ℝ) ∧ (𝑥 ∈ ℝ+ ∧ (𝑡↑2) ≤ 𝑥)) ∧ 𝑡 ≤ 0) → 𝑡 ∈ ℝ)
111 0red 11293 . . . . . . . . 9 ((((𝜑𝑡 ∈ ℝ) ∧ (𝑥 ∈ ℝ+ ∧ (𝑡↑2) ≤ 𝑥)) ∧ 𝑡 ≤ 0) → 0 ∈ ℝ)
112102adantr 480 . . . . . . . . 9 ((((𝜑𝑡 ∈ ℝ) ∧ (𝑥 ∈ ℝ+ ∧ (𝑡↑2) ≤ 𝑥)) ∧ 𝑡 ≤ 0) → (√‘𝑥) ∈ ℝ)
113 simpr 484 . . . . . . . . 9 ((((𝜑𝑡 ∈ ℝ) ∧ (𝑥 ∈ ℝ+ ∧ (𝑡↑2) ≤ 𝑥)) ∧ 𝑡 ≤ 0) → 𝑡 ≤ 0)
114106adantr 480 . . . . . . . . 9 ((((𝜑𝑡 ∈ ℝ) ∧ (𝑥 ∈ ℝ+ ∧ (𝑡↑2) ≤ 𝑥)) ∧ 𝑡 ≤ 0) → 0 ≤ (√‘𝑥))
115110, 111, 112, 113, 114letrd 11447 . . . . . . . 8 ((((𝜑𝑡 ∈ ℝ) ∧ (𝑥 ∈ ℝ+ ∧ (𝑡↑2) ≤ 𝑥)) ∧ 𝑡 ≤ 0) → 𝑡 ≤ (√‘𝑥))
11693, 94, 109, 115lecasei 11396 . . . . . . 7 (((𝜑𝑡 ∈ ℝ) ∧ (𝑥 ∈ ℝ+ ∧ (𝑡↑2) ≤ 𝑥)) → 𝑡 ≤ (√‘𝑥))
117116expr 456 . . . . . 6 (((𝜑𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → ((𝑡↑2) ≤ 𝑥𝑡 ≤ (√‘𝑥)))
118117ralrimiva 3152 . . . . 5 ((𝜑𝑡 ∈ ℝ) → ∀𝑥 ∈ ℝ+ ((𝑡↑2) ≤ 𝑥𝑡 ≤ (√‘𝑥)))
119 breq1 5169 . . . . . 6 (𝑐 = (𝑡↑2) → (𝑐𝑥 ↔ (𝑡↑2) ≤ 𝑥))
120119rspceaimv 3641 . . . . 5 (((𝑡↑2) ∈ ℝ ∧ ∀𝑥 ∈ ℝ+ ((𝑡↑2) ≤ 𝑥𝑡 ≤ (√‘𝑥))) → ∃𝑐 ∈ ℝ ∀𝑥 ∈ ℝ+ (𝑐𝑥𝑡 ≤ (√‘𝑥)))
12192, 118, 120syl2an2 685 . . . 4 ((𝜑𝑡 ∈ ℝ) → ∃𝑐 ∈ ℝ ∀𝑥 ∈ ℝ+ (𝑐𝑥𝑡 ≤ (√‘𝑥)))
12289, 82, 59, 91, 121o1compt 15633 . . 3 (𝜑 → ((𝑧 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘(𝑧↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑)))) ∘ (𝑥 ∈ ℝ+ ↦ (√‘𝑥))) ∈ 𝑂(1))
12371, 122eqeltrd 2844 . 2 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑘 ∈ (1...(⌊‘𝑥))(((𝑏 ∈ ℕ ↦ Σ𝑦 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑏} (𝑋‘(𝐿𝑦)))‘𝑘) / (√‘𝑘))) ∈ 𝑂(1))
1241, 2, 3, 4, 5, 6, 7, 13, 14, 123dchrisum0fno1 27573 1 ¬ 𝜑
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wex 1777  wcel 2108  wne 2946  wral 3067  wrex 3076  {crab 3443  cdif 3973  wss 3976  {csn 4648   class class class wbr 5166  cmpt 5249  dom cdm 5700  ccom 5704  wf 6569  cfv 6573  (class class class)co 7448  cc 11182  cr 11183  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189  +∞cpnf 11321  cle 11325  cmin 11520   / cdiv 11947  cn 12293  2c2 12348  cz 12639  +crp 13057  [,)cico 13409  ...cfz 13567  cfl 13841  seqcseq 14052  cexp 14112  csqrt 15282  abscabs 15283  cli 15530  𝑂(1)co1 15532  Σcsu 15734  cdvds 16302  Basecbs 17258  0gc0g 17499  ℤRHomczrh 21533  ℤ/nczn 21536  DChrcdchr 27294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263  ax-mulf 11264
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-disj 5134  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-rpss 7758  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-tpos 8267  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-omul 8527  df-er 8763  df-ec 8765  df-qs 8769  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-dju 9970  df-card 10008  df-acn 10011  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-xnn0 12626  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-ioc 13412  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-fac 14323  df-bc 14352  df-hash 14380  df-word 14563  df-concat 14619  df-s1 14644  df-shft 15116  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-limsup 15517  df-clim 15534  df-rlim 15535  df-o1 15536  df-lo1 15537  df-sum 15735  df-ef 16115  df-e 16116  df-sin 16117  df-cos 16118  df-tan 16119  df-pi 16120  df-dvds 16303  df-gcd 16541  df-prm 16719  df-numer 16782  df-denom 16783  df-phi 16813  df-pc 16884  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-pt 17504  df-prds 17507  df-xrs 17562  df-qtop 17567  df-imas 17568  df-qus 17569  df-xps 17570  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mhm 18818  df-submnd 18819  df-grp 18976  df-minusg 18977  df-sbg 18978  df-mulg 19108  df-subg 19163  df-nsg 19164  df-eqg 19165  df-ghm 19253  df-gim 19299  df-ga 19330  df-cntz 19357  df-oppg 19386  df-od 19570  df-gex 19571  df-pgp 19572  df-lsm 19678  df-pj1 19679  df-cmn 19824  df-abl 19825  df-cyg 19920  df-dprd 20039  df-dpj 20040  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-cring 20263  df-oppr 20360  df-dvdsr 20383  df-unit 20384  df-invr 20414  df-dvr 20427  df-rhm 20498  df-subrng 20572  df-subrg 20597  df-drng 20753  df-lmod 20882  df-lss 20953  df-lsp 20993  df-sra 21195  df-rgmod 21196  df-lidl 21241  df-rsp 21242  df-2idl 21283  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-fbas 21384  df-fg 21385  df-cnfld 21388  df-zring 21481  df-zrh 21537  df-zn 21540  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cld 23048  df-ntr 23049  df-cls 23050  df-nei 23127  df-lp 23165  df-perf 23166  df-cn 23256  df-cnp 23257  df-haus 23344  df-cmp 23416  df-tx 23591  df-hmeo 23784  df-fil 23875  df-fm 23967  df-flim 23968  df-flf 23969  df-xms 24351  df-ms 24352  df-tms 24353  df-cncf 24923  df-0p 25724  df-limc 25921  df-dv 25922  df-ply 26247  df-idp 26248  df-coe 26249  df-dgr 26250  df-quot 26351  df-ulm 26438  df-log 26616  df-cxp 26617  df-atan 26928  df-em 27054  df-cht 27158  df-vma 27159  df-chp 27160  df-ppi 27161  df-mu 27162  df-dchr 27295
This theorem is referenced by:  dchrisumn0  27583  rpvmasum  27588
  Copyright terms: Public domain W3C validator