| Step | Hyp | Ref
| Expression |
| 1 | | rpvmasum.z |
. 2
⊢ 𝑍 =
(ℤ/nℤ‘𝑁) |
| 2 | | rpvmasum.l |
. 2
⊢ 𝐿 = (ℤRHom‘𝑍) |
| 3 | | rpvmasum.a |
. 2
⊢ (𝜑 → 𝑁 ∈ ℕ) |
| 4 | | rpvmasum2.g |
. 2
⊢ 𝐺 = (DChr‘𝑁) |
| 5 | | rpvmasum2.d |
. 2
⊢ 𝐷 = (Base‘𝐺) |
| 6 | | rpvmasum2.1 |
. 2
⊢ 1 =
(0g‘𝐺) |
| 7 | | eqid 2736 |
. 2
⊢ (𝑏 ∈ ℕ ↦
Σ𝑦 ∈ {𝑖 ∈ ℕ ∣ 𝑖 ∥ 𝑏} (𝑋‘(𝐿‘𝑦))) = (𝑏 ∈ ℕ ↦ Σ𝑦 ∈ {𝑖 ∈ ℕ ∣ 𝑖 ∥ 𝑏} (𝑋‘(𝐿‘𝑦))) |
| 8 | | rpvmasum2.w |
. . . . 5
⊢ 𝑊 = {𝑦 ∈ (𝐷 ∖ { 1 }) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿‘𝑚)) / 𝑚) = 0} |
| 9 | 8 | ssrab3 4081 |
. . . 4
⊢ 𝑊 ⊆ (𝐷 ∖ { 1 }) |
| 10 | | difss 4135 |
. . . 4
⊢ (𝐷 ∖ { 1 }) ⊆ 𝐷 |
| 11 | 9, 10 | sstri 3992 |
. . 3
⊢ 𝑊 ⊆ 𝐷 |
| 12 | | dchrisum0.b |
. . 3
⊢ (𝜑 → 𝑋 ∈ 𝑊) |
| 13 | 11, 12 | sselid 3980 |
. 2
⊢ (𝜑 → 𝑋 ∈ 𝐷) |
| 14 | 1, 2, 3, 4, 5, 6, 8, 12 | dchrisum0re 27558 |
. 2
⊢ (𝜑 → 𝑋:(Base‘𝑍)⟶ℝ) |
| 15 | | fveq2 6905 |
. . . . . . . 8
⊢ (𝑘 = (𝑚 · 𝑑) → (√‘𝑘) = (√‘(𝑚 · 𝑑))) |
| 16 | 15 | oveq2d 7448 |
. . . . . . 7
⊢ (𝑘 = (𝑚 · 𝑑) → ((𝑋‘(𝐿‘𝑚)) / (√‘𝑘)) = ((𝑋‘(𝐿‘𝑚)) / (√‘(𝑚 · 𝑑)))) |
| 17 | | rpre 13044 |
. . . . . . . 8
⊢ (𝑥 ∈ ℝ+
→ 𝑥 ∈
ℝ) |
| 18 | 17 | adantl 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈
ℝ) |
| 19 | 13 | ad3antrrr 730 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑘 ∈
(1...(⌊‘𝑥)))
∧ 𝑚 ∈ {𝑖 ∈ ℕ ∣ 𝑖 ∥ 𝑘}) → 𝑋 ∈ 𝐷) |
| 20 | | elrabi 3686 |
. . . . . . . . . . . 12
⊢ (𝑚 ∈ {𝑖 ∈ ℕ ∣ 𝑖 ∥ 𝑘} → 𝑚 ∈ ℕ) |
| 21 | 20 | nnzd 12642 |
. . . . . . . . . . 11
⊢ (𝑚 ∈ {𝑖 ∈ ℕ ∣ 𝑖 ∥ 𝑘} → 𝑚 ∈ ℤ) |
| 22 | 21 | adantl 481 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑘 ∈
(1...(⌊‘𝑥)))
∧ 𝑚 ∈ {𝑖 ∈ ℕ ∣ 𝑖 ∥ 𝑘}) → 𝑚 ∈ ℤ) |
| 23 | 4, 1, 5, 2, 19, 22 | dchrzrhcl 27290 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑘 ∈
(1...(⌊‘𝑥)))
∧ 𝑚 ∈ {𝑖 ∈ ℕ ∣ 𝑖 ∥ 𝑘}) → (𝑋‘(𝐿‘𝑚)) ∈ ℂ) |
| 24 | | elfznn 13594 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈
(1...(⌊‘𝑥))
→ 𝑘 ∈
ℕ) |
| 25 | 24 | adantl 481 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑘 ∈
(1...(⌊‘𝑥)))
→ 𝑘 ∈
ℕ) |
| 26 | 25 | nnrpd 13076 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑘 ∈
(1...(⌊‘𝑥)))
→ 𝑘 ∈
ℝ+) |
| 27 | 26 | rpsqrtcld 15451 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑘 ∈
(1...(⌊‘𝑥)))
→ (√‘𝑘)
∈ ℝ+) |
| 28 | 27 | rpcnd 13080 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑘 ∈
(1...(⌊‘𝑥)))
→ (√‘𝑘)
∈ ℂ) |
| 29 | 28 | adantr 480 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑘 ∈
(1...(⌊‘𝑥)))
∧ 𝑚 ∈ {𝑖 ∈ ℕ ∣ 𝑖 ∥ 𝑘}) → (√‘𝑘) ∈ ℂ) |
| 30 | 27 | rpne0d 13083 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑘 ∈
(1...(⌊‘𝑥)))
→ (√‘𝑘)
≠ 0) |
| 31 | 30 | adantr 480 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑘 ∈
(1...(⌊‘𝑥)))
∧ 𝑚 ∈ {𝑖 ∈ ℕ ∣ 𝑖 ∥ 𝑘}) → (√‘𝑘) ≠ 0) |
| 32 | 23, 29, 31 | divcld 12044 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑘 ∈
(1...(⌊‘𝑥)))
∧ 𝑚 ∈ {𝑖 ∈ ℕ ∣ 𝑖 ∥ 𝑘}) → ((𝑋‘(𝐿‘𝑚)) / (√‘𝑘)) ∈ ℂ) |
| 33 | 32 | anasss 466 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑘 ∈
(1...(⌊‘𝑥))
∧ 𝑚 ∈ {𝑖 ∈ ℕ ∣ 𝑖 ∥ 𝑘})) → ((𝑋‘(𝐿‘𝑚)) / (√‘𝑘)) ∈ ℂ) |
| 34 | 16, 18, 33 | dvdsflsumcom 27232 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
Σ𝑘 ∈
(1...(⌊‘𝑥))Σ𝑚 ∈ {𝑖 ∈ ℕ ∣ 𝑖 ∥ 𝑘} ((𝑋‘(𝐿‘𝑚)) / (√‘𝑘)) = Σ𝑚 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ (1...(⌊‘(𝑥 / 𝑚)))((𝑋‘(𝐿‘𝑚)) / (√‘(𝑚 · 𝑑)))) |
| 35 | 1, 2, 3, 4, 5, 6, 7 | dchrisum0fval 27550 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℕ → ((𝑏 ∈ ℕ ↦
Σ𝑦 ∈ {𝑖 ∈ ℕ ∣ 𝑖 ∥ 𝑏} (𝑋‘(𝐿‘𝑦)))‘𝑘) = Σ𝑚 ∈ {𝑖 ∈ ℕ ∣ 𝑖 ∥ 𝑘} (𝑋‘(𝐿‘𝑚))) |
| 36 | 25, 35 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑘 ∈
(1...(⌊‘𝑥)))
→ ((𝑏 ∈ ℕ
↦ Σ𝑦 ∈
{𝑖 ∈ ℕ ∣
𝑖 ∥ 𝑏} (𝑋‘(𝐿‘𝑦)))‘𝑘) = Σ𝑚 ∈ {𝑖 ∈ ℕ ∣ 𝑖 ∥ 𝑘} (𝑋‘(𝐿‘𝑚))) |
| 37 | 36 | oveq1d 7447 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑘 ∈
(1...(⌊‘𝑥)))
→ (((𝑏 ∈ ℕ
↦ Σ𝑦 ∈
{𝑖 ∈ ℕ ∣
𝑖 ∥ 𝑏} (𝑋‘(𝐿‘𝑦)))‘𝑘) / (√‘𝑘)) = (Σ𝑚 ∈ {𝑖 ∈ ℕ ∣ 𝑖 ∥ 𝑘} (𝑋‘(𝐿‘𝑚)) / (√‘𝑘))) |
| 38 | | fzfid 14015 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑘 ∈
(1...(⌊‘𝑥)))
→ (1...𝑘) ∈
Fin) |
| 39 | | dvdsssfz1 16356 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ℕ → {𝑖 ∈ ℕ ∣ 𝑖 ∥ 𝑘} ⊆ (1...𝑘)) |
| 40 | 25, 39 | syl 17 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑘 ∈
(1...(⌊‘𝑥)))
→ {𝑖 ∈ ℕ
∣ 𝑖 ∥ 𝑘} ⊆ (1...𝑘)) |
| 41 | 38, 40 | ssfid 9302 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑘 ∈
(1...(⌊‘𝑥)))
→ {𝑖 ∈ ℕ
∣ 𝑖 ∥ 𝑘} ∈ Fin) |
| 42 | 41, 28, 23, 30 | fsumdivc 15823 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑘 ∈
(1...(⌊‘𝑥)))
→ (Σ𝑚 ∈
{𝑖 ∈ ℕ ∣
𝑖 ∥ 𝑘} (𝑋‘(𝐿‘𝑚)) / (√‘𝑘)) = Σ𝑚 ∈ {𝑖 ∈ ℕ ∣ 𝑖 ∥ 𝑘} ((𝑋‘(𝐿‘𝑚)) / (√‘𝑘))) |
| 43 | 37, 42 | eqtrd 2776 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑘 ∈
(1...(⌊‘𝑥)))
→ (((𝑏 ∈ ℕ
↦ Σ𝑦 ∈
{𝑖 ∈ ℕ ∣
𝑖 ∥ 𝑏} (𝑋‘(𝐿‘𝑦)))‘𝑘) / (√‘𝑘)) = Σ𝑚 ∈ {𝑖 ∈ ℕ ∣ 𝑖 ∥ 𝑘} ((𝑋‘(𝐿‘𝑚)) / (√‘𝑘))) |
| 44 | 43 | sumeq2dv 15739 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
Σ𝑘 ∈
(1...(⌊‘𝑥))(((𝑏 ∈ ℕ ↦ Σ𝑦 ∈ {𝑖 ∈ ℕ ∣ 𝑖 ∥ 𝑏} (𝑋‘(𝐿‘𝑦)))‘𝑘) / (√‘𝑘)) = Σ𝑘 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ {𝑖 ∈ ℕ ∣ 𝑖 ∥ 𝑘} ((𝑋‘(𝐿‘𝑚)) / (√‘𝑘))) |
| 45 | | rprege0 13051 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ℝ+
→ (𝑥 ∈ ℝ
∧ 0 ≤ 𝑥)) |
| 46 | 45 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (𝑥 ∈ ℝ ∧ 0 ≤
𝑥)) |
| 47 | | resqrtth 15295 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℝ ∧ 0 ≤
𝑥) →
((√‘𝑥)↑2)
= 𝑥) |
| 48 | 46, 47 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
((√‘𝑥)↑2)
= 𝑥) |
| 49 | 48 | fveq2d 6909 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(⌊‘((√‘𝑥)↑2)) = (⌊‘𝑥)) |
| 50 | 49 | oveq2d 7448 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(1...(⌊‘((√‘𝑥)↑2))) = (1...(⌊‘𝑥))) |
| 51 | 48 | fvoveq1d 7454 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(⌊‘(((√‘𝑥)↑2) / 𝑚)) = (⌊‘(𝑥 / 𝑚))) |
| 52 | 51 | oveq2d 7448 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(1...(⌊‘(((√‘𝑥)↑2) / 𝑚))) = (1...(⌊‘(𝑥 / 𝑚)))) |
| 53 | 52 | sumeq1d 15737 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
Σ𝑑 ∈
(1...(⌊‘(((√‘𝑥)↑2) / 𝑚)))((𝑋‘(𝐿‘𝑚)) / (√‘(𝑚 · 𝑑))) = Σ𝑑 ∈ (1...(⌊‘(𝑥 / 𝑚)))((𝑋‘(𝐿‘𝑚)) / (√‘(𝑚 · 𝑑)))) |
| 54 | 53 | adantr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈
(1...(⌊‘((√‘𝑥)↑2)))) → Σ𝑑 ∈
(1...(⌊‘(((√‘𝑥)↑2) / 𝑚)))((𝑋‘(𝐿‘𝑚)) / (√‘(𝑚 · 𝑑))) = Σ𝑑 ∈ (1...(⌊‘(𝑥 / 𝑚)))((𝑋‘(𝐿‘𝑚)) / (√‘(𝑚 · 𝑑)))) |
| 55 | 50, 54 | sumeq12dv 15743 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
Σ𝑚 ∈
(1...(⌊‘((√‘𝑥)↑2)))Σ𝑑 ∈
(1...(⌊‘(((√‘𝑥)↑2) / 𝑚)))((𝑋‘(𝐿‘𝑚)) / (√‘(𝑚 · 𝑑))) = Σ𝑚 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ (1...(⌊‘(𝑥 / 𝑚)))((𝑋‘(𝐿‘𝑚)) / (√‘(𝑚 · 𝑑)))) |
| 56 | 34, 44, 55 | 3eqtr4d 2786 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
Σ𝑘 ∈
(1...(⌊‘𝑥))(((𝑏 ∈ ℕ ↦ Σ𝑦 ∈ {𝑖 ∈ ℕ ∣ 𝑖 ∥ 𝑏} (𝑋‘(𝐿‘𝑦)))‘𝑘) / (√‘𝑘)) = Σ𝑚 ∈
(1...(⌊‘((√‘𝑥)↑2)))Σ𝑑 ∈
(1...(⌊‘(((√‘𝑥)↑2) / 𝑚)))((𝑋‘(𝐿‘𝑚)) / (√‘(𝑚 · 𝑑)))) |
| 57 | 56 | mpteq2dva 5241 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦
Σ𝑘 ∈
(1...(⌊‘𝑥))(((𝑏 ∈ ℕ ↦ Σ𝑦 ∈ {𝑖 ∈ ℕ ∣ 𝑖 ∥ 𝑏} (𝑋‘(𝐿‘𝑦)))‘𝑘) / (√‘𝑘))) = (𝑥 ∈ ℝ+ ↦
Σ𝑚 ∈
(1...(⌊‘((√‘𝑥)↑2)))Σ𝑑 ∈
(1...(⌊‘(((√‘𝑥)↑2) / 𝑚)))((𝑋‘(𝐿‘𝑚)) / (√‘(𝑚 · 𝑑))))) |
| 58 | | rpsqrtcl 15304 |
. . . . . 6
⊢ (𝑥 ∈ ℝ+
→ (√‘𝑥)
∈ ℝ+) |
| 59 | 58 | adantl 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(√‘𝑥) ∈
ℝ+) |
| 60 | | eqidd 2737 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦
(√‘𝑥)) = (𝑥 ∈ ℝ+
↦ (√‘𝑥))) |
| 61 | | eqidd 2737 |
. . . . 5
⊢ (𝜑 → (𝑧 ∈ ℝ+ ↦
Σ𝑚 ∈
(1...(⌊‘(𝑧↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿‘𝑚)) / (√‘(𝑚 · 𝑑)))) = (𝑧 ∈ ℝ+ ↦
Σ𝑚 ∈
(1...(⌊‘(𝑧↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿‘𝑚)) / (√‘(𝑚 · 𝑑))))) |
| 62 | | oveq1 7439 |
. . . . . . . 8
⊢ (𝑧 = (√‘𝑥) → (𝑧↑2) = ((√‘𝑥)↑2)) |
| 63 | 62 | fveq2d 6909 |
. . . . . . 7
⊢ (𝑧 = (√‘𝑥) → (⌊‘(𝑧↑2)) =
(⌊‘((√‘𝑥)↑2))) |
| 64 | 63 | oveq2d 7448 |
. . . . . 6
⊢ (𝑧 = (√‘𝑥) →
(1...(⌊‘(𝑧↑2))) =
(1...(⌊‘((√‘𝑥)↑2)))) |
| 65 | 62 | fvoveq1d 7454 |
. . . . . . . . 9
⊢ (𝑧 = (√‘𝑥) → (⌊‘((𝑧↑2) / 𝑚)) = (⌊‘(((√‘𝑥)↑2) / 𝑚))) |
| 66 | 65 | oveq2d 7448 |
. . . . . . . 8
⊢ (𝑧 = (√‘𝑥) →
(1...(⌊‘((𝑧↑2) / 𝑚))) =
(1...(⌊‘(((√‘𝑥)↑2) / 𝑚)))) |
| 67 | 66 | sumeq1d 15737 |
. . . . . . 7
⊢ (𝑧 = (√‘𝑥) → Σ𝑑 ∈
(1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿‘𝑚)) / (√‘(𝑚 · 𝑑))) = Σ𝑑 ∈
(1...(⌊‘(((√‘𝑥)↑2) / 𝑚)))((𝑋‘(𝐿‘𝑚)) / (√‘(𝑚 · 𝑑)))) |
| 68 | 67 | adantr 480 |
. . . . . 6
⊢ ((𝑧 = (√‘𝑥) ∧ 𝑚 ∈ (1...(⌊‘(𝑧↑2)))) → Σ𝑑 ∈
(1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿‘𝑚)) / (√‘(𝑚 · 𝑑))) = Σ𝑑 ∈
(1...(⌊‘(((√‘𝑥)↑2) / 𝑚)))((𝑋‘(𝐿‘𝑚)) / (√‘(𝑚 · 𝑑)))) |
| 69 | 64, 68 | sumeq12dv 15743 |
. . . . 5
⊢ (𝑧 = (√‘𝑥) → Σ𝑚 ∈
(1...(⌊‘(𝑧↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿‘𝑚)) / (√‘(𝑚 · 𝑑))) = Σ𝑚 ∈
(1...(⌊‘((√‘𝑥)↑2)))Σ𝑑 ∈
(1...(⌊‘(((√‘𝑥)↑2) / 𝑚)))((𝑋‘(𝐿‘𝑚)) / (√‘(𝑚 · 𝑑)))) |
| 70 | 59, 60, 61, 69 | fmptco 7148 |
. . . 4
⊢ (𝜑 → ((𝑧 ∈ ℝ+ ↦
Σ𝑚 ∈
(1...(⌊‘(𝑧↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿‘𝑚)) / (√‘(𝑚 · 𝑑)))) ∘ (𝑥 ∈ ℝ+ ↦
(√‘𝑥))) =
(𝑥 ∈
ℝ+ ↦ Σ𝑚 ∈
(1...(⌊‘((√‘𝑥)↑2)))Σ𝑑 ∈
(1...(⌊‘(((√‘𝑥)↑2) / 𝑚)))((𝑋‘(𝐿‘𝑚)) / (√‘(𝑚 · 𝑑))))) |
| 71 | 57, 70 | eqtr4d 2779 |
. . 3
⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦
Σ𝑘 ∈
(1...(⌊‘𝑥))(((𝑏 ∈ ℕ ↦ Σ𝑦 ∈ {𝑖 ∈ ℕ ∣ 𝑖 ∥ 𝑏} (𝑋‘(𝐿‘𝑦)))‘𝑘) / (√‘𝑘))) = ((𝑧 ∈ ℝ+ ↦
Σ𝑚 ∈
(1...(⌊‘(𝑧↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿‘𝑚)) / (√‘(𝑚 · 𝑑)))) ∘ (𝑥 ∈ ℝ+ ↦
(√‘𝑥)))) |
| 72 | | eqid 2736 |
. . . . . . . 8
⊢ (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑎)) / (√‘𝑎))) = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑎)) / (√‘𝑎))) |
| 73 | 1, 2, 3, 4, 5, 6, 8, 12, 72 | dchrisum0lema 27559 |
. . . . . . 7
⊢ (𝜑 → ∃𝑡∃𝑐 ∈ (0[,)+∞)(seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑎)) / (√‘𝑎)))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + ,
(𝑎 ∈ ℕ ↦
((𝑋‘(𝐿‘𝑎)) / (√‘𝑎))))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / (√‘𝑦)))) |
| 74 | 3 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + ,
(𝑎 ∈ ℕ ↦
((𝑋‘(𝐿‘𝑎)) / (√‘𝑎)))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + ,
(𝑎 ∈ ℕ ↦
((𝑋‘(𝐿‘𝑎)) / (√‘𝑎))))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / (√‘𝑦))))) → 𝑁 ∈ ℕ) |
| 75 | 12 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + ,
(𝑎 ∈ ℕ ↦
((𝑋‘(𝐿‘𝑎)) / (√‘𝑎)))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + ,
(𝑎 ∈ ℕ ↦
((𝑋‘(𝐿‘𝑎)) / (√‘𝑎))))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / (√‘𝑦))))) → 𝑋 ∈ 𝑊) |
| 76 | | simprl 770 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + ,
(𝑎 ∈ ℕ ↦
((𝑋‘(𝐿‘𝑎)) / (√‘𝑎)))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + ,
(𝑎 ∈ ℕ ↦
((𝑋‘(𝐿‘𝑎)) / (√‘𝑎))))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / (√‘𝑦))))) → 𝑐 ∈ (0[,)+∞)) |
| 77 | | simprrl 780 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + ,
(𝑎 ∈ ℕ ↦
((𝑋‘(𝐿‘𝑎)) / (√‘𝑎)))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + ,
(𝑎 ∈ ℕ ↦
((𝑋‘(𝐿‘𝑎)) / (√‘𝑎))))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / (√‘𝑦))))) → seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑎)) / (√‘𝑎)))) ⇝ 𝑡) |
| 78 | | simprrr 781 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + ,
(𝑎 ∈ ℕ ↦
((𝑋‘(𝐿‘𝑎)) / (√‘𝑎)))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + ,
(𝑎 ∈ ℕ ↦
((𝑋‘(𝐿‘𝑎)) / (√‘𝑎))))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / (√‘𝑦))))) → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + ,
(𝑎 ∈ ℕ ↦
((𝑋‘(𝐿‘𝑎)) / (√‘𝑎))))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / (√‘𝑦))) |
| 79 | 1, 2, 74, 4, 5, 6,
8, 75, 72, 76, 77, 78 | dchrisum0lem3 27564 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + ,
(𝑎 ∈ ℕ ↦
((𝑋‘(𝐿‘𝑎)) / (√‘𝑎)))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + ,
(𝑎 ∈ ℕ ↦
((𝑋‘(𝐿‘𝑎)) / (√‘𝑎))))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / (√‘𝑦))))) → (𝑧 ∈ ℝ+ ↦
Σ𝑚 ∈
(1...(⌊‘(𝑧↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿‘𝑚)) / (√‘(𝑚 · 𝑑)))) ∈ 𝑂(1)) |
| 80 | 79 | rexlimdvaa 3155 |
. . . . . . . 8
⊢ (𝜑 → (∃𝑐 ∈ (0[,)+∞)(seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑎)) / (√‘𝑎)))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + ,
(𝑎 ∈ ℕ ↦
((𝑋‘(𝐿‘𝑎)) / (√‘𝑎))))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / (√‘𝑦))) → (𝑧 ∈ ℝ+ ↦
Σ𝑚 ∈
(1...(⌊‘(𝑧↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿‘𝑚)) / (√‘(𝑚 · 𝑑)))) ∈ 𝑂(1))) |
| 81 | 80 | exlimdv 1932 |
. . . . . . 7
⊢ (𝜑 → (∃𝑡∃𝑐 ∈ (0[,)+∞)(seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑎)) / (√‘𝑎)))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + ,
(𝑎 ∈ ℕ ↦
((𝑋‘(𝐿‘𝑎)) / (√‘𝑎))))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / (√‘𝑦))) → (𝑧 ∈ ℝ+ ↦
Σ𝑚 ∈
(1...(⌊‘(𝑧↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿‘𝑚)) / (√‘(𝑚 · 𝑑)))) ∈ 𝑂(1))) |
| 82 | 73, 81 | mpd 15 |
. . . . . 6
⊢ (𝜑 → (𝑧 ∈ ℝ+ ↦
Σ𝑚 ∈
(1...(⌊‘(𝑧↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿‘𝑚)) / (√‘(𝑚 · 𝑑)))) ∈ 𝑂(1)) |
| 83 | | o1f 15566 |
. . . . . 6
⊢ ((𝑧 ∈ ℝ+
↦ Σ𝑚 ∈
(1...(⌊‘(𝑧↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿‘𝑚)) / (√‘(𝑚 · 𝑑)))) ∈ 𝑂(1) → (𝑧 ∈ ℝ+
↦ Σ𝑚 ∈
(1...(⌊‘(𝑧↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿‘𝑚)) / (√‘(𝑚 · 𝑑)))):dom (𝑧 ∈ ℝ+ ↦
Σ𝑚 ∈
(1...(⌊‘(𝑧↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿‘𝑚)) / (√‘(𝑚 · 𝑑))))⟶ℂ) |
| 84 | 82, 83 | syl 17 |
. . . . 5
⊢ (𝜑 → (𝑧 ∈ ℝ+ ↦
Σ𝑚 ∈
(1...(⌊‘(𝑧↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿‘𝑚)) / (√‘(𝑚 · 𝑑)))):dom (𝑧 ∈ ℝ+ ↦
Σ𝑚 ∈
(1...(⌊‘(𝑧↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿‘𝑚)) / (√‘(𝑚 · 𝑑))))⟶ℂ) |
| 85 | | sumex 15725 |
. . . . . . 7
⊢
Σ𝑚 ∈
(1...(⌊‘(𝑧↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿‘𝑚)) / (√‘(𝑚 · 𝑑))) ∈ V |
| 86 | | eqid 2736 |
. . . . . . 7
⊢ (𝑧 ∈ ℝ+
↦ Σ𝑚 ∈
(1...(⌊‘(𝑧↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿‘𝑚)) / (√‘(𝑚 · 𝑑)))) = (𝑧 ∈ ℝ+ ↦
Σ𝑚 ∈
(1...(⌊‘(𝑧↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿‘𝑚)) / (√‘(𝑚 · 𝑑)))) |
| 87 | 85, 86 | dmmpti 6711 |
. . . . . 6
⊢ dom
(𝑧 ∈
ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘(𝑧↑2)))Σ𝑑 ∈
(1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿‘𝑚)) / (√‘(𝑚 · 𝑑)))) = ℝ+ |
| 88 | 87 | feq2i 6727 |
. . . . 5
⊢ ((𝑧 ∈ ℝ+
↦ Σ𝑚 ∈
(1...(⌊‘(𝑧↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿‘𝑚)) / (√‘(𝑚 · 𝑑)))):dom (𝑧 ∈ ℝ+ ↦
Σ𝑚 ∈
(1...(⌊‘(𝑧↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿‘𝑚)) / (√‘(𝑚 · 𝑑))))⟶ℂ ↔ (𝑧 ∈ ℝ+
↦ Σ𝑚 ∈
(1...(⌊‘(𝑧↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿‘𝑚)) / (√‘(𝑚 · 𝑑)))):ℝ+⟶ℂ) |
| 89 | 84, 88 | sylib 218 |
. . . 4
⊢ (𝜑 → (𝑧 ∈ ℝ+ ↦
Σ𝑚 ∈
(1...(⌊‘(𝑧↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿‘𝑚)) / (√‘(𝑚 · 𝑑)))):ℝ+⟶ℂ) |
| 90 | | rpssre 13043 |
. . . . 5
⊢
ℝ+ ⊆ ℝ |
| 91 | 90 | a1i 11 |
. . . 4
⊢ (𝜑 → ℝ+
⊆ ℝ) |
| 92 | | resqcl 14165 |
. . . . 5
⊢ (𝑡 ∈ ℝ → (𝑡↑2) ∈
ℝ) |
| 93 | | 0red 11265 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑡 ∈ ℝ) ∧ (𝑥 ∈ ℝ+ ∧ (𝑡↑2) ≤ 𝑥)) → 0 ∈ ℝ) |
| 94 | | simplr 768 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑡 ∈ ℝ) ∧ (𝑥 ∈ ℝ+ ∧ (𝑡↑2) ≤ 𝑥)) → 𝑡 ∈ ℝ) |
| 95 | | simplrr 777 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑡 ∈ ℝ) ∧ (𝑥 ∈ ℝ+ ∧ (𝑡↑2) ≤ 𝑥)) ∧ 0 ≤ 𝑡) → (𝑡↑2) ≤ 𝑥) |
| 96 | 45 | ad2antrl 728 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑡 ∈ ℝ) ∧ (𝑥 ∈ ℝ+ ∧ (𝑡↑2) ≤ 𝑥)) → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) |
| 97 | 96 | adantr 480 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑡 ∈ ℝ) ∧ (𝑥 ∈ ℝ+ ∧ (𝑡↑2) ≤ 𝑥)) ∧ 0 ≤ 𝑡) → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) |
| 98 | 97, 47 | syl 17 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑡 ∈ ℝ) ∧ (𝑥 ∈ ℝ+ ∧ (𝑡↑2) ≤ 𝑥)) ∧ 0 ≤ 𝑡) → ((√‘𝑥)↑2) = 𝑥) |
| 99 | 95, 98 | breqtrrd 5170 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑡 ∈ ℝ) ∧ (𝑥 ∈ ℝ+ ∧ (𝑡↑2) ≤ 𝑥)) ∧ 0 ≤ 𝑡) → (𝑡↑2) ≤ ((√‘𝑥)↑2)) |
| 100 | 94 | adantr 480 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑡 ∈ ℝ) ∧ (𝑥 ∈ ℝ+ ∧ (𝑡↑2) ≤ 𝑥)) ∧ 0 ≤ 𝑡) → 𝑡 ∈ ℝ) |
| 101 | 59 | rpred 13078 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(√‘𝑥) ∈
ℝ) |
| 102 | 101 | ad2ant2r 747 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑡 ∈ ℝ) ∧ (𝑥 ∈ ℝ+ ∧ (𝑡↑2) ≤ 𝑥)) → (√‘𝑥) ∈ ℝ) |
| 103 | 102 | adantr 480 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑡 ∈ ℝ) ∧ (𝑥 ∈ ℝ+ ∧ (𝑡↑2) ≤ 𝑥)) ∧ 0 ≤ 𝑡) → (√‘𝑥) ∈ ℝ) |
| 104 | | simpr 484 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑡 ∈ ℝ) ∧ (𝑥 ∈ ℝ+ ∧ (𝑡↑2) ≤ 𝑥)) ∧ 0 ≤ 𝑡) → 0 ≤ 𝑡) |
| 105 | | sqrtge0 15297 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℝ ∧ 0 ≤
𝑥) → 0 ≤
(√‘𝑥)) |
| 106 | 96, 105 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑡 ∈ ℝ) ∧ (𝑥 ∈ ℝ+ ∧ (𝑡↑2) ≤ 𝑥)) → 0 ≤ (√‘𝑥)) |
| 107 | 106 | adantr 480 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑡 ∈ ℝ) ∧ (𝑥 ∈ ℝ+ ∧ (𝑡↑2) ≤ 𝑥)) ∧ 0 ≤ 𝑡) → 0 ≤ (√‘𝑥)) |
| 108 | 100, 103,
104, 107 | le2sqd 14297 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑡 ∈ ℝ) ∧ (𝑥 ∈ ℝ+ ∧ (𝑡↑2) ≤ 𝑥)) ∧ 0 ≤ 𝑡) → (𝑡 ≤ (√‘𝑥) ↔ (𝑡↑2) ≤ ((√‘𝑥)↑2))) |
| 109 | 99, 108 | mpbird 257 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑡 ∈ ℝ) ∧ (𝑥 ∈ ℝ+ ∧ (𝑡↑2) ≤ 𝑥)) ∧ 0 ≤ 𝑡) → 𝑡 ≤ (√‘𝑥)) |
| 110 | 94 | adantr 480 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑡 ∈ ℝ) ∧ (𝑥 ∈ ℝ+ ∧ (𝑡↑2) ≤ 𝑥)) ∧ 𝑡 ≤ 0) → 𝑡 ∈ ℝ) |
| 111 | | 0red 11265 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑡 ∈ ℝ) ∧ (𝑥 ∈ ℝ+ ∧ (𝑡↑2) ≤ 𝑥)) ∧ 𝑡 ≤ 0) → 0 ∈
ℝ) |
| 112 | 102 | adantr 480 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑡 ∈ ℝ) ∧ (𝑥 ∈ ℝ+ ∧ (𝑡↑2) ≤ 𝑥)) ∧ 𝑡 ≤ 0) → (√‘𝑥) ∈
ℝ) |
| 113 | | simpr 484 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑡 ∈ ℝ) ∧ (𝑥 ∈ ℝ+ ∧ (𝑡↑2) ≤ 𝑥)) ∧ 𝑡 ≤ 0) → 𝑡 ≤ 0) |
| 114 | 106 | adantr 480 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑡 ∈ ℝ) ∧ (𝑥 ∈ ℝ+ ∧ (𝑡↑2) ≤ 𝑥)) ∧ 𝑡 ≤ 0) → 0 ≤ (√‘𝑥)) |
| 115 | 110, 111,
112, 113, 114 | letrd 11419 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑡 ∈ ℝ) ∧ (𝑥 ∈ ℝ+ ∧ (𝑡↑2) ≤ 𝑥)) ∧ 𝑡 ≤ 0) → 𝑡 ≤ (√‘𝑥)) |
| 116 | 93, 94, 109, 115 | lecasei 11368 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑡 ∈ ℝ) ∧ (𝑥 ∈ ℝ+ ∧ (𝑡↑2) ≤ 𝑥)) → 𝑡 ≤ (√‘𝑥)) |
| 117 | 116 | expr 456 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → ((𝑡↑2) ≤ 𝑥 → 𝑡 ≤ (√‘𝑥))) |
| 118 | 117 | ralrimiva 3145 |
. . . . 5
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ) → ∀𝑥 ∈ ℝ+
((𝑡↑2) ≤ 𝑥 → 𝑡 ≤ (√‘𝑥))) |
| 119 | | breq1 5145 |
. . . . . 6
⊢ (𝑐 = (𝑡↑2) → (𝑐 ≤ 𝑥 ↔ (𝑡↑2) ≤ 𝑥)) |
| 120 | 119 | rspceaimv 3627 |
. . . . 5
⊢ (((𝑡↑2) ∈ ℝ ∧
∀𝑥 ∈
ℝ+ ((𝑡↑2) ≤ 𝑥 → 𝑡 ≤ (√‘𝑥))) → ∃𝑐 ∈ ℝ ∀𝑥 ∈ ℝ+ (𝑐 ≤ 𝑥 → 𝑡 ≤ (√‘𝑥))) |
| 121 | 92, 118, 120 | syl2an2 686 |
. . . 4
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ) → ∃𝑐 ∈ ℝ ∀𝑥 ∈ ℝ+
(𝑐 ≤ 𝑥 → 𝑡 ≤ (√‘𝑥))) |
| 122 | 89, 82, 59, 91, 121 | o1compt 15624 |
. . 3
⊢ (𝜑 → ((𝑧 ∈ ℝ+ ↦
Σ𝑚 ∈
(1...(⌊‘(𝑧↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿‘𝑚)) / (√‘(𝑚 · 𝑑)))) ∘ (𝑥 ∈ ℝ+ ↦
(√‘𝑥))) ∈
𝑂(1)) |
| 123 | 71, 122 | eqeltrd 2840 |
. 2
⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦
Σ𝑘 ∈
(1...(⌊‘𝑥))(((𝑏 ∈ ℕ ↦ Σ𝑦 ∈ {𝑖 ∈ ℕ ∣ 𝑖 ∥ 𝑏} (𝑋‘(𝐿‘𝑦)))‘𝑘) / (√‘𝑘))) ∈ 𝑂(1)) |
| 124 | 1, 2, 3, 4, 5, 6, 7, 13, 14, 123 | dchrisum0fno1 27556 |
1
⊢ ¬
𝜑 |