MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrisum0flblem1 Structured version   Visualization version   GIF version

Theorem dchrisum0flblem1 26561
Description: Lemma for dchrisum0flb 26563. Base case, prime power. (Contributed by Mario Carneiro, 5-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z 𝑍 = (ℤ/nℤ‘𝑁)
rpvmasum.l 𝐿 = (ℤRHom‘𝑍)
rpvmasum.a (𝜑𝑁 ∈ ℕ)
rpvmasum2.g 𝐺 = (DChr‘𝑁)
rpvmasum2.d 𝐷 = (Base‘𝐺)
rpvmasum2.1 1 = (0g𝐺)
dchrisum0f.f 𝐹 = (𝑏 ∈ ℕ ↦ Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝑏} (𝑋‘(𝐿𝑣)))
dchrisum0f.x (𝜑𝑋𝐷)
dchrisum0flb.r (𝜑𝑋:(Base‘𝑍)⟶ℝ)
dchrisum0flblem1.1 (𝜑𝑃 ∈ ℙ)
dchrisum0flblem1.2 (𝜑𝐴 ∈ ℕ0)
Assertion
Ref Expression
dchrisum0flblem1 (𝜑 → if((√‘(𝑃𝐴)) ∈ ℕ, 1, 0) ≤ (𝐹‘(𝑃𝐴)))
Distinct variable groups:   𝑞,𝑏,𝑣,𝐴   𝑁,𝑞   𝑃,𝑏,𝑞,𝑣   𝐿,𝑏,𝑣   𝑋,𝑏,𝑣
Allowed substitution hints:   𝜑(𝑣,𝑞,𝑏)   𝐷(𝑣,𝑞,𝑏)   1 (𝑣,𝑞,𝑏)   𝐹(𝑣,𝑞,𝑏)   𝐺(𝑣,𝑞,𝑏)   𝐿(𝑞)   𝑁(𝑣,𝑏)   𝑋(𝑞)   𝑍(𝑣,𝑞,𝑏)

Proof of Theorem dchrisum0flblem1
Dummy variables 𝑘 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1red 10907 . . . . 5 (((𝜑 ∧ (𝑋‘(𝐿𝑃)) = 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) → 1 ∈ ℝ)
2 0red 10909 . . . . 5 (((𝜑 ∧ (𝑋‘(𝐿𝑃)) = 1) ∧ ¬ (√‘(𝑃𝐴)) ∈ ℕ) → 0 ∈ ℝ)
31, 2ifclda 4491 . . . 4 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) = 1) → if((√‘(𝑃𝐴)) ∈ ℕ, 1, 0) ∈ ℝ)
4 1red 10907 . . . 4 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) = 1) → 1 ∈ ℝ)
5 fzfid 13621 . . . . . 6 (𝜑 → (0...𝐴) ∈ Fin)
6 dchrisum0flb.r . . . . . . . 8 (𝜑𝑋:(Base‘𝑍)⟶ℝ)
7 rpvmasum.a . . . . . . . . . . 11 (𝜑𝑁 ∈ ℕ)
87nnnn0d 12223 . . . . . . . . . 10 (𝜑𝑁 ∈ ℕ0)
9 rpvmasum.z . . . . . . . . . . 11 𝑍 = (ℤ/nℤ‘𝑁)
10 eqid 2738 . . . . . . . . . . 11 (Base‘𝑍) = (Base‘𝑍)
11 rpvmasum.l . . . . . . . . . . 11 𝐿 = (ℤRHom‘𝑍)
129, 10, 11znzrhfo 20667 . . . . . . . . . 10 (𝑁 ∈ ℕ0𝐿:ℤ–onto→(Base‘𝑍))
13 fof 6672 . . . . . . . . . 10 (𝐿:ℤ–onto→(Base‘𝑍) → 𝐿:ℤ⟶(Base‘𝑍))
148, 12, 133syl 18 . . . . . . . . 9 (𝜑𝐿:ℤ⟶(Base‘𝑍))
15 dchrisum0flblem1.1 . . . . . . . . . 10 (𝜑𝑃 ∈ ℙ)
16 prmz 16308 . . . . . . . . . 10 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
1715, 16syl 17 . . . . . . . . 9 (𝜑𝑃 ∈ ℤ)
1814, 17ffvelrnd 6944 . . . . . . . 8 (𝜑 → (𝐿𝑃) ∈ (Base‘𝑍))
196, 18ffvelrnd 6944 . . . . . . 7 (𝜑 → (𝑋‘(𝐿𝑃)) ∈ ℝ)
20 elfznn0 13278 . . . . . . 7 (𝑖 ∈ (0...𝐴) → 𝑖 ∈ ℕ0)
21 reexpcl 13727 . . . . . . 7 (((𝑋‘(𝐿𝑃)) ∈ ℝ ∧ 𝑖 ∈ ℕ0) → ((𝑋‘(𝐿𝑃))↑𝑖) ∈ ℝ)
2219, 20, 21syl2an 595 . . . . . 6 ((𝜑𝑖 ∈ (0...𝐴)) → ((𝑋‘(𝐿𝑃))↑𝑖) ∈ ℝ)
235, 22fsumrecl 15374 . . . . 5 (𝜑 → Σ𝑖 ∈ (0...𝐴)((𝑋‘(𝐿𝑃))↑𝑖) ∈ ℝ)
2423adantr 480 . . . 4 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) = 1) → Σ𝑖 ∈ (0...𝐴)((𝑋‘(𝐿𝑃))↑𝑖) ∈ ℝ)
25 breq1 5073 . . . . . 6 (1 = if((√‘(𝑃𝐴)) ∈ ℕ, 1, 0) → (1 ≤ 1 ↔ if((√‘(𝑃𝐴)) ∈ ℕ, 1, 0) ≤ 1))
26 breq1 5073 . . . . . 6 (0 = if((√‘(𝑃𝐴)) ∈ ℕ, 1, 0) → (0 ≤ 1 ↔ if((√‘(𝑃𝐴)) ∈ ℕ, 1, 0) ≤ 1))
27 1le1 11533 . . . . . 6 1 ≤ 1
28 0le1 11428 . . . . . 6 0 ≤ 1
2925, 26, 27, 28keephyp 4527 . . . . 5 if((√‘(𝑃𝐴)) ∈ ℕ, 1, 0) ≤ 1
3029a1i 11 . . . 4 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) = 1) → if((√‘(𝑃𝐴)) ∈ ℕ, 1, 0) ≤ 1)
31 dchrisum0flblem1.2 . . . . . . . . . 10 (𝜑𝐴 ∈ ℕ0)
32 nn0uz 12549 . . . . . . . . . 10 0 = (ℤ‘0)
3331, 32eleqtrdi 2849 . . . . . . . . 9 (𝜑𝐴 ∈ (ℤ‘0))
34 fzn0 13199 . . . . . . . . 9 ((0...𝐴) ≠ ∅ ↔ 𝐴 ∈ (ℤ‘0))
3533, 34sylibr 233 . . . . . . . 8 (𝜑 → (0...𝐴) ≠ ∅)
36 hashnncl 14009 . . . . . . . . 9 ((0...𝐴) ∈ Fin → ((♯‘(0...𝐴)) ∈ ℕ ↔ (0...𝐴) ≠ ∅))
375, 36syl 17 . . . . . . . 8 (𝜑 → ((♯‘(0...𝐴)) ∈ ℕ ↔ (0...𝐴) ≠ ∅))
3835, 37mpbird 256 . . . . . . 7 (𝜑 → (♯‘(0...𝐴)) ∈ ℕ)
3938adantr 480 . . . . . 6 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) = 1) → (♯‘(0...𝐴)) ∈ ℕ)
4039nnge1d 11951 . . . . 5 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) = 1) → 1 ≤ (♯‘(0...𝐴)))
41 simpr 484 . . . . . . . . 9 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) = 1) → (𝑋‘(𝐿𝑃)) = 1)
4241oveq1d 7270 . . . . . . . 8 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) = 1) → ((𝑋‘(𝐿𝑃))↑𝑖) = (1↑𝑖))
43 elfzelz 13185 . . . . . . . . 9 (𝑖 ∈ (0...𝐴) → 𝑖 ∈ ℤ)
44 1exp 13740 . . . . . . . . 9 (𝑖 ∈ ℤ → (1↑𝑖) = 1)
4543, 44syl 17 . . . . . . . 8 (𝑖 ∈ (0...𝐴) → (1↑𝑖) = 1)
4642, 45sylan9eq 2799 . . . . . . 7 (((𝜑 ∧ (𝑋‘(𝐿𝑃)) = 1) ∧ 𝑖 ∈ (0...𝐴)) → ((𝑋‘(𝐿𝑃))↑𝑖) = 1)
4746sumeq2dv 15343 . . . . . 6 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) = 1) → Σ𝑖 ∈ (0...𝐴)((𝑋‘(𝐿𝑃))↑𝑖) = Σ𝑖 ∈ (0...𝐴)1)
48 fzfid 13621 . . . . . . 7 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) = 1) → (0...𝐴) ∈ Fin)
49 ax-1cn 10860 . . . . . . 7 1 ∈ ℂ
50 fsumconst 15430 . . . . . . 7 (((0...𝐴) ∈ Fin ∧ 1 ∈ ℂ) → Σ𝑖 ∈ (0...𝐴)1 = ((♯‘(0...𝐴)) · 1))
5148, 49, 50sylancl 585 . . . . . 6 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) = 1) → Σ𝑖 ∈ (0...𝐴)1 = ((♯‘(0...𝐴)) · 1))
5239nncnd 11919 . . . . . . 7 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) = 1) → (♯‘(0...𝐴)) ∈ ℂ)
5352mulid1d 10923 . . . . . 6 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) = 1) → ((♯‘(0...𝐴)) · 1) = (♯‘(0...𝐴)))
5447, 51, 533eqtrd 2782 . . . . 5 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) = 1) → Σ𝑖 ∈ (0...𝐴)((𝑋‘(𝐿𝑃))↑𝑖) = (♯‘(0...𝐴)))
5540, 54breqtrrd 5098 . . . 4 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) = 1) → 1 ≤ Σ𝑖 ∈ (0...𝐴)((𝑋‘(𝐿𝑃))↑𝑖))
563, 4, 24, 30, 55letrd 11062 . . 3 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) = 1) → if((√‘(𝑃𝐴)) ∈ ℕ, 1, 0) ≤ Σ𝑖 ∈ (0...𝐴)((𝑋‘(𝐿𝑃))↑𝑖))
57 oveq1 7262 . . . . . . 7 (1 = if((√‘(𝑃𝐴)) ∈ ℕ, 1, 0) → (1 · (1 − (𝑋‘(𝐿𝑃)))) = (if((√‘(𝑃𝐴)) ∈ ℕ, 1, 0) · (1 − (𝑋‘(𝐿𝑃)))))
5857breq1d 5080 . . . . . 6 (1 = if((√‘(𝑃𝐴)) ∈ ℕ, 1, 0) → ((1 · (1 − (𝑋‘(𝐿𝑃)))) ≤ (1 − ((𝑋‘(𝐿𝑃))↑(𝐴 + 1))) ↔ (if((√‘(𝑃𝐴)) ∈ ℕ, 1, 0) · (1 − (𝑋‘(𝐿𝑃)))) ≤ (1 − ((𝑋‘(𝐿𝑃))↑(𝐴 + 1)))))
59 oveq1 7262 . . . . . . 7 (0 = if((√‘(𝑃𝐴)) ∈ ℕ, 1, 0) → (0 · (1 − (𝑋‘(𝐿𝑃)))) = (if((√‘(𝑃𝐴)) ∈ ℕ, 1, 0) · (1 − (𝑋‘(𝐿𝑃)))))
6059breq1d 5080 . . . . . 6 (0 = if((√‘(𝑃𝐴)) ∈ ℕ, 1, 0) → ((0 · (1 − (𝑋‘(𝐿𝑃)))) ≤ (1 − ((𝑋‘(𝐿𝑃))↑(𝐴 + 1))) ↔ (if((√‘(𝑃𝐴)) ∈ ℕ, 1, 0) · (1 − (𝑋‘(𝐿𝑃)))) ≤ (1 − ((𝑋‘(𝐿𝑃))↑(𝐴 + 1)))))
61 1re 10906 . . . . . . . . . 10 1 ∈ ℝ
6219adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) → (𝑋‘(𝐿𝑃)) ∈ ℝ)
63 resubcl 11215 . . . . . . . . . 10 ((1 ∈ ℝ ∧ (𝑋‘(𝐿𝑃)) ∈ ℝ) → (1 − (𝑋‘(𝐿𝑃))) ∈ ℝ)
6461, 62, 63sylancr 586 . . . . . . . . 9 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) → (1 − (𝑋‘(𝐿𝑃))) ∈ ℝ)
6564adantr 480 . . . . . . . 8 (((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) → (1 − (𝑋‘(𝐿𝑃))) ∈ ℝ)
6665leidd 11471 . . . . . . 7 (((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) → (1 − (𝑋‘(𝐿𝑃))) ≤ (1 − (𝑋‘(𝐿𝑃))))
6764recnd 10934 . . . . . . . . 9 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) → (1 − (𝑋‘(𝐿𝑃))) ∈ ℂ)
6867adantr 480 . . . . . . . 8 (((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) → (1 − (𝑋‘(𝐿𝑃))) ∈ ℂ)
6968mulid2d 10924 . . . . . . 7 (((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) → (1 · (1 − (𝑋‘(𝐿𝑃)))) = (1 − (𝑋‘(𝐿𝑃))))
70 nn0p1nn 12202 . . . . . . . . . . . . 13 (𝐴 ∈ ℕ0 → (𝐴 + 1) ∈ ℕ)
7131, 70syl 17 . . . . . . . . . . . 12 (𝜑 → (𝐴 + 1) ∈ ℕ)
7271ad3antrrr 726 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) ∧ (𝑋‘(𝐿𝑃)) = 0) → (𝐴 + 1) ∈ ℕ)
73720expd 13785 . . . . . . . . . 10 ((((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) ∧ (𝑋‘(𝐿𝑃)) = 0) → (0↑(𝐴 + 1)) = 0)
74 simpr 484 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) ∧ (𝑋‘(𝐿𝑃)) = 0) → (𝑋‘(𝐿𝑃)) = 0)
7574oveq1d 7270 . . . . . . . . . 10 ((((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) ∧ (𝑋‘(𝐿𝑃)) = 0) → ((𝑋‘(𝐿𝑃))↑(𝐴 + 1)) = (0↑(𝐴 + 1)))
7673, 75, 743eqtr4d 2788 . . . . . . . . 9 ((((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) ∧ (𝑋‘(𝐿𝑃)) = 0) → ((𝑋‘(𝐿𝑃))↑(𝐴 + 1)) = (𝑋‘(𝐿𝑃)))
77 neg1cn 12017 . . . . . . . . . . . . 13 -1 ∈ ℂ
7831ad2antrr 722 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) → 𝐴 ∈ ℕ0)
79 expp1 13717 . . . . . . . . . . . . 13 ((-1 ∈ ℂ ∧ 𝐴 ∈ ℕ0) → (-1↑(𝐴 + 1)) = ((-1↑𝐴) · -1))
8077, 78, 79sylancr 586 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) → (-1↑(𝐴 + 1)) = ((-1↑𝐴) · -1))
81 prmnn 16307 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
8215, 81syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝑃 ∈ ℕ)
8382, 31nnexpcld 13888 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑃𝐴) ∈ ℕ)
8483nncnd 11919 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑃𝐴) ∈ ℂ)
8584ad2antrr 722 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) → (𝑃𝐴) ∈ ℂ)
8685sqsqrtd 15079 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) → ((√‘(𝑃𝐴))↑2) = (𝑃𝐴))
8786oveq2d 7271 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) → (𝑃 pCnt ((√‘(𝑃𝐴))↑2)) = (𝑃 pCnt (𝑃𝐴)))
8815ad2antrr 722 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) → 𝑃 ∈ ℙ)
89 nnq 12631 . . . . . . . . . . . . . . . . . . 19 ((√‘(𝑃𝐴)) ∈ ℕ → (√‘(𝑃𝐴)) ∈ ℚ)
9089adantl 481 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) → (√‘(𝑃𝐴)) ∈ ℚ)
91 nnne0 11937 . . . . . . . . . . . . . . . . . . 19 ((√‘(𝑃𝐴)) ∈ ℕ → (√‘(𝑃𝐴)) ≠ 0)
9291adantl 481 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) → (√‘(𝑃𝐴)) ≠ 0)
93 2z 12282 . . . . . . . . . . . . . . . . . . 19 2 ∈ ℤ
9493a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) → 2 ∈ ℤ)
95 pcexp 16488 . . . . . . . . . . . . . . . . . 18 ((𝑃 ∈ ℙ ∧ ((√‘(𝑃𝐴)) ∈ ℚ ∧ (√‘(𝑃𝐴)) ≠ 0) ∧ 2 ∈ ℤ) → (𝑃 pCnt ((√‘(𝑃𝐴))↑2)) = (2 · (𝑃 pCnt (√‘(𝑃𝐴)))))
9688, 90, 92, 94, 95syl121anc 1373 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) → (𝑃 pCnt ((√‘(𝑃𝐴))↑2)) = (2 · (𝑃 pCnt (√‘(𝑃𝐴)))))
9778nn0zd 12353 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) → 𝐴 ∈ ℤ)
98 pcid 16502 . . . . . . . . . . . . . . . . . 18 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃 pCnt (𝑃𝐴)) = 𝐴)
9988, 97, 98syl2anc 583 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) → (𝑃 pCnt (𝑃𝐴)) = 𝐴)
10087, 96, 993eqtr3rd 2787 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) → 𝐴 = (2 · (𝑃 pCnt (√‘(𝑃𝐴)))))
101100oveq2d 7271 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) → (-1↑𝐴) = (-1↑(2 · (𝑃 pCnt (√‘(𝑃𝐴))))))
10277a1i 11 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) → -1 ∈ ℂ)
103 simpr 484 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) → (√‘(𝑃𝐴)) ∈ ℕ)
10488, 103pccld 16479 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) → (𝑃 pCnt (√‘(𝑃𝐴))) ∈ ℕ0)
105 2nn0 12180 . . . . . . . . . . . . . . . . 17 2 ∈ ℕ0
106105a1i 11 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) → 2 ∈ ℕ0)
107102, 104, 106expmuld 13795 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) → (-1↑(2 · (𝑃 pCnt (√‘(𝑃𝐴))))) = ((-1↑2)↑(𝑃 pCnt (√‘(𝑃𝐴)))))
108 neg1sqe1 13841 . . . . . . . . . . . . . . . . 17 (-1↑2) = 1
109108oveq1i 7265 . . . . . . . . . . . . . . . 16 ((-1↑2)↑(𝑃 pCnt (√‘(𝑃𝐴)))) = (1↑(𝑃 pCnt (√‘(𝑃𝐴))))
110104nn0zd 12353 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) → (𝑃 pCnt (√‘(𝑃𝐴))) ∈ ℤ)
111 1exp 13740 . . . . . . . . . . . . . . . . 17 ((𝑃 pCnt (√‘(𝑃𝐴))) ∈ ℤ → (1↑(𝑃 pCnt (√‘(𝑃𝐴)))) = 1)
112110, 111syl 17 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) → (1↑(𝑃 pCnt (√‘(𝑃𝐴)))) = 1)
113109, 112syl5eq 2791 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) → ((-1↑2)↑(𝑃 pCnt (√‘(𝑃𝐴)))) = 1)
114101, 107, 1133eqtrd 2782 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) → (-1↑𝐴) = 1)
115114oveq1d 7270 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) → ((-1↑𝐴) · -1) = (1 · -1))
11677mulid2i 10911 . . . . . . . . . . . . 13 (1 · -1) = -1
117115, 116eqtrdi 2795 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) → ((-1↑𝐴) · -1) = -1)
11880, 117eqtrd 2778 . . . . . . . . . . 11 (((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) → (-1↑(𝐴 + 1)) = -1)
119118adantr 480 . . . . . . . . . 10 ((((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) ∧ (𝑋‘(𝐿𝑃)) ≠ 0) → (-1↑(𝐴 + 1)) = -1)
12019recnd 10934 . . . . . . . . . . . . . . 15 (𝜑 → (𝑋‘(𝐿𝑃)) ∈ ℂ)
121120adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) → (𝑋‘(𝐿𝑃)) ∈ ℂ)
122121ad2antrr 722 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) ∧ (𝑋‘(𝐿𝑃)) ≠ 0) → (𝑋‘(𝐿𝑃)) ∈ ℂ)
123122negnegd 11253 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) ∧ (𝑋‘(𝐿𝑃)) ≠ 0) → --(𝑋‘(𝐿𝑃)) = (𝑋‘(𝐿𝑃)))
124 simpr 484 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) → (𝑋‘(𝐿𝑃)) ≠ 1)
125124ad2antrr 722 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) ∧ (𝑋‘(𝐿𝑃)) ≠ 0) → (𝑋‘(𝐿𝑃)) ≠ 1)
126 rpvmasum2.g . . . . . . . . . . . . . . . . . . 19 𝐺 = (DChr‘𝑁)
127 rpvmasum2.d . . . . . . . . . . . . . . . . . . 19 𝐷 = (Base‘𝐺)
128 dchrisum0f.x . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑋𝐷)
129128ad3antrrr 726 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) ∧ (𝑋‘(𝐿𝑃)) ≠ 0) → 𝑋𝐷)
130 eqid 2738 . . . . . . . . . . . . . . . . . . 19 (Unit‘𝑍) = (Unit‘𝑍)
131126, 9, 127, 10, 130, 128, 18dchrn0 26303 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((𝑋‘(𝐿𝑃)) ≠ 0 ↔ (𝐿𝑃) ∈ (Unit‘𝑍)))
132131ad2antrr 722 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) → ((𝑋‘(𝐿𝑃)) ≠ 0 ↔ (𝐿𝑃) ∈ (Unit‘𝑍)))
133132biimpa 476 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) ∧ (𝑋‘(𝐿𝑃)) ≠ 0) → (𝐿𝑃) ∈ (Unit‘𝑍))
134126, 127, 129, 9, 130, 133dchrabs 26313 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) ∧ (𝑋‘(𝐿𝑃)) ≠ 0) → (abs‘(𝑋‘(𝐿𝑃))) = 1)
135 eqeq1 2742 . . . . . . . . . . . . . . . . . 18 ((abs‘(𝑋‘(𝐿𝑃))) = (𝑋‘(𝐿𝑃)) → ((abs‘(𝑋‘(𝐿𝑃))) = 1 ↔ (𝑋‘(𝐿𝑃)) = 1))
136134, 135syl5ibcom 244 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) ∧ (𝑋‘(𝐿𝑃)) ≠ 0) → ((abs‘(𝑋‘(𝐿𝑃))) = (𝑋‘(𝐿𝑃)) → (𝑋‘(𝐿𝑃)) = 1))
137136necon3ad 2955 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) ∧ (𝑋‘(𝐿𝑃)) ≠ 0) → ((𝑋‘(𝐿𝑃)) ≠ 1 → ¬ (abs‘(𝑋‘(𝐿𝑃))) = (𝑋‘(𝐿𝑃))))
138125, 137mpd 15 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) ∧ (𝑋‘(𝐿𝑃)) ≠ 0) → ¬ (abs‘(𝑋‘(𝐿𝑃))) = (𝑋‘(𝐿𝑃)))
13962ad2antrr 722 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) ∧ (𝑋‘(𝐿𝑃)) ≠ 0) → (𝑋‘(𝐿𝑃)) ∈ ℝ)
140139absord 15055 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) ∧ (𝑋‘(𝐿𝑃)) ≠ 0) → ((abs‘(𝑋‘(𝐿𝑃))) = (𝑋‘(𝐿𝑃)) ∨ (abs‘(𝑋‘(𝐿𝑃))) = -(𝑋‘(𝐿𝑃))))
141140ord 860 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) ∧ (𝑋‘(𝐿𝑃)) ≠ 0) → (¬ (abs‘(𝑋‘(𝐿𝑃))) = (𝑋‘(𝐿𝑃)) → (abs‘(𝑋‘(𝐿𝑃))) = -(𝑋‘(𝐿𝑃))))
142138, 141mpd 15 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) ∧ (𝑋‘(𝐿𝑃)) ≠ 0) → (abs‘(𝑋‘(𝐿𝑃))) = -(𝑋‘(𝐿𝑃)))
143142, 134eqtr3d 2780 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) ∧ (𝑋‘(𝐿𝑃)) ≠ 0) → -(𝑋‘(𝐿𝑃)) = 1)
144143negeqd 11145 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) ∧ (𝑋‘(𝐿𝑃)) ≠ 0) → --(𝑋‘(𝐿𝑃)) = -1)
145123, 144eqtr3d 2780 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) ∧ (𝑋‘(𝐿𝑃)) ≠ 0) → (𝑋‘(𝐿𝑃)) = -1)
146145oveq1d 7270 . . . . . . . . . 10 ((((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) ∧ (𝑋‘(𝐿𝑃)) ≠ 0) → ((𝑋‘(𝐿𝑃))↑(𝐴 + 1)) = (-1↑(𝐴 + 1)))
147119, 146, 1453eqtr4d 2788 . . . . . . . . 9 ((((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) ∧ (𝑋‘(𝐿𝑃)) ≠ 0) → ((𝑋‘(𝐿𝑃))↑(𝐴 + 1)) = (𝑋‘(𝐿𝑃)))
14876, 147pm2.61dane 3031 . . . . . . . 8 (((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) → ((𝑋‘(𝐿𝑃))↑(𝐴 + 1)) = (𝑋‘(𝐿𝑃)))
149148oveq2d 7271 . . . . . . 7 (((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) → (1 − ((𝑋‘(𝐿𝑃))↑(𝐴 + 1))) = (1 − (𝑋‘(𝐿𝑃))))
15066, 69, 1493brtr4d 5102 . . . . . 6 (((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) → (1 · (1 − (𝑋‘(𝐿𝑃)))) ≤ (1 − ((𝑋‘(𝐿𝑃))↑(𝐴 + 1))))
15167mul02d 11103 . . . . . . . 8 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) → (0 · (1 − (𝑋‘(𝐿𝑃)))) = 0)
152 peano2nn0 12203 . . . . . . . . . . . . 13 (𝐴 ∈ ℕ0 → (𝐴 + 1) ∈ ℕ0)
15331, 152syl 17 . . . . . . . . . . . 12 (𝜑 → (𝐴 + 1) ∈ ℕ0)
15419, 153reexpcld 13809 . . . . . . . . . . 11 (𝜑 → ((𝑋‘(𝐿𝑃))↑(𝐴 + 1)) ∈ ℝ)
155154adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) → ((𝑋‘(𝐿𝑃))↑(𝐴 + 1)) ∈ ℝ)
156155recnd 10934 . . . . . . . . . . 11 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) → ((𝑋‘(𝐿𝑃))↑(𝐴 + 1)) ∈ ℂ)
157156abscld 15076 . . . . . . . . . 10 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) → (abs‘((𝑋‘(𝐿𝑃))↑(𝐴 + 1))) ∈ ℝ)
158 1red 10907 . . . . . . . . . 10 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) → 1 ∈ ℝ)
159155leabsd 15054 . . . . . . . . . 10 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) → ((𝑋‘(𝐿𝑃))↑(𝐴 + 1)) ≤ (abs‘((𝑋‘(𝐿𝑃))↑(𝐴 + 1))))
160153adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) → (𝐴 + 1) ∈ ℕ0)
161121, 160absexpd 15092 . . . . . . . . . . 11 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) → (abs‘((𝑋‘(𝐿𝑃))↑(𝐴 + 1))) = ((abs‘(𝑋‘(𝐿𝑃)))↑(𝐴 + 1)))
162121abscld 15076 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) → (abs‘(𝑋‘(𝐿𝑃))) ∈ ℝ)
163121absge0d 15084 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) → 0 ≤ (abs‘(𝑋‘(𝐿𝑃))))
164126, 127, 9, 10, 128, 18dchrabs2 26315 . . . . . . . . . . . . 13 (𝜑 → (abs‘(𝑋‘(𝐿𝑃))) ≤ 1)
165164adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) → (abs‘(𝑋‘(𝐿𝑃))) ≤ 1)
166 exple1 13822 . . . . . . . . . . . 12 ((((abs‘(𝑋‘(𝐿𝑃))) ∈ ℝ ∧ 0 ≤ (abs‘(𝑋‘(𝐿𝑃))) ∧ (abs‘(𝑋‘(𝐿𝑃))) ≤ 1) ∧ (𝐴 + 1) ∈ ℕ0) → ((abs‘(𝑋‘(𝐿𝑃)))↑(𝐴 + 1)) ≤ 1)
167162, 163, 165, 160, 166syl31anc 1371 . . . . . . . . . . 11 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) → ((abs‘(𝑋‘(𝐿𝑃)))↑(𝐴 + 1)) ≤ 1)
168161, 167eqbrtrd 5092 . . . . . . . . . 10 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) → (abs‘((𝑋‘(𝐿𝑃))↑(𝐴 + 1))) ≤ 1)
169155, 157, 158, 159, 168letrd 11062 . . . . . . . . 9 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) → ((𝑋‘(𝐿𝑃))↑(𝐴 + 1)) ≤ 1)
170 subge0 11418 . . . . . . . . . 10 ((1 ∈ ℝ ∧ ((𝑋‘(𝐿𝑃))↑(𝐴 + 1)) ∈ ℝ) → (0 ≤ (1 − ((𝑋‘(𝐿𝑃))↑(𝐴 + 1))) ↔ ((𝑋‘(𝐿𝑃))↑(𝐴 + 1)) ≤ 1))
17161, 155, 170sylancr 586 . . . . . . . . 9 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) → (0 ≤ (1 − ((𝑋‘(𝐿𝑃))↑(𝐴 + 1))) ↔ ((𝑋‘(𝐿𝑃))↑(𝐴 + 1)) ≤ 1))
172169, 171mpbird 256 . . . . . . . 8 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) → 0 ≤ (1 − ((𝑋‘(𝐿𝑃))↑(𝐴 + 1))))
173151, 172eqbrtrd 5092 . . . . . . 7 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) → (0 · (1 − (𝑋‘(𝐿𝑃)))) ≤ (1 − ((𝑋‘(𝐿𝑃))↑(𝐴 + 1))))
174173adantr 480 . . . . . 6 (((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ ¬ (√‘(𝑃𝐴)) ∈ ℕ) → (0 · (1 − (𝑋‘(𝐿𝑃)))) ≤ (1 − ((𝑋‘(𝐿𝑃))↑(𝐴 + 1))))
17558, 60, 150, 174ifbothda 4494 . . . . 5 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) → (if((√‘(𝑃𝐴)) ∈ ℕ, 1, 0) · (1 − (𝑋‘(𝐿𝑃)))) ≤ (1 − ((𝑋‘(𝐿𝑃))↑(𝐴 + 1))))
176 0re 10908 . . . . . . . 8 0 ∈ ℝ
17761, 176ifcli 4503 . . . . . . 7 if((√‘(𝑃𝐴)) ∈ ℕ, 1, 0) ∈ ℝ
178177a1i 11 . . . . . 6 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) → if((√‘(𝑃𝐴)) ∈ ℕ, 1, 0) ∈ ℝ)
179 resubcl 11215 . . . . . . 7 ((1 ∈ ℝ ∧ ((𝑋‘(𝐿𝑃))↑(𝐴 + 1)) ∈ ℝ) → (1 − ((𝑋‘(𝐿𝑃))↑(𝐴 + 1))) ∈ ℝ)
18061, 155, 179sylancr 586 . . . . . 6 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) → (1 − ((𝑋‘(𝐿𝑃))↑(𝐴 + 1))) ∈ ℝ)
18162leabsd 15054 . . . . . . . . 9 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) → (𝑋‘(𝐿𝑃)) ≤ (abs‘(𝑋‘(𝐿𝑃))))
18262, 162, 158, 181, 165letrd 11062 . . . . . . . 8 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) → (𝑋‘(𝐿𝑃)) ≤ 1)
183124necomd 2998 . . . . . . . 8 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) → 1 ≠ (𝑋‘(𝐿𝑃)))
18462, 158, 182, 183leneltd 11059 . . . . . . 7 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) → (𝑋‘(𝐿𝑃)) < 1)
185 posdif 11398 . . . . . . . 8 (((𝑋‘(𝐿𝑃)) ∈ ℝ ∧ 1 ∈ ℝ) → ((𝑋‘(𝐿𝑃)) < 1 ↔ 0 < (1 − (𝑋‘(𝐿𝑃)))))
18662, 61, 185sylancl 585 . . . . . . 7 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) → ((𝑋‘(𝐿𝑃)) < 1 ↔ 0 < (1 − (𝑋‘(𝐿𝑃)))))
187184, 186mpbid 231 . . . . . 6 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) → 0 < (1 − (𝑋‘(𝐿𝑃))))
188 lemuldiv 11785 . . . . . 6 ((if((√‘(𝑃𝐴)) ∈ ℕ, 1, 0) ∈ ℝ ∧ (1 − ((𝑋‘(𝐿𝑃))↑(𝐴 + 1))) ∈ ℝ ∧ ((1 − (𝑋‘(𝐿𝑃))) ∈ ℝ ∧ 0 < (1 − (𝑋‘(𝐿𝑃))))) → ((if((√‘(𝑃𝐴)) ∈ ℕ, 1, 0) · (1 − (𝑋‘(𝐿𝑃)))) ≤ (1 − ((𝑋‘(𝐿𝑃))↑(𝐴 + 1))) ↔ if((√‘(𝑃𝐴)) ∈ ℕ, 1, 0) ≤ ((1 − ((𝑋‘(𝐿𝑃))↑(𝐴 + 1))) / (1 − (𝑋‘(𝐿𝑃))))))
189178, 180, 64, 187, 188syl112anc 1372 . . . . 5 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) → ((if((√‘(𝑃𝐴)) ∈ ℕ, 1, 0) · (1 − (𝑋‘(𝐿𝑃)))) ≤ (1 − ((𝑋‘(𝐿𝑃))↑(𝐴 + 1))) ↔ if((√‘(𝑃𝐴)) ∈ ℕ, 1, 0) ≤ ((1 − ((𝑋‘(𝐿𝑃))↑(𝐴 + 1))) / (1 − (𝑋‘(𝐿𝑃))))))
190175, 189mpbid 231 . . . 4 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) → if((√‘(𝑃𝐴)) ∈ ℕ, 1, 0) ≤ ((1 − ((𝑋‘(𝐿𝑃))↑(𝐴 + 1))) / (1 − (𝑋‘(𝐿𝑃)))))
19131nn0zd 12353 . . . . . . . 8 (𝜑𝐴 ∈ ℤ)
192 fzval3 13384 . . . . . . . 8 (𝐴 ∈ ℤ → (0...𝐴) = (0..^(𝐴 + 1)))
193191, 192syl 17 . . . . . . 7 (𝜑 → (0...𝐴) = (0..^(𝐴 + 1)))
194193adantr 480 . . . . . 6 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) → (0...𝐴) = (0..^(𝐴 + 1)))
195194sumeq1d 15341 . . . . 5 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) → Σ𝑖 ∈ (0...𝐴)((𝑋‘(𝐿𝑃))↑𝑖) = Σ𝑖 ∈ (0..^(𝐴 + 1))((𝑋‘(𝐿𝑃))↑𝑖))
196 0nn0 12178 . . . . . . 7 0 ∈ ℕ0
197196a1i 11 . . . . . 6 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) → 0 ∈ ℕ0)
198153, 32eleqtrdi 2849 . . . . . . 7 (𝜑 → (𝐴 + 1) ∈ (ℤ‘0))
199198adantr 480 . . . . . 6 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) → (𝐴 + 1) ∈ (ℤ‘0))
200121, 124, 197, 199geoserg 15506 . . . . 5 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) → Σ𝑖 ∈ (0..^(𝐴 + 1))((𝑋‘(𝐿𝑃))↑𝑖) = ((((𝑋‘(𝐿𝑃))↑0) − ((𝑋‘(𝐿𝑃))↑(𝐴 + 1))) / (1 − (𝑋‘(𝐿𝑃)))))
201121exp0d 13786 . . . . . . 7 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) → ((𝑋‘(𝐿𝑃))↑0) = 1)
202201oveq1d 7270 . . . . . 6 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) → (((𝑋‘(𝐿𝑃))↑0) − ((𝑋‘(𝐿𝑃))↑(𝐴 + 1))) = (1 − ((𝑋‘(𝐿𝑃))↑(𝐴 + 1))))
203202oveq1d 7270 . . . . 5 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) → ((((𝑋‘(𝐿𝑃))↑0) − ((𝑋‘(𝐿𝑃))↑(𝐴 + 1))) / (1 − (𝑋‘(𝐿𝑃)))) = ((1 − ((𝑋‘(𝐿𝑃))↑(𝐴 + 1))) / (1 − (𝑋‘(𝐿𝑃)))))
204195, 200, 2033eqtrd 2782 . . . 4 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) → Σ𝑖 ∈ (0...𝐴)((𝑋‘(𝐿𝑃))↑𝑖) = ((1 − ((𝑋‘(𝐿𝑃))↑(𝐴 + 1))) / (1 − (𝑋‘(𝐿𝑃)))))
205190, 204breqtrrd 5098 . . 3 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) → if((√‘(𝑃𝐴)) ∈ ℕ, 1, 0) ≤ Σ𝑖 ∈ (0...𝐴)((𝑋‘(𝐿𝑃))↑𝑖))
20656, 205pm2.61dane 3031 . 2 (𝜑 → if((√‘(𝑃𝐴)) ∈ ℕ, 1, 0) ≤ Σ𝑖 ∈ (0...𝐴)((𝑋‘(𝐿𝑃))↑𝑖))
207 rpvmasum2.1 . . . . 5 1 = (0g𝐺)
208 dchrisum0f.f . . . . 5 𝐹 = (𝑏 ∈ ℕ ↦ Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝑏} (𝑋‘(𝐿𝑣)))
2099, 11, 7, 126, 127, 207, 208dchrisum0fval 26558 . . . 4 ((𝑃𝐴) ∈ ℕ → (𝐹‘(𝑃𝐴)) = Σ𝑘 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ (𝑃𝐴)} (𝑋‘(𝐿𝑘)))
21083, 209syl 17 . . 3 (𝜑 → (𝐹‘(𝑃𝐴)) = Σ𝑘 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ (𝑃𝐴)} (𝑋‘(𝐿𝑘)))
211 2fveq3 6761 . . . 4 (𝑘 = (𝑃𝑖) → (𝑋‘(𝐿𝑘)) = (𝑋‘(𝐿‘(𝑃𝑖))))
212 eqid 2738 . . . . . 6 (𝑏 ∈ (0...𝐴) ↦ (𝑃𝑏)) = (𝑏 ∈ (0...𝐴) ↦ (𝑃𝑏))
213212dvdsppwf1o 26240 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑏 ∈ (0...𝐴) ↦ (𝑃𝑏)):(0...𝐴)–1-1-onto→{𝑞 ∈ ℕ ∣ 𝑞 ∥ (𝑃𝐴)})
21415, 31, 213syl2anc 583 . . . 4 (𝜑 → (𝑏 ∈ (0...𝐴) ↦ (𝑃𝑏)):(0...𝐴)–1-1-onto→{𝑞 ∈ ℕ ∣ 𝑞 ∥ (𝑃𝐴)})
215 oveq2 7263 . . . . . 6 (𝑏 = 𝑖 → (𝑃𝑏) = (𝑃𝑖))
216 ovex 7288 . . . . . 6 (𝑃𝑏) ∈ V
217215, 212, 216fvmpt3i 6862 . . . . 5 (𝑖 ∈ (0...𝐴) → ((𝑏 ∈ (0...𝐴) ↦ (𝑃𝑏))‘𝑖) = (𝑃𝑖))
218217adantl 481 . . . 4 ((𝜑𝑖 ∈ (0...𝐴)) → ((𝑏 ∈ (0...𝐴) ↦ (𝑃𝑏))‘𝑖) = (𝑃𝑖))
2196adantr 480 . . . . . 6 ((𝜑𝑘 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ (𝑃𝐴)}) → 𝑋:(Base‘𝑍)⟶ℝ)
220 elrabi 3611 . . . . . . . 8 (𝑘 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ (𝑃𝐴)} → 𝑘 ∈ ℕ)
221220nnzd 12354 . . . . . . 7 (𝑘 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ (𝑃𝐴)} → 𝑘 ∈ ℤ)
222 ffvelrn 6941 . . . . . . 7 ((𝐿:ℤ⟶(Base‘𝑍) ∧ 𝑘 ∈ ℤ) → (𝐿𝑘) ∈ (Base‘𝑍))
22314, 221, 222syl2an 595 . . . . . 6 ((𝜑𝑘 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ (𝑃𝐴)}) → (𝐿𝑘) ∈ (Base‘𝑍))
224219, 223ffvelrnd 6944 . . . . 5 ((𝜑𝑘 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ (𝑃𝐴)}) → (𝑋‘(𝐿𝑘)) ∈ ℝ)
225224recnd 10934 . . . 4 ((𝜑𝑘 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ (𝑃𝐴)}) → (𝑋‘(𝐿𝑘)) ∈ ℂ)
226211, 5, 214, 218, 225fsumf1o 15363 . . 3 (𝜑 → Σ𝑘 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ (𝑃𝐴)} (𝑋‘(𝐿𝑘)) = Σ𝑖 ∈ (0...𝐴)(𝑋‘(𝐿‘(𝑃𝑖))))
227 zsubrg 20563 . . . . . . . . . . 11 ℤ ∈ (SubRing‘ℂfld)
228 eqid 2738 . . . . . . . . . . . 12 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
229228subrgsubm 19952 . . . . . . . . . . 11 (ℤ ∈ (SubRing‘ℂfld) → ℤ ∈ (SubMnd‘(mulGrp‘ℂfld)))
230227, 229mp1i 13 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0...𝐴)) → ℤ ∈ (SubMnd‘(mulGrp‘ℂfld)))
23120adantl 481 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0...𝐴)) → 𝑖 ∈ ℕ0)
23217adantr 480 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0...𝐴)) → 𝑃 ∈ ℤ)
233 eqid 2738 . . . . . . . . . . 11 (.g‘(mulGrp‘ℂfld)) = (.g‘(mulGrp‘ℂfld))
234 zringmpg 20605 . . . . . . . . . . . 12 ((mulGrp‘ℂfld) ↾s ℤ) = (mulGrp‘ℤring)
235234eqcomi 2747 . . . . . . . . . . 11 (mulGrp‘ℤring) = ((mulGrp‘ℂfld) ↾s ℤ)
236 eqid 2738 . . . . . . . . . . 11 (.g‘(mulGrp‘ℤring)) = (.g‘(mulGrp‘ℤring))
237233, 235, 236submmulg 18662 . . . . . . . . . 10 ((ℤ ∈ (SubMnd‘(mulGrp‘ℂfld)) ∧ 𝑖 ∈ ℕ0𝑃 ∈ ℤ) → (𝑖(.g‘(mulGrp‘ℂfld))𝑃) = (𝑖(.g‘(mulGrp‘ℤring))𝑃))
238230, 231, 232, 237syl3anc 1369 . . . . . . . . 9 ((𝜑𝑖 ∈ (0...𝐴)) → (𝑖(.g‘(mulGrp‘ℂfld))𝑃) = (𝑖(.g‘(mulGrp‘ℤring))𝑃))
23982nncnd 11919 . . . . . . . . . 10 (𝜑𝑃 ∈ ℂ)
240 cnfldexp 20543 . . . . . . . . . 10 ((𝑃 ∈ ℂ ∧ 𝑖 ∈ ℕ0) → (𝑖(.g‘(mulGrp‘ℂfld))𝑃) = (𝑃𝑖))
241239, 20, 240syl2an 595 . . . . . . . . 9 ((𝜑𝑖 ∈ (0...𝐴)) → (𝑖(.g‘(mulGrp‘ℂfld))𝑃) = (𝑃𝑖))
242238, 241eqtr3d 2780 . . . . . . . 8 ((𝜑𝑖 ∈ (0...𝐴)) → (𝑖(.g‘(mulGrp‘ℤring))𝑃) = (𝑃𝑖))
243242fveq2d 6760 . . . . . . 7 ((𝜑𝑖 ∈ (0...𝐴)) → (𝐿‘(𝑖(.g‘(mulGrp‘ℤring))𝑃)) = (𝐿‘(𝑃𝑖)))
2449zncrng 20664 . . . . . . . . . . 11 (𝑁 ∈ ℕ0𝑍 ∈ CRing)
245 crngring 19710 . . . . . . . . . . 11 (𝑍 ∈ CRing → 𝑍 ∈ Ring)
2468, 244, 2453syl 18 . . . . . . . . . 10 (𝜑𝑍 ∈ Ring)
24711zrhrhm 20625 . . . . . . . . . 10 (𝑍 ∈ Ring → 𝐿 ∈ (ℤring RingHom 𝑍))
248 eqid 2738 . . . . . . . . . . 11 (mulGrp‘ℤring) = (mulGrp‘ℤring)
249 eqid 2738 . . . . . . . . . . 11 (mulGrp‘𝑍) = (mulGrp‘𝑍)
250248, 249rhmmhm 19881 . . . . . . . . . 10 (𝐿 ∈ (ℤring RingHom 𝑍) → 𝐿 ∈ ((mulGrp‘ℤring) MndHom (mulGrp‘𝑍)))
251246, 247, 2503syl 18 . . . . . . . . 9 (𝜑𝐿 ∈ ((mulGrp‘ℤring) MndHom (mulGrp‘𝑍)))
252251adantr 480 . . . . . . . 8 ((𝜑𝑖 ∈ (0...𝐴)) → 𝐿 ∈ ((mulGrp‘ℤring) MndHom (mulGrp‘𝑍)))
253 zringbas 20588 . . . . . . . . . 10 ℤ = (Base‘ℤring)
254248, 253mgpbas 19641 . . . . . . . . 9 ℤ = (Base‘(mulGrp‘ℤring))
255 eqid 2738 . . . . . . . . 9 (.g‘(mulGrp‘𝑍)) = (.g‘(mulGrp‘𝑍))
256254, 236, 255mhmmulg 18659 . . . . . . . 8 ((𝐿 ∈ ((mulGrp‘ℤring) MndHom (mulGrp‘𝑍)) ∧ 𝑖 ∈ ℕ0𝑃 ∈ ℤ) → (𝐿‘(𝑖(.g‘(mulGrp‘ℤring))𝑃)) = (𝑖(.g‘(mulGrp‘𝑍))(𝐿𝑃)))
257252, 231, 232, 256syl3anc 1369 . . . . . . 7 ((𝜑𝑖 ∈ (0...𝐴)) → (𝐿‘(𝑖(.g‘(mulGrp‘ℤring))𝑃)) = (𝑖(.g‘(mulGrp‘𝑍))(𝐿𝑃)))
258243, 257eqtr3d 2780 . . . . . 6 ((𝜑𝑖 ∈ (0...𝐴)) → (𝐿‘(𝑃𝑖)) = (𝑖(.g‘(mulGrp‘𝑍))(𝐿𝑃)))
259258fveq2d 6760 . . . . 5 ((𝜑𝑖 ∈ (0...𝐴)) → (𝑋‘(𝐿‘(𝑃𝑖))) = (𝑋‘(𝑖(.g‘(mulGrp‘𝑍))(𝐿𝑃))))
260126, 9, 127dchrmhm 26294 . . . . . . . 8 𝐷 ⊆ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))
261260, 128sselid 3915 . . . . . . 7 (𝜑𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)))
262261adantr 480 . . . . . 6 ((𝜑𝑖 ∈ (0...𝐴)) → 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)))
26318adantr 480 . . . . . 6 ((𝜑𝑖 ∈ (0...𝐴)) → (𝐿𝑃) ∈ (Base‘𝑍))
264249, 10mgpbas 19641 . . . . . . 7 (Base‘𝑍) = (Base‘(mulGrp‘𝑍))
265264, 255, 233mhmmulg 18659 . . . . . 6 ((𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ 𝑖 ∈ ℕ0 ∧ (𝐿𝑃) ∈ (Base‘𝑍)) → (𝑋‘(𝑖(.g‘(mulGrp‘𝑍))(𝐿𝑃))) = (𝑖(.g‘(mulGrp‘ℂfld))(𝑋‘(𝐿𝑃))))
266262, 231, 263, 265syl3anc 1369 . . . . 5 ((𝜑𝑖 ∈ (0...𝐴)) → (𝑋‘(𝑖(.g‘(mulGrp‘𝑍))(𝐿𝑃))) = (𝑖(.g‘(mulGrp‘ℂfld))(𝑋‘(𝐿𝑃))))
267 cnfldexp 20543 . . . . . 6 (((𝑋‘(𝐿𝑃)) ∈ ℂ ∧ 𝑖 ∈ ℕ0) → (𝑖(.g‘(mulGrp‘ℂfld))(𝑋‘(𝐿𝑃))) = ((𝑋‘(𝐿𝑃))↑𝑖))
268120, 20, 267syl2an 595 . . . . 5 ((𝜑𝑖 ∈ (0...𝐴)) → (𝑖(.g‘(mulGrp‘ℂfld))(𝑋‘(𝐿𝑃))) = ((𝑋‘(𝐿𝑃))↑𝑖))
269259, 266, 2683eqtrd 2782 . . . 4 ((𝜑𝑖 ∈ (0...𝐴)) → (𝑋‘(𝐿‘(𝑃𝑖))) = ((𝑋‘(𝐿𝑃))↑𝑖))
270269sumeq2dv 15343 . . 3 (𝜑 → Σ𝑖 ∈ (0...𝐴)(𝑋‘(𝐿‘(𝑃𝑖))) = Σ𝑖 ∈ (0...𝐴)((𝑋‘(𝐿𝑃))↑𝑖))
271210, 226, 2703eqtrd 2782 . 2 (𝜑 → (𝐹‘(𝑃𝐴)) = Σ𝑖 ∈ (0...𝐴)((𝑋‘(𝐿𝑃))↑𝑖))
272206, 271breqtrrd 5098 1 (𝜑 → if((√‘(𝑃𝐴)) ∈ ℕ, 1, 0) ≤ (𝐹‘(𝑃𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wne 2942  {crab 3067  c0 4253  ifcif 4456   class class class wbr 5070  cmpt 5153  wf 6414  ontowfo 6416  1-1-ontowf1o 6417  cfv 6418  (class class class)co 7255  Fincfn 8691  cc 10800  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807   < clt 10940  cle 10941  cmin 11135  -cneg 11136   / cdiv 11562  cn 11903  2c2 11958  0cn0 12163  cz 12249  cuz 12511  cq 12617  ...cfz 13168  ..^cfzo 13311  cexp 13710  chash 13972  csqrt 14872  abscabs 14873  Σcsu 15325  cdvds 15891  cprime 16304   pCnt cpc 16465  Basecbs 16840  s cress 16867  0gc0g 17067   MndHom cmhm 18343  SubMndcsubmnd 18344  .gcmg 18615  mulGrpcmgp 19635  Ringcrg 19698  CRingccrg 19699  Unitcui 19796   RingHom crh 19871  SubRingcsubrg 19935  fldccnfld 20510  ringzring 20582  ℤRHomczrh 20613  ℤ/nczn 20616  DChrcdchr 26285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-disj 5036  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-tpos 8013  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-oadd 8271  df-omul 8272  df-er 8456  df-ec 8458  df-qs 8462  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-acn 9631  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ioc 13013  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-fac 13916  df-bc 13945  df-hash 13973  df-shft 14706  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-limsup 15108  df-clim 15125  df-rlim 15126  df-sum 15326  df-ef 15705  df-sin 15707  df-cos 15708  df-pi 15710  df-dvds 15892  df-gcd 16130  df-prm 16305  df-pc 16466  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-rest 17050  df-topn 17051  df-0g 17069  df-gsum 17070  df-topgen 17071  df-pt 17072  df-prds 17075  df-xrs 17130  df-qtop 17135  df-imas 17136  df-qus 17137  df-xps 17138  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-mhm 18345  df-submnd 18346  df-grp 18495  df-minusg 18496  df-sbg 18497  df-mulg 18616  df-subg 18667  df-nsg 18668  df-eqg 18669  df-ghm 18747  df-cntz 18838  df-od 19051  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-ring 19700  df-cring 19701  df-oppr 19777  df-dvdsr 19798  df-unit 19799  df-invr 19829  df-dvr 19840  df-rnghom 19874  df-drng 19908  df-subrg 19937  df-lmod 20040  df-lss 20109  df-lsp 20149  df-sra 20349  df-rgmod 20350  df-lidl 20351  df-rsp 20352  df-2idl 20416  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-fbas 20507  df-fg 20508  df-cnfld 20511  df-zring 20583  df-zrh 20617  df-zn 20620  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-nei 22157  df-lp 22195  df-perf 22196  df-cn 22286  df-cnp 22287  df-haus 22374  df-tx 22621  df-hmeo 22814  df-fil 22905  df-fm 22997  df-flim 22998  df-flf 22999  df-xms 23381  df-ms 23382  df-tms 23383  df-cncf 23947  df-limc 24935  df-dv 24936  df-log 25617  df-cxp 25618  df-dchr 26286
This theorem is referenced by:  dchrisum0flblem2  26562  dchrisum0flb  26563
  Copyright terms: Public domain W3C validator