MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrisum0 Structured version   Visualization version   GIF version

Theorem dchrisum0 26868
Description: The sum Σ𝑛 ∈ ℕ, 𝑋(𝑛) / 𝑛 is nonzero for all non-principal Dirichlet characters (i.e. the assumption 𝑋𝑊 is contradictory). This is the key result that allows to eliminate the conditionals from dchrmusum2 26842 and dchrvmasumif 26851. Lemma 9.4.4 of [Shapiro], p. 382. (Contributed by Mario Carneiro, 12-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z 𝑍 = (ℤ/nℤ‘𝑁)
rpvmasum.l 𝐿 = (ℤRHom‘𝑍)
rpvmasum.a (𝜑𝑁 ∈ ℕ)
rpvmasum2.g 𝐺 = (DChr‘𝑁)
rpvmasum2.d 𝐷 = (Base‘𝐺)
rpvmasum2.1 1 = (0g𝐺)
rpvmasum2.w 𝑊 = {𝑦 ∈ (𝐷 ∖ { 1 }) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0}
dchrisum0.b (𝜑𝑋𝑊)
Assertion
Ref Expression
dchrisum0 ¬ 𝜑
Distinct variable groups:   𝑦,𝑚, 1   𝑚,𝑁,𝑦   𝜑,𝑚   𝑚,𝑍,𝑦   𝐷,𝑚,𝑦   𝑚,𝐿,𝑦   𝑚,𝑋,𝑦
Allowed substitution hints:   𝜑(𝑦)   𝐺(𝑦,𝑚)   𝑊(𝑦,𝑚)

Proof of Theorem dchrisum0
Dummy variables 𝑘 𝑥 𝑧 𝑐 𝑖 𝑡 𝑑 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rpvmasum.z . 2 𝑍 = (ℤ/nℤ‘𝑁)
2 rpvmasum.l . 2 𝐿 = (ℤRHom‘𝑍)
3 rpvmasum.a . 2 (𝜑𝑁 ∈ ℕ)
4 rpvmasum2.g . 2 𝐺 = (DChr‘𝑁)
5 rpvmasum2.d . 2 𝐷 = (Base‘𝐺)
6 rpvmasum2.1 . 2 1 = (0g𝐺)
7 eqid 2736 . 2 (𝑏 ∈ ℕ ↦ Σ𝑦 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑏} (𝑋‘(𝐿𝑦))) = (𝑏 ∈ ℕ ↦ Σ𝑦 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑏} (𝑋‘(𝐿𝑦)))
8 rpvmasum2.w . . . . 5 𝑊 = {𝑦 ∈ (𝐷 ∖ { 1 }) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0}
98ssrab3 4040 . . . 4 𝑊 ⊆ (𝐷 ∖ { 1 })
10 difss 4091 . . . 4 (𝐷 ∖ { 1 }) ⊆ 𝐷
119, 10sstri 3953 . . 3 𝑊𝐷
12 dchrisum0.b . . 3 (𝜑𝑋𝑊)
1311, 12sselid 3942 . 2 (𝜑𝑋𝐷)
141, 2, 3, 4, 5, 6, 8, 12dchrisum0re 26861 . 2 (𝜑𝑋:(Base‘𝑍)⟶ℝ)
15 fveq2 6842 . . . . . . . 8 (𝑘 = (𝑚 · 𝑑) → (√‘𝑘) = (√‘(𝑚 · 𝑑)))
1615oveq2d 7373 . . . . . . 7 (𝑘 = (𝑚 · 𝑑) → ((𝑋‘(𝐿𝑚)) / (√‘𝑘)) = ((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑))))
17 rpre 12923 . . . . . . . 8 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
1817adantl 482 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ)
1913ad3antrrr 728 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑘}) → 𝑋𝐷)
20 elrabi 3639 . . . . . . . . . . . 12 (𝑚 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑘} → 𝑚 ∈ ℕ)
2120nnzd 12526 . . . . . . . . . . 11 (𝑚 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑘} → 𝑚 ∈ ℤ)
2221adantl 482 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑘}) → 𝑚 ∈ ℤ)
234, 1, 5, 2, 19, 22dchrzrhcl 26593 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑘}) → (𝑋‘(𝐿𝑚)) ∈ ℂ)
24 elfznn 13470 . . . . . . . . . . . . . 14 (𝑘 ∈ (1...(⌊‘𝑥)) → 𝑘 ∈ ℕ)
2524adantl 482 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → 𝑘 ∈ ℕ)
2625nnrpd 12955 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → 𝑘 ∈ ℝ+)
2726rpsqrtcld 15296 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → (√‘𝑘) ∈ ℝ+)
2827rpcnd 12959 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → (√‘𝑘) ∈ ℂ)
2928adantr 481 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑘}) → (√‘𝑘) ∈ ℂ)
3027rpne0d 12962 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → (√‘𝑘) ≠ 0)
3130adantr 481 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑘}) → (√‘𝑘) ≠ 0)
3223, 29, 31divcld 11931 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑘}) → ((𝑋‘(𝐿𝑚)) / (√‘𝑘)) ∈ ℂ)
3332anasss 467 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ 𝑚 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑘})) → ((𝑋‘(𝐿𝑚)) / (√‘𝑘)) ∈ ℂ)
3416, 18, 33dvdsflsumcom 26537 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → Σ𝑘 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑘} ((𝑋‘(𝐿𝑚)) / (√‘𝑘)) = Σ𝑚 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ (1...(⌊‘(𝑥 / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑))))
351, 2, 3, 4, 5, 6, 7dchrisum0fval 26853 . . . . . . . . . 10 (𝑘 ∈ ℕ → ((𝑏 ∈ ℕ ↦ Σ𝑦 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑏} (𝑋‘(𝐿𝑦)))‘𝑘) = Σ𝑚 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑘} (𝑋‘(𝐿𝑚)))
3625, 35syl 17 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → ((𝑏 ∈ ℕ ↦ Σ𝑦 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑏} (𝑋‘(𝐿𝑦)))‘𝑘) = Σ𝑚 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑘} (𝑋‘(𝐿𝑚)))
3736oveq1d 7372 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → (((𝑏 ∈ ℕ ↦ Σ𝑦 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑏} (𝑋‘(𝐿𝑦)))‘𝑘) / (√‘𝑘)) = (Σ𝑚 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑘} (𝑋‘(𝐿𝑚)) / (√‘𝑘)))
38 fzfid 13878 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → (1...𝑘) ∈ Fin)
39 dvdsssfz1 16200 . . . . . . . . . . 11 (𝑘 ∈ ℕ → {𝑖 ∈ ℕ ∣ 𝑖𝑘} ⊆ (1...𝑘))
4025, 39syl 17 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → {𝑖 ∈ ℕ ∣ 𝑖𝑘} ⊆ (1...𝑘))
4138, 40ssfid 9211 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → {𝑖 ∈ ℕ ∣ 𝑖𝑘} ∈ Fin)
4241, 28, 23, 30fsumdivc 15671 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → (Σ𝑚 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑘} (𝑋‘(𝐿𝑚)) / (√‘𝑘)) = Σ𝑚 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑘} ((𝑋‘(𝐿𝑚)) / (√‘𝑘)))
4337, 42eqtrd 2776 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → (((𝑏 ∈ ℕ ↦ Σ𝑦 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑏} (𝑋‘(𝐿𝑦)))‘𝑘) / (√‘𝑘)) = Σ𝑚 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑘} ((𝑋‘(𝐿𝑚)) / (√‘𝑘)))
4443sumeq2dv 15588 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → Σ𝑘 ∈ (1...(⌊‘𝑥))(((𝑏 ∈ ℕ ↦ Σ𝑦 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑏} (𝑋‘(𝐿𝑦)))‘𝑘) / (√‘𝑘)) = Σ𝑘 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑘} ((𝑋‘(𝐿𝑚)) / (√‘𝑘)))
45 rprege0 12930 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
4645adantl 482 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
47 resqrtth 15140 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) → ((√‘𝑥)↑2) = 𝑥)
4846, 47syl 17 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → ((√‘𝑥)↑2) = 𝑥)
4948fveq2d 6846 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → (⌊‘((√‘𝑥)↑2)) = (⌊‘𝑥))
5049oveq2d 7373 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → (1...(⌊‘((√‘𝑥)↑2))) = (1...(⌊‘𝑥)))
5148fvoveq1d 7379 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → (⌊‘(((√‘𝑥)↑2) / 𝑚)) = (⌊‘(𝑥 / 𝑚)))
5251oveq2d 7373 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → (1...(⌊‘(((√‘𝑥)↑2) / 𝑚))) = (1...(⌊‘(𝑥 / 𝑚))))
5352sumeq1d 15586 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → Σ𝑑 ∈ (1...(⌊‘(((√‘𝑥)↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑))) = Σ𝑑 ∈ (1...(⌊‘(𝑥 / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑))))
5453adantr 481 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘((√‘𝑥)↑2)))) → Σ𝑑 ∈ (1...(⌊‘(((√‘𝑥)↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑))) = Σ𝑑 ∈ (1...(⌊‘(𝑥 / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑))))
5550, 54sumeq12dv 15591 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → Σ𝑚 ∈ (1...(⌊‘((√‘𝑥)↑2)))Σ𝑑 ∈ (1...(⌊‘(((√‘𝑥)↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑))) = Σ𝑚 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ (1...(⌊‘(𝑥 / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑))))
5634, 44, 553eqtr4d 2786 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → Σ𝑘 ∈ (1...(⌊‘𝑥))(((𝑏 ∈ ℕ ↦ Σ𝑦 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑏} (𝑋‘(𝐿𝑦)))‘𝑘) / (√‘𝑘)) = Σ𝑚 ∈ (1...(⌊‘((√‘𝑥)↑2)))Σ𝑑 ∈ (1...(⌊‘(((√‘𝑥)↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑))))
5756mpteq2dva 5205 . . . 4 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑘 ∈ (1...(⌊‘𝑥))(((𝑏 ∈ ℕ ↦ Σ𝑦 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑏} (𝑋‘(𝐿𝑦)))‘𝑘) / (√‘𝑘))) = (𝑥 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘((√‘𝑥)↑2)))Σ𝑑 ∈ (1...(⌊‘(((√‘𝑥)↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑)))))
58 rpsqrtcl 15149 . . . . . 6 (𝑥 ∈ ℝ+ → (√‘𝑥) ∈ ℝ+)
5958adantl 482 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (√‘𝑥) ∈ ℝ+)
60 eqidd 2737 . . . . 5 (𝜑 → (𝑥 ∈ ℝ+ ↦ (√‘𝑥)) = (𝑥 ∈ ℝ+ ↦ (√‘𝑥)))
61 eqidd 2737 . . . . 5 (𝜑 → (𝑧 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘(𝑧↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑)))) = (𝑧 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘(𝑧↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑)))))
62 oveq1 7364 . . . . . . . 8 (𝑧 = (√‘𝑥) → (𝑧↑2) = ((√‘𝑥)↑2))
6362fveq2d 6846 . . . . . . 7 (𝑧 = (√‘𝑥) → (⌊‘(𝑧↑2)) = (⌊‘((√‘𝑥)↑2)))
6463oveq2d 7373 . . . . . 6 (𝑧 = (√‘𝑥) → (1...(⌊‘(𝑧↑2))) = (1...(⌊‘((√‘𝑥)↑2))))
6562fvoveq1d 7379 . . . . . . . . 9 (𝑧 = (√‘𝑥) → (⌊‘((𝑧↑2) / 𝑚)) = (⌊‘(((√‘𝑥)↑2) / 𝑚)))
6665oveq2d 7373 . . . . . . . 8 (𝑧 = (√‘𝑥) → (1...(⌊‘((𝑧↑2) / 𝑚))) = (1...(⌊‘(((√‘𝑥)↑2) / 𝑚))))
6766sumeq1d 15586 . . . . . . 7 (𝑧 = (√‘𝑥) → Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑))) = Σ𝑑 ∈ (1...(⌊‘(((√‘𝑥)↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑))))
6867adantr 481 . . . . . 6 ((𝑧 = (√‘𝑥) ∧ 𝑚 ∈ (1...(⌊‘(𝑧↑2)))) → Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑))) = Σ𝑑 ∈ (1...(⌊‘(((√‘𝑥)↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑))))
6964, 68sumeq12dv 15591 . . . . 5 (𝑧 = (√‘𝑥) → Σ𝑚 ∈ (1...(⌊‘(𝑧↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑))) = Σ𝑚 ∈ (1...(⌊‘((√‘𝑥)↑2)))Σ𝑑 ∈ (1...(⌊‘(((√‘𝑥)↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑))))
7059, 60, 61, 69fmptco 7075 . . . 4 (𝜑 → ((𝑧 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘(𝑧↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑)))) ∘ (𝑥 ∈ ℝ+ ↦ (√‘𝑥))) = (𝑥 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘((√‘𝑥)↑2)))Σ𝑑 ∈ (1...(⌊‘(((√‘𝑥)↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑)))))
7157, 70eqtr4d 2779 . . 3 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑘 ∈ (1...(⌊‘𝑥))(((𝑏 ∈ ℕ ↦ Σ𝑦 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑏} (𝑋‘(𝐿𝑦)))‘𝑘) / (√‘𝑘))) = ((𝑧 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘(𝑧↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑)))) ∘ (𝑥 ∈ ℝ+ ↦ (√‘𝑥))))
72 eqid 2736 . . . . . . . 8 (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎))) = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎)))
731, 2, 3, 4, 5, 6, 8, 12, 72dchrisum0lema 26862 . . . . . . 7 (𝜑 → ∃𝑡𝑐 ∈ (0[,)+∞)(seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎)))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎))))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / (√‘𝑦))))
743adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎)))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎))))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / (√‘𝑦))))) → 𝑁 ∈ ℕ)
7512adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎)))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎))))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / (√‘𝑦))))) → 𝑋𝑊)
76 simprl 769 . . . . . . . . . 10 ((𝜑 ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎)))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎))))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / (√‘𝑦))))) → 𝑐 ∈ (0[,)+∞))
77 simprrl 779 . . . . . . . . . 10 ((𝜑 ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎)))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎))))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / (√‘𝑦))))) → seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎)))) ⇝ 𝑡)
78 simprrr 780 . . . . . . . . . 10 ((𝜑 ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎)))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎))))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / (√‘𝑦))))) → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎))))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / (√‘𝑦)))
791, 2, 74, 4, 5, 6, 8, 75, 72, 76, 77, 78dchrisum0lem3 26867 . . . . . . . . 9 ((𝜑 ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎)))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎))))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / (√‘𝑦))))) → (𝑧 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘(𝑧↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑)))) ∈ 𝑂(1))
8079rexlimdvaa 3153 . . . . . . . 8 (𝜑 → (∃𝑐 ∈ (0[,)+∞)(seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎)))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎))))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / (√‘𝑦))) → (𝑧 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘(𝑧↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑)))) ∈ 𝑂(1)))
8180exlimdv 1936 . . . . . . 7 (𝜑 → (∃𝑡𝑐 ∈ (0[,)+∞)(seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎)))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎))))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / (√‘𝑦))) → (𝑧 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘(𝑧↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑)))) ∈ 𝑂(1)))
8273, 81mpd 15 . . . . . 6 (𝜑 → (𝑧 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘(𝑧↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑)))) ∈ 𝑂(1))
83 o1f 15411 . . . . . 6 ((𝑧 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘(𝑧↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑)))) ∈ 𝑂(1) → (𝑧 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘(𝑧↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑)))):dom (𝑧 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘(𝑧↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑))))⟶ℂ)
8482, 83syl 17 . . . . 5 (𝜑 → (𝑧 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘(𝑧↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑)))):dom (𝑧 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘(𝑧↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑))))⟶ℂ)
85 sumex 15572 . . . . . . 7 Σ𝑚 ∈ (1...(⌊‘(𝑧↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑))) ∈ V
86 eqid 2736 . . . . . . 7 (𝑧 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘(𝑧↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑)))) = (𝑧 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘(𝑧↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑))))
8785, 86dmmpti 6645 . . . . . 6 dom (𝑧 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘(𝑧↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑)))) = ℝ+
8887feq2i 6660 . . . . 5 ((𝑧 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘(𝑧↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑)))):dom (𝑧 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘(𝑧↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑))))⟶ℂ ↔ (𝑧 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘(𝑧↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑)))):ℝ+⟶ℂ)
8984, 88sylib 217 . . . 4 (𝜑 → (𝑧 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘(𝑧↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑)))):ℝ+⟶ℂ)
90 rpssre 12922 . . . . 5 + ⊆ ℝ
9190a1i 11 . . . 4 (𝜑 → ℝ+ ⊆ ℝ)
92 resqcl 14029 . . . . 5 (𝑡 ∈ ℝ → (𝑡↑2) ∈ ℝ)
93 0red 11158 . . . . . . . 8 (((𝜑𝑡 ∈ ℝ) ∧ (𝑥 ∈ ℝ+ ∧ (𝑡↑2) ≤ 𝑥)) → 0 ∈ ℝ)
94 simplr 767 . . . . . . . 8 (((𝜑𝑡 ∈ ℝ) ∧ (𝑥 ∈ ℝ+ ∧ (𝑡↑2) ≤ 𝑥)) → 𝑡 ∈ ℝ)
95 simplrr 776 . . . . . . . . . 10 ((((𝜑𝑡 ∈ ℝ) ∧ (𝑥 ∈ ℝ+ ∧ (𝑡↑2) ≤ 𝑥)) ∧ 0 ≤ 𝑡) → (𝑡↑2) ≤ 𝑥)
9645ad2antrl 726 . . . . . . . . . . . 12 (((𝜑𝑡 ∈ ℝ) ∧ (𝑥 ∈ ℝ+ ∧ (𝑡↑2) ≤ 𝑥)) → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
9796adantr 481 . . . . . . . . . . 11 ((((𝜑𝑡 ∈ ℝ) ∧ (𝑥 ∈ ℝ+ ∧ (𝑡↑2) ≤ 𝑥)) ∧ 0 ≤ 𝑡) → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
9897, 47syl 17 . . . . . . . . . 10 ((((𝜑𝑡 ∈ ℝ) ∧ (𝑥 ∈ ℝ+ ∧ (𝑡↑2) ≤ 𝑥)) ∧ 0 ≤ 𝑡) → ((√‘𝑥)↑2) = 𝑥)
9995, 98breqtrrd 5133 . . . . . . . . 9 ((((𝜑𝑡 ∈ ℝ) ∧ (𝑥 ∈ ℝ+ ∧ (𝑡↑2) ≤ 𝑥)) ∧ 0 ≤ 𝑡) → (𝑡↑2) ≤ ((√‘𝑥)↑2))
10094adantr 481 . . . . . . . . . 10 ((((𝜑𝑡 ∈ ℝ) ∧ (𝑥 ∈ ℝ+ ∧ (𝑡↑2) ≤ 𝑥)) ∧ 0 ≤ 𝑡) → 𝑡 ∈ ℝ)
10159rpred 12957 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ+) → (√‘𝑥) ∈ ℝ)
102101ad2ant2r 745 . . . . . . . . . . 11 (((𝜑𝑡 ∈ ℝ) ∧ (𝑥 ∈ ℝ+ ∧ (𝑡↑2) ≤ 𝑥)) → (√‘𝑥) ∈ ℝ)
103102adantr 481 . . . . . . . . . 10 ((((𝜑𝑡 ∈ ℝ) ∧ (𝑥 ∈ ℝ+ ∧ (𝑡↑2) ≤ 𝑥)) ∧ 0 ≤ 𝑡) → (√‘𝑥) ∈ ℝ)
104 simpr 485 . . . . . . . . . 10 ((((𝜑𝑡 ∈ ℝ) ∧ (𝑥 ∈ ℝ+ ∧ (𝑡↑2) ≤ 𝑥)) ∧ 0 ≤ 𝑡) → 0 ≤ 𝑡)
105 sqrtge0 15142 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) → 0 ≤ (√‘𝑥))
10696, 105syl 17 . . . . . . . . . . 11 (((𝜑𝑡 ∈ ℝ) ∧ (𝑥 ∈ ℝ+ ∧ (𝑡↑2) ≤ 𝑥)) → 0 ≤ (√‘𝑥))
107106adantr 481 . . . . . . . . . 10 ((((𝜑𝑡 ∈ ℝ) ∧ (𝑥 ∈ ℝ+ ∧ (𝑡↑2) ≤ 𝑥)) ∧ 0 ≤ 𝑡) → 0 ≤ (√‘𝑥))
108100, 103, 104, 107le2sqd 14160 . . . . . . . . 9 ((((𝜑𝑡 ∈ ℝ) ∧ (𝑥 ∈ ℝ+ ∧ (𝑡↑2) ≤ 𝑥)) ∧ 0 ≤ 𝑡) → (𝑡 ≤ (√‘𝑥) ↔ (𝑡↑2) ≤ ((√‘𝑥)↑2)))
10999, 108mpbird 256 . . . . . . . 8 ((((𝜑𝑡 ∈ ℝ) ∧ (𝑥 ∈ ℝ+ ∧ (𝑡↑2) ≤ 𝑥)) ∧ 0 ≤ 𝑡) → 𝑡 ≤ (√‘𝑥))
11094adantr 481 . . . . . . . . 9 ((((𝜑𝑡 ∈ ℝ) ∧ (𝑥 ∈ ℝ+ ∧ (𝑡↑2) ≤ 𝑥)) ∧ 𝑡 ≤ 0) → 𝑡 ∈ ℝ)
111 0red 11158 . . . . . . . . 9 ((((𝜑𝑡 ∈ ℝ) ∧ (𝑥 ∈ ℝ+ ∧ (𝑡↑2) ≤ 𝑥)) ∧ 𝑡 ≤ 0) → 0 ∈ ℝ)
112102adantr 481 . . . . . . . . 9 ((((𝜑𝑡 ∈ ℝ) ∧ (𝑥 ∈ ℝ+ ∧ (𝑡↑2) ≤ 𝑥)) ∧ 𝑡 ≤ 0) → (√‘𝑥) ∈ ℝ)
113 simpr 485 . . . . . . . . 9 ((((𝜑𝑡 ∈ ℝ) ∧ (𝑥 ∈ ℝ+ ∧ (𝑡↑2) ≤ 𝑥)) ∧ 𝑡 ≤ 0) → 𝑡 ≤ 0)
114106adantr 481 . . . . . . . . 9 ((((𝜑𝑡 ∈ ℝ) ∧ (𝑥 ∈ ℝ+ ∧ (𝑡↑2) ≤ 𝑥)) ∧ 𝑡 ≤ 0) → 0 ≤ (√‘𝑥))
115110, 111, 112, 113, 114letrd 11312 . . . . . . . 8 ((((𝜑𝑡 ∈ ℝ) ∧ (𝑥 ∈ ℝ+ ∧ (𝑡↑2) ≤ 𝑥)) ∧ 𝑡 ≤ 0) → 𝑡 ≤ (√‘𝑥))
11693, 94, 109, 115lecasei 11261 . . . . . . 7 (((𝜑𝑡 ∈ ℝ) ∧ (𝑥 ∈ ℝ+ ∧ (𝑡↑2) ≤ 𝑥)) → 𝑡 ≤ (√‘𝑥))
117116expr 457 . . . . . 6 (((𝜑𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → ((𝑡↑2) ≤ 𝑥𝑡 ≤ (√‘𝑥)))
118117ralrimiva 3143 . . . . 5 ((𝜑𝑡 ∈ ℝ) → ∀𝑥 ∈ ℝ+ ((𝑡↑2) ≤ 𝑥𝑡 ≤ (√‘𝑥)))
119 breq1 5108 . . . . . 6 (𝑐 = (𝑡↑2) → (𝑐𝑥 ↔ (𝑡↑2) ≤ 𝑥))
120119rspceaimv 3585 . . . . 5 (((𝑡↑2) ∈ ℝ ∧ ∀𝑥 ∈ ℝ+ ((𝑡↑2) ≤ 𝑥𝑡 ≤ (√‘𝑥))) → ∃𝑐 ∈ ℝ ∀𝑥 ∈ ℝ+ (𝑐𝑥𝑡 ≤ (√‘𝑥)))
12192, 118, 120syl2an2 684 . . . 4 ((𝜑𝑡 ∈ ℝ) → ∃𝑐 ∈ ℝ ∀𝑥 ∈ ℝ+ (𝑐𝑥𝑡 ≤ (√‘𝑥)))
12289, 82, 59, 91, 121o1compt 15469 . . 3 (𝜑 → ((𝑧 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘(𝑧↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑧↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑)))) ∘ (𝑥 ∈ ℝ+ ↦ (√‘𝑥))) ∈ 𝑂(1))
12371, 122eqeltrd 2838 . 2 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑘 ∈ (1...(⌊‘𝑥))(((𝑏 ∈ ℕ ↦ Σ𝑦 ∈ {𝑖 ∈ ℕ ∣ 𝑖𝑏} (𝑋‘(𝐿𝑦)))‘𝑘) / (√‘𝑘))) ∈ 𝑂(1))
1241, 2, 3, 4, 5, 6, 7, 13, 14, 123dchrisum0fno1 26859 1 ¬ 𝜑
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1541  wex 1781  wcel 2106  wne 2943  wral 3064  wrex 3073  {crab 3407  cdif 3907  wss 3910  {csn 4586   class class class wbr 5105  cmpt 5188  dom cdm 5633  ccom 5637  wf 6492  cfv 6496  (class class class)co 7357  cc 11049  cr 11050  0cc0 11051  1c1 11052   + caddc 11054   · cmul 11056  +∞cpnf 11186  cle 11190  cmin 11385   / cdiv 11812  cn 12153  2c2 12208  cz 12499  +crp 12915  [,)cico 13266  ...cfz 13424  cfl 13695  seqcseq 13906  cexp 13967  csqrt 15118  abscabs 15119  cli 15366  𝑂(1)co1 15368  Σcsu 15570  cdvds 16136  Basecbs 17083  0gc0g 17321  ℤRHomczrh 20900  ℤ/nczn 20903  DChrcdchr 26580
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-disj 5071  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-rpss 7660  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-tpos 8157  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-oadd 8416  df-omul 8417  df-er 8648  df-ec 8650  df-qs 8654  df-map 8767  df-pm 8768  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-fi 9347  df-sup 9378  df-inf 9379  df-oi 9446  df-dju 9837  df-card 9875  df-acn 9878  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-xnn0 12486  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-ioc 13269  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-fl 13697  df-mod 13775  df-seq 13907  df-exp 13968  df-fac 14174  df-bc 14203  df-hash 14231  df-word 14403  df-concat 14459  df-s1 14484  df-shft 14952  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-limsup 15353  df-clim 15370  df-rlim 15371  df-o1 15372  df-lo1 15373  df-sum 15571  df-ef 15950  df-e 15951  df-sin 15952  df-cos 15953  df-tan 15954  df-pi 15955  df-dvds 16137  df-gcd 16375  df-prm 16548  df-numer 16610  df-denom 16611  df-phi 16638  df-pc 16709  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-rest 17304  df-topn 17305  df-0g 17323  df-gsum 17324  df-topgen 17325  df-pt 17326  df-prds 17329  df-xrs 17384  df-qtop 17389  df-imas 17390  df-qus 17391  df-xps 17392  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-mhm 18601  df-submnd 18602  df-grp 18751  df-minusg 18752  df-sbg 18753  df-mulg 18873  df-subg 18925  df-nsg 18926  df-eqg 18927  df-ghm 19006  df-gim 19049  df-ga 19070  df-cntz 19097  df-oppg 19124  df-od 19310  df-gex 19311  df-pgp 19312  df-lsm 19418  df-pj1 19419  df-cmn 19564  df-abl 19565  df-cyg 19655  df-dprd 19774  df-dpj 19775  df-mgp 19897  df-ur 19914  df-ring 19966  df-cring 19967  df-oppr 20049  df-dvdsr 20070  df-unit 20071  df-invr 20101  df-dvr 20112  df-rnghom 20146  df-drng 20187  df-subrg 20220  df-lmod 20324  df-lss 20393  df-lsp 20433  df-sra 20633  df-rgmod 20634  df-lidl 20635  df-rsp 20636  df-2idl 20702  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-fbas 20793  df-fg 20794  df-cnfld 20797  df-zring 20870  df-zrh 20904  df-zn 20907  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-cld 22370  df-ntr 22371  df-cls 22372  df-nei 22449  df-lp 22487  df-perf 22488  df-cn 22578  df-cnp 22579  df-haus 22666  df-cmp 22738  df-tx 22913  df-hmeo 23106  df-fil 23197  df-fm 23289  df-flim 23290  df-flf 23291  df-xms 23673  df-ms 23674  df-tms 23675  df-cncf 24241  df-0p 25034  df-limc 25230  df-dv 25231  df-ply 25549  df-idp 25550  df-coe 25551  df-dgr 25552  df-quot 25651  df-ulm 25736  df-log 25912  df-cxp 25913  df-atan 26217  df-em 26342  df-cht 26446  df-vma 26447  df-chp 26448  df-ppi 26449  df-mu 26450  df-dchr 26581
This theorem is referenced by:  dchrisumn0  26869  rpvmasum  26874
  Copyright terms: Public domain W3C validator