MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrisum0flblem1 Structured version   Visualization version   GIF version

Theorem dchrisum0flblem1 27471
Description: Lemma for dchrisum0flb 27473. Base case, prime power. (Contributed by Mario Carneiro, 5-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z 𝑍 = (ℤ/nℤ‘𝑁)
rpvmasum.l 𝐿 = (ℤRHom‘𝑍)
rpvmasum.a (𝜑𝑁 ∈ ℕ)
rpvmasum2.g 𝐺 = (DChr‘𝑁)
rpvmasum2.d 𝐷 = (Base‘𝐺)
rpvmasum2.1 1 = (0g𝐺)
dchrisum0f.f 𝐹 = (𝑏 ∈ ℕ ↦ Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝑏} (𝑋‘(𝐿𝑣)))
dchrisum0f.x (𝜑𝑋𝐷)
dchrisum0flb.r (𝜑𝑋:(Base‘𝑍)⟶ℝ)
dchrisum0flblem1.1 (𝜑𝑃 ∈ ℙ)
dchrisum0flblem1.2 (𝜑𝐴 ∈ ℕ0)
Assertion
Ref Expression
dchrisum0flblem1 (𝜑 → if((√‘(𝑃𝐴)) ∈ ℕ, 1, 0) ≤ (𝐹‘(𝑃𝐴)))
Distinct variable groups:   𝑞,𝑏,𝑣,𝐴   𝑁,𝑞   𝑃,𝑏,𝑞,𝑣   𝐿,𝑏,𝑣   𝑋,𝑏,𝑣
Allowed substitution hints:   𝜑(𝑣,𝑞,𝑏)   𝐷(𝑣,𝑞,𝑏)   1 (𝑣,𝑞,𝑏)   𝐹(𝑣,𝑞,𝑏)   𝐺(𝑣,𝑞,𝑏)   𝐿(𝑞)   𝑁(𝑣,𝑏)   𝑋(𝑞)   𝑍(𝑣,𝑞,𝑏)

Proof of Theorem dchrisum0flblem1
Dummy variables 𝑘 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1red 11236 . . . . 5 (((𝜑 ∧ (𝑋‘(𝐿𝑃)) = 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) → 1 ∈ ℝ)
2 0red 11238 . . . . 5 (((𝜑 ∧ (𝑋‘(𝐿𝑃)) = 1) ∧ ¬ (√‘(𝑃𝐴)) ∈ ℕ) → 0 ∈ ℝ)
31, 2ifclda 4536 . . . 4 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) = 1) → if((√‘(𝑃𝐴)) ∈ ℕ, 1, 0) ∈ ℝ)
4 1red 11236 . . . 4 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) = 1) → 1 ∈ ℝ)
5 fzfid 13991 . . . . . 6 (𝜑 → (0...𝐴) ∈ Fin)
6 dchrisum0flb.r . . . . . . . 8 (𝜑𝑋:(Base‘𝑍)⟶ℝ)
7 rpvmasum.a . . . . . . . . . . 11 (𝜑𝑁 ∈ ℕ)
87nnnn0d 12562 . . . . . . . . . 10 (𝜑𝑁 ∈ ℕ0)
9 rpvmasum.z . . . . . . . . . . 11 𝑍 = (ℤ/nℤ‘𝑁)
10 eqid 2735 . . . . . . . . . . 11 (Base‘𝑍) = (Base‘𝑍)
11 rpvmasum.l . . . . . . . . . . 11 𝐿 = (ℤRHom‘𝑍)
129, 10, 11znzrhfo 21508 . . . . . . . . . 10 (𝑁 ∈ ℕ0𝐿:ℤ–onto→(Base‘𝑍))
13 fof 6790 . . . . . . . . . 10 (𝐿:ℤ–onto→(Base‘𝑍) → 𝐿:ℤ⟶(Base‘𝑍))
148, 12, 133syl 18 . . . . . . . . 9 (𝜑𝐿:ℤ⟶(Base‘𝑍))
15 dchrisum0flblem1.1 . . . . . . . . . 10 (𝜑𝑃 ∈ ℙ)
16 prmz 16694 . . . . . . . . . 10 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
1715, 16syl 17 . . . . . . . . 9 (𝜑𝑃 ∈ ℤ)
1814, 17ffvelcdmd 7075 . . . . . . . 8 (𝜑 → (𝐿𝑃) ∈ (Base‘𝑍))
196, 18ffvelcdmd 7075 . . . . . . 7 (𝜑 → (𝑋‘(𝐿𝑃)) ∈ ℝ)
20 elfznn0 13637 . . . . . . 7 (𝑖 ∈ (0...𝐴) → 𝑖 ∈ ℕ0)
21 reexpcl 14096 . . . . . . 7 (((𝑋‘(𝐿𝑃)) ∈ ℝ ∧ 𝑖 ∈ ℕ0) → ((𝑋‘(𝐿𝑃))↑𝑖) ∈ ℝ)
2219, 20, 21syl2an 596 . . . . . 6 ((𝜑𝑖 ∈ (0...𝐴)) → ((𝑋‘(𝐿𝑃))↑𝑖) ∈ ℝ)
235, 22fsumrecl 15750 . . . . 5 (𝜑 → Σ𝑖 ∈ (0...𝐴)((𝑋‘(𝐿𝑃))↑𝑖) ∈ ℝ)
2423adantr 480 . . . 4 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) = 1) → Σ𝑖 ∈ (0...𝐴)((𝑋‘(𝐿𝑃))↑𝑖) ∈ ℝ)
25 breq1 5122 . . . . . 6 (1 = if((√‘(𝑃𝐴)) ∈ ℕ, 1, 0) → (1 ≤ 1 ↔ if((√‘(𝑃𝐴)) ∈ ℕ, 1, 0) ≤ 1))
26 breq1 5122 . . . . . 6 (0 = if((√‘(𝑃𝐴)) ∈ ℕ, 1, 0) → (0 ≤ 1 ↔ if((√‘(𝑃𝐴)) ∈ ℕ, 1, 0) ≤ 1))
27 1le1 11865 . . . . . 6 1 ≤ 1
28 0le1 11760 . . . . . 6 0 ≤ 1
2925, 26, 27, 28keephyp 4572 . . . . 5 if((√‘(𝑃𝐴)) ∈ ℕ, 1, 0) ≤ 1
3029a1i 11 . . . 4 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) = 1) → if((√‘(𝑃𝐴)) ∈ ℕ, 1, 0) ≤ 1)
31 dchrisum0flblem1.2 . . . . . . . . . 10 (𝜑𝐴 ∈ ℕ0)
32 nn0uz 12894 . . . . . . . . . 10 0 = (ℤ‘0)
3331, 32eleqtrdi 2844 . . . . . . . . 9 (𝜑𝐴 ∈ (ℤ‘0))
34 fzn0 13555 . . . . . . . . 9 ((0...𝐴) ≠ ∅ ↔ 𝐴 ∈ (ℤ‘0))
3533, 34sylibr 234 . . . . . . . 8 (𝜑 → (0...𝐴) ≠ ∅)
36 hashnncl 14384 . . . . . . . . 9 ((0...𝐴) ∈ Fin → ((♯‘(0...𝐴)) ∈ ℕ ↔ (0...𝐴) ≠ ∅))
375, 36syl 17 . . . . . . . 8 (𝜑 → ((♯‘(0...𝐴)) ∈ ℕ ↔ (0...𝐴) ≠ ∅))
3835, 37mpbird 257 . . . . . . 7 (𝜑 → (♯‘(0...𝐴)) ∈ ℕ)
3938adantr 480 . . . . . 6 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) = 1) → (♯‘(0...𝐴)) ∈ ℕ)
4039nnge1d 12288 . . . . 5 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) = 1) → 1 ≤ (♯‘(0...𝐴)))
41 simpr 484 . . . . . . . . 9 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) = 1) → (𝑋‘(𝐿𝑃)) = 1)
4241oveq1d 7420 . . . . . . . 8 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) = 1) → ((𝑋‘(𝐿𝑃))↑𝑖) = (1↑𝑖))
43 elfzelz 13541 . . . . . . . . 9 (𝑖 ∈ (0...𝐴) → 𝑖 ∈ ℤ)
44 1exp 14109 . . . . . . . . 9 (𝑖 ∈ ℤ → (1↑𝑖) = 1)
4543, 44syl 17 . . . . . . . 8 (𝑖 ∈ (0...𝐴) → (1↑𝑖) = 1)
4642, 45sylan9eq 2790 . . . . . . 7 (((𝜑 ∧ (𝑋‘(𝐿𝑃)) = 1) ∧ 𝑖 ∈ (0...𝐴)) → ((𝑋‘(𝐿𝑃))↑𝑖) = 1)
4746sumeq2dv 15718 . . . . . 6 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) = 1) → Σ𝑖 ∈ (0...𝐴)((𝑋‘(𝐿𝑃))↑𝑖) = Σ𝑖 ∈ (0...𝐴)1)
48 fzfid 13991 . . . . . . 7 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) = 1) → (0...𝐴) ∈ Fin)
49 ax-1cn 11187 . . . . . . 7 1 ∈ ℂ
50 fsumconst 15806 . . . . . . 7 (((0...𝐴) ∈ Fin ∧ 1 ∈ ℂ) → Σ𝑖 ∈ (0...𝐴)1 = ((♯‘(0...𝐴)) · 1))
5148, 49, 50sylancl 586 . . . . . 6 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) = 1) → Σ𝑖 ∈ (0...𝐴)1 = ((♯‘(0...𝐴)) · 1))
5239nncnd 12256 . . . . . . 7 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) = 1) → (♯‘(0...𝐴)) ∈ ℂ)
5352mulridd 11252 . . . . . 6 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) = 1) → ((♯‘(0...𝐴)) · 1) = (♯‘(0...𝐴)))
5447, 51, 533eqtrd 2774 . . . . 5 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) = 1) → Σ𝑖 ∈ (0...𝐴)((𝑋‘(𝐿𝑃))↑𝑖) = (♯‘(0...𝐴)))
5540, 54breqtrrd 5147 . . . 4 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) = 1) → 1 ≤ Σ𝑖 ∈ (0...𝐴)((𝑋‘(𝐿𝑃))↑𝑖))
563, 4, 24, 30, 55letrd 11392 . . 3 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) = 1) → if((√‘(𝑃𝐴)) ∈ ℕ, 1, 0) ≤ Σ𝑖 ∈ (0...𝐴)((𝑋‘(𝐿𝑃))↑𝑖))
57 oveq1 7412 . . . . . . 7 (1 = if((√‘(𝑃𝐴)) ∈ ℕ, 1, 0) → (1 · (1 − (𝑋‘(𝐿𝑃)))) = (if((√‘(𝑃𝐴)) ∈ ℕ, 1, 0) · (1 − (𝑋‘(𝐿𝑃)))))
5857breq1d 5129 . . . . . 6 (1 = if((√‘(𝑃𝐴)) ∈ ℕ, 1, 0) → ((1 · (1 − (𝑋‘(𝐿𝑃)))) ≤ (1 − ((𝑋‘(𝐿𝑃))↑(𝐴 + 1))) ↔ (if((√‘(𝑃𝐴)) ∈ ℕ, 1, 0) · (1 − (𝑋‘(𝐿𝑃)))) ≤ (1 − ((𝑋‘(𝐿𝑃))↑(𝐴 + 1)))))
59 oveq1 7412 . . . . . . 7 (0 = if((√‘(𝑃𝐴)) ∈ ℕ, 1, 0) → (0 · (1 − (𝑋‘(𝐿𝑃)))) = (if((√‘(𝑃𝐴)) ∈ ℕ, 1, 0) · (1 − (𝑋‘(𝐿𝑃)))))
6059breq1d 5129 . . . . . 6 (0 = if((√‘(𝑃𝐴)) ∈ ℕ, 1, 0) → ((0 · (1 − (𝑋‘(𝐿𝑃)))) ≤ (1 − ((𝑋‘(𝐿𝑃))↑(𝐴 + 1))) ↔ (if((√‘(𝑃𝐴)) ∈ ℕ, 1, 0) · (1 − (𝑋‘(𝐿𝑃)))) ≤ (1 − ((𝑋‘(𝐿𝑃))↑(𝐴 + 1)))))
61 1re 11235 . . . . . . . . . 10 1 ∈ ℝ
6219adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) → (𝑋‘(𝐿𝑃)) ∈ ℝ)
63 resubcl 11547 . . . . . . . . . 10 ((1 ∈ ℝ ∧ (𝑋‘(𝐿𝑃)) ∈ ℝ) → (1 − (𝑋‘(𝐿𝑃))) ∈ ℝ)
6461, 62, 63sylancr 587 . . . . . . . . 9 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) → (1 − (𝑋‘(𝐿𝑃))) ∈ ℝ)
6564adantr 480 . . . . . . . 8 (((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) → (1 − (𝑋‘(𝐿𝑃))) ∈ ℝ)
6665leidd 11803 . . . . . . 7 (((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) → (1 − (𝑋‘(𝐿𝑃))) ≤ (1 − (𝑋‘(𝐿𝑃))))
6764recnd 11263 . . . . . . . . 9 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) → (1 − (𝑋‘(𝐿𝑃))) ∈ ℂ)
6867adantr 480 . . . . . . . 8 (((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) → (1 − (𝑋‘(𝐿𝑃))) ∈ ℂ)
6968mullidd 11253 . . . . . . 7 (((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) → (1 · (1 − (𝑋‘(𝐿𝑃)))) = (1 − (𝑋‘(𝐿𝑃))))
70 nn0p1nn 12540 . . . . . . . . . . . . 13 (𝐴 ∈ ℕ0 → (𝐴 + 1) ∈ ℕ)
7131, 70syl 17 . . . . . . . . . . . 12 (𝜑 → (𝐴 + 1) ∈ ℕ)
7271ad3antrrr 730 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) ∧ (𝑋‘(𝐿𝑃)) = 0) → (𝐴 + 1) ∈ ℕ)
73720expd 14157 . . . . . . . . . 10 ((((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) ∧ (𝑋‘(𝐿𝑃)) = 0) → (0↑(𝐴 + 1)) = 0)
74 simpr 484 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) ∧ (𝑋‘(𝐿𝑃)) = 0) → (𝑋‘(𝐿𝑃)) = 0)
7574oveq1d 7420 . . . . . . . . . 10 ((((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) ∧ (𝑋‘(𝐿𝑃)) = 0) → ((𝑋‘(𝐿𝑃))↑(𝐴 + 1)) = (0↑(𝐴 + 1)))
7673, 75, 743eqtr4d 2780 . . . . . . . . 9 ((((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) ∧ (𝑋‘(𝐿𝑃)) = 0) → ((𝑋‘(𝐿𝑃))↑(𝐴 + 1)) = (𝑋‘(𝐿𝑃)))
77 neg1cn 12354 . . . . . . . . . . . . 13 -1 ∈ ℂ
7831ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) → 𝐴 ∈ ℕ0)
79 expp1 14086 . . . . . . . . . . . . 13 ((-1 ∈ ℂ ∧ 𝐴 ∈ ℕ0) → (-1↑(𝐴 + 1)) = ((-1↑𝐴) · -1))
8077, 78, 79sylancr 587 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) → (-1↑(𝐴 + 1)) = ((-1↑𝐴) · -1))
81 prmnn 16693 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
8215, 81syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝑃 ∈ ℕ)
8382, 31nnexpcld 14263 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑃𝐴) ∈ ℕ)
8483nncnd 12256 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑃𝐴) ∈ ℂ)
8584ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) → (𝑃𝐴) ∈ ℂ)
8685sqsqrtd 15458 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) → ((√‘(𝑃𝐴))↑2) = (𝑃𝐴))
8786oveq2d 7421 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) → (𝑃 pCnt ((√‘(𝑃𝐴))↑2)) = (𝑃 pCnt (𝑃𝐴)))
8815ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) → 𝑃 ∈ ℙ)
89 nnq 12978 . . . . . . . . . . . . . . . . . . 19 ((√‘(𝑃𝐴)) ∈ ℕ → (√‘(𝑃𝐴)) ∈ ℚ)
9089adantl 481 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) → (√‘(𝑃𝐴)) ∈ ℚ)
91 nnne0 12274 . . . . . . . . . . . . . . . . . . 19 ((√‘(𝑃𝐴)) ∈ ℕ → (√‘(𝑃𝐴)) ≠ 0)
9291adantl 481 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) → (√‘(𝑃𝐴)) ≠ 0)
93 2z 12624 . . . . . . . . . . . . . . . . . . 19 2 ∈ ℤ
9493a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) → 2 ∈ ℤ)
95 pcexp 16879 . . . . . . . . . . . . . . . . . 18 ((𝑃 ∈ ℙ ∧ ((√‘(𝑃𝐴)) ∈ ℚ ∧ (√‘(𝑃𝐴)) ≠ 0) ∧ 2 ∈ ℤ) → (𝑃 pCnt ((√‘(𝑃𝐴))↑2)) = (2 · (𝑃 pCnt (√‘(𝑃𝐴)))))
9688, 90, 92, 94, 95syl121anc 1377 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) → (𝑃 pCnt ((√‘(𝑃𝐴))↑2)) = (2 · (𝑃 pCnt (√‘(𝑃𝐴)))))
9778nn0zd 12614 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) → 𝐴 ∈ ℤ)
98 pcid 16893 . . . . . . . . . . . . . . . . . 18 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃 pCnt (𝑃𝐴)) = 𝐴)
9988, 97, 98syl2anc 584 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) → (𝑃 pCnt (𝑃𝐴)) = 𝐴)
10087, 96, 993eqtr3rd 2779 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) → 𝐴 = (2 · (𝑃 pCnt (√‘(𝑃𝐴)))))
101100oveq2d 7421 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) → (-1↑𝐴) = (-1↑(2 · (𝑃 pCnt (√‘(𝑃𝐴))))))
10277a1i 11 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) → -1 ∈ ℂ)
103 simpr 484 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) → (√‘(𝑃𝐴)) ∈ ℕ)
10488, 103pccld 16870 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) → (𝑃 pCnt (√‘(𝑃𝐴))) ∈ ℕ0)
105 2nn0 12518 . . . . . . . . . . . . . . . . 17 2 ∈ ℕ0
106105a1i 11 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) → 2 ∈ ℕ0)
107102, 104, 106expmuld 14167 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) → (-1↑(2 · (𝑃 pCnt (√‘(𝑃𝐴))))) = ((-1↑2)↑(𝑃 pCnt (√‘(𝑃𝐴)))))
108 neg1sqe1 14214 . . . . . . . . . . . . . . . . 17 (-1↑2) = 1
109108oveq1i 7415 . . . . . . . . . . . . . . . 16 ((-1↑2)↑(𝑃 pCnt (√‘(𝑃𝐴)))) = (1↑(𝑃 pCnt (√‘(𝑃𝐴))))
110104nn0zd 12614 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) → (𝑃 pCnt (√‘(𝑃𝐴))) ∈ ℤ)
111 1exp 14109 . . . . . . . . . . . . . . . . 17 ((𝑃 pCnt (√‘(𝑃𝐴))) ∈ ℤ → (1↑(𝑃 pCnt (√‘(𝑃𝐴)))) = 1)
112110, 111syl 17 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) → (1↑(𝑃 pCnt (√‘(𝑃𝐴)))) = 1)
113109, 112eqtrid 2782 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) → ((-1↑2)↑(𝑃 pCnt (√‘(𝑃𝐴)))) = 1)
114101, 107, 1133eqtrd 2774 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) → (-1↑𝐴) = 1)
115114oveq1d 7420 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) → ((-1↑𝐴) · -1) = (1 · -1))
11677mullidi 11240 . . . . . . . . . . . . 13 (1 · -1) = -1
117115, 116eqtrdi 2786 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) → ((-1↑𝐴) · -1) = -1)
11880, 117eqtrd 2770 . . . . . . . . . . 11 (((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) → (-1↑(𝐴 + 1)) = -1)
119118adantr 480 . . . . . . . . . 10 ((((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) ∧ (𝑋‘(𝐿𝑃)) ≠ 0) → (-1↑(𝐴 + 1)) = -1)
12019recnd 11263 . . . . . . . . . . . . . . 15 (𝜑 → (𝑋‘(𝐿𝑃)) ∈ ℂ)
121120adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) → (𝑋‘(𝐿𝑃)) ∈ ℂ)
122121ad2antrr 726 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) ∧ (𝑋‘(𝐿𝑃)) ≠ 0) → (𝑋‘(𝐿𝑃)) ∈ ℂ)
123122negnegd 11585 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) ∧ (𝑋‘(𝐿𝑃)) ≠ 0) → --(𝑋‘(𝐿𝑃)) = (𝑋‘(𝐿𝑃)))
124 simpr 484 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) → (𝑋‘(𝐿𝑃)) ≠ 1)
125124ad2antrr 726 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) ∧ (𝑋‘(𝐿𝑃)) ≠ 0) → (𝑋‘(𝐿𝑃)) ≠ 1)
126 rpvmasum2.g . . . . . . . . . . . . . . . . . . 19 𝐺 = (DChr‘𝑁)
127 rpvmasum2.d . . . . . . . . . . . . . . . . . . 19 𝐷 = (Base‘𝐺)
128 dchrisum0f.x . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑋𝐷)
129128ad3antrrr 730 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) ∧ (𝑋‘(𝐿𝑃)) ≠ 0) → 𝑋𝐷)
130 eqid 2735 . . . . . . . . . . . . . . . . . . 19 (Unit‘𝑍) = (Unit‘𝑍)
131126, 9, 127, 10, 130, 128, 18dchrn0 27213 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((𝑋‘(𝐿𝑃)) ≠ 0 ↔ (𝐿𝑃) ∈ (Unit‘𝑍)))
132131ad2antrr 726 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) → ((𝑋‘(𝐿𝑃)) ≠ 0 ↔ (𝐿𝑃) ∈ (Unit‘𝑍)))
133132biimpa 476 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) ∧ (𝑋‘(𝐿𝑃)) ≠ 0) → (𝐿𝑃) ∈ (Unit‘𝑍))
134126, 127, 129, 9, 130, 133dchrabs 27223 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) ∧ (𝑋‘(𝐿𝑃)) ≠ 0) → (abs‘(𝑋‘(𝐿𝑃))) = 1)
135 eqeq1 2739 . . . . . . . . . . . . . . . . . 18 ((abs‘(𝑋‘(𝐿𝑃))) = (𝑋‘(𝐿𝑃)) → ((abs‘(𝑋‘(𝐿𝑃))) = 1 ↔ (𝑋‘(𝐿𝑃)) = 1))
136134, 135syl5ibcom 245 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) ∧ (𝑋‘(𝐿𝑃)) ≠ 0) → ((abs‘(𝑋‘(𝐿𝑃))) = (𝑋‘(𝐿𝑃)) → (𝑋‘(𝐿𝑃)) = 1))
137136necon3ad 2945 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) ∧ (𝑋‘(𝐿𝑃)) ≠ 0) → ((𝑋‘(𝐿𝑃)) ≠ 1 → ¬ (abs‘(𝑋‘(𝐿𝑃))) = (𝑋‘(𝐿𝑃))))
138125, 137mpd 15 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) ∧ (𝑋‘(𝐿𝑃)) ≠ 0) → ¬ (abs‘(𝑋‘(𝐿𝑃))) = (𝑋‘(𝐿𝑃)))
13962ad2antrr 726 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) ∧ (𝑋‘(𝐿𝑃)) ≠ 0) → (𝑋‘(𝐿𝑃)) ∈ ℝ)
140139absord 15434 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) ∧ (𝑋‘(𝐿𝑃)) ≠ 0) → ((abs‘(𝑋‘(𝐿𝑃))) = (𝑋‘(𝐿𝑃)) ∨ (abs‘(𝑋‘(𝐿𝑃))) = -(𝑋‘(𝐿𝑃))))
141140ord 864 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) ∧ (𝑋‘(𝐿𝑃)) ≠ 0) → (¬ (abs‘(𝑋‘(𝐿𝑃))) = (𝑋‘(𝐿𝑃)) → (abs‘(𝑋‘(𝐿𝑃))) = -(𝑋‘(𝐿𝑃))))
142138, 141mpd 15 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) ∧ (𝑋‘(𝐿𝑃)) ≠ 0) → (abs‘(𝑋‘(𝐿𝑃))) = -(𝑋‘(𝐿𝑃)))
143142, 134eqtr3d 2772 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) ∧ (𝑋‘(𝐿𝑃)) ≠ 0) → -(𝑋‘(𝐿𝑃)) = 1)
144143negeqd 11476 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) ∧ (𝑋‘(𝐿𝑃)) ≠ 0) → --(𝑋‘(𝐿𝑃)) = -1)
145123, 144eqtr3d 2772 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) ∧ (𝑋‘(𝐿𝑃)) ≠ 0) → (𝑋‘(𝐿𝑃)) = -1)
146145oveq1d 7420 . . . . . . . . . 10 ((((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) ∧ (𝑋‘(𝐿𝑃)) ≠ 0) → ((𝑋‘(𝐿𝑃))↑(𝐴 + 1)) = (-1↑(𝐴 + 1)))
147119, 146, 1453eqtr4d 2780 . . . . . . . . 9 ((((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) ∧ (𝑋‘(𝐿𝑃)) ≠ 0) → ((𝑋‘(𝐿𝑃))↑(𝐴 + 1)) = (𝑋‘(𝐿𝑃)))
14876, 147pm2.61dane 3019 . . . . . . . 8 (((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) → ((𝑋‘(𝐿𝑃))↑(𝐴 + 1)) = (𝑋‘(𝐿𝑃)))
149148oveq2d 7421 . . . . . . 7 (((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) → (1 − ((𝑋‘(𝐿𝑃))↑(𝐴 + 1))) = (1 − (𝑋‘(𝐿𝑃))))
15066, 69, 1493brtr4d 5151 . . . . . 6 (((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) → (1 · (1 − (𝑋‘(𝐿𝑃)))) ≤ (1 − ((𝑋‘(𝐿𝑃))↑(𝐴 + 1))))
15167mul02d 11433 . . . . . . . 8 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) → (0 · (1 − (𝑋‘(𝐿𝑃)))) = 0)
152 peano2nn0 12541 . . . . . . . . . . . . 13 (𝐴 ∈ ℕ0 → (𝐴 + 1) ∈ ℕ0)
15331, 152syl 17 . . . . . . . . . . . 12 (𝜑 → (𝐴 + 1) ∈ ℕ0)
15419, 153reexpcld 14181 . . . . . . . . . . 11 (𝜑 → ((𝑋‘(𝐿𝑃))↑(𝐴 + 1)) ∈ ℝ)
155154adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) → ((𝑋‘(𝐿𝑃))↑(𝐴 + 1)) ∈ ℝ)
156155recnd 11263 . . . . . . . . . . 11 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) → ((𝑋‘(𝐿𝑃))↑(𝐴 + 1)) ∈ ℂ)
157156abscld 15455 . . . . . . . . . 10 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) → (abs‘((𝑋‘(𝐿𝑃))↑(𝐴 + 1))) ∈ ℝ)
158 1red 11236 . . . . . . . . . 10 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) → 1 ∈ ℝ)
159155leabsd 15433 . . . . . . . . . 10 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) → ((𝑋‘(𝐿𝑃))↑(𝐴 + 1)) ≤ (abs‘((𝑋‘(𝐿𝑃))↑(𝐴 + 1))))
160153adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) → (𝐴 + 1) ∈ ℕ0)
161121, 160absexpd 15471 . . . . . . . . . . 11 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) → (abs‘((𝑋‘(𝐿𝑃))↑(𝐴 + 1))) = ((abs‘(𝑋‘(𝐿𝑃)))↑(𝐴 + 1)))
162121abscld 15455 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) → (abs‘(𝑋‘(𝐿𝑃))) ∈ ℝ)
163121absge0d 15463 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) → 0 ≤ (abs‘(𝑋‘(𝐿𝑃))))
164126, 127, 9, 10, 128, 18dchrabs2 27225 . . . . . . . . . . . . 13 (𝜑 → (abs‘(𝑋‘(𝐿𝑃))) ≤ 1)
165164adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) → (abs‘(𝑋‘(𝐿𝑃))) ≤ 1)
166 exple1 14195 . . . . . . . . . . . 12 ((((abs‘(𝑋‘(𝐿𝑃))) ∈ ℝ ∧ 0 ≤ (abs‘(𝑋‘(𝐿𝑃))) ∧ (abs‘(𝑋‘(𝐿𝑃))) ≤ 1) ∧ (𝐴 + 1) ∈ ℕ0) → ((abs‘(𝑋‘(𝐿𝑃)))↑(𝐴 + 1)) ≤ 1)
167162, 163, 165, 160, 166syl31anc 1375 . . . . . . . . . . 11 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) → ((abs‘(𝑋‘(𝐿𝑃)))↑(𝐴 + 1)) ≤ 1)
168161, 167eqbrtrd 5141 . . . . . . . . . 10 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) → (abs‘((𝑋‘(𝐿𝑃))↑(𝐴 + 1))) ≤ 1)
169155, 157, 158, 159, 168letrd 11392 . . . . . . . . 9 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) → ((𝑋‘(𝐿𝑃))↑(𝐴 + 1)) ≤ 1)
170 subge0 11750 . . . . . . . . . 10 ((1 ∈ ℝ ∧ ((𝑋‘(𝐿𝑃))↑(𝐴 + 1)) ∈ ℝ) → (0 ≤ (1 − ((𝑋‘(𝐿𝑃))↑(𝐴 + 1))) ↔ ((𝑋‘(𝐿𝑃))↑(𝐴 + 1)) ≤ 1))
17161, 155, 170sylancr 587 . . . . . . . . 9 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) → (0 ≤ (1 − ((𝑋‘(𝐿𝑃))↑(𝐴 + 1))) ↔ ((𝑋‘(𝐿𝑃))↑(𝐴 + 1)) ≤ 1))
172169, 171mpbird 257 . . . . . . . 8 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) → 0 ≤ (1 − ((𝑋‘(𝐿𝑃))↑(𝐴 + 1))))
173151, 172eqbrtrd 5141 . . . . . . 7 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) → (0 · (1 − (𝑋‘(𝐿𝑃)))) ≤ (1 − ((𝑋‘(𝐿𝑃))↑(𝐴 + 1))))
174173adantr 480 . . . . . 6 (((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ ¬ (√‘(𝑃𝐴)) ∈ ℕ) → (0 · (1 − (𝑋‘(𝐿𝑃)))) ≤ (1 − ((𝑋‘(𝐿𝑃))↑(𝐴 + 1))))
17558, 60, 150, 174ifbothda 4539 . . . . 5 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) → (if((√‘(𝑃𝐴)) ∈ ℕ, 1, 0) · (1 − (𝑋‘(𝐿𝑃)))) ≤ (1 − ((𝑋‘(𝐿𝑃))↑(𝐴 + 1))))
176 0re 11237 . . . . . . . 8 0 ∈ ℝ
17761, 176ifcli 4548 . . . . . . 7 if((√‘(𝑃𝐴)) ∈ ℕ, 1, 0) ∈ ℝ
178177a1i 11 . . . . . 6 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) → if((√‘(𝑃𝐴)) ∈ ℕ, 1, 0) ∈ ℝ)
179 resubcl 11547 . . . . . . 7 ((1 ∈ ℝ ∧ ((𝑋‘(𝐿𝑃))↑(𝐴 + 1)) ∈ ℝ) → (1 − ((𝑋‘(𝐿𝑃))↑(𝐴 + 1))) ∈ ℝ)
18061, 155, 179sylancr 587 . . . . . 6 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) → (1 − ((𝑋‘(𝐿𝑃))↑(𝐴 + 1))) ∈ ℝ)
18162leabsd 15433 . . . . . . . . 9 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) → (𝑋‘(𝐿𝑃)) ≤ (abs‘(𝑋‘(𝐿𝑃))))
18262, 162, 158, 181, 165letrd 11392 . . . . . . . 8 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) → (𝑋‘(𝐿𝑃)) ≤ 1)
183124necomd 2987 . . . . . . . 8 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) → 1 ≠ (𝑋‘(𝐿𝑃)))
18462, 158, 182, 183leneltd 11389 . . . . . . 7 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) → (𝑋‘(𝐿𝑃)) < 1)
185 posdif 11730 . . . . . . . 8 (((𝑋‘(𝐿𝑃)) ∈ ℝ ∧ 1 ∈ ℝ) → ((𝑋‘(𝐿𝑃)) < 1 ↔ 0 < (1 − (𝑋‘(𝐿𝑃)))))
18662, 61, 185sylancl 586 . . . . . . 7 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) → ((𝑋‘(𝐿𝑃)) < 1 ↔ 0 < (1 − (𝑋‘(𝐿𝑃)))))
187184, 186mpbid 232 . . . . . 6 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) → 0 < (1 − (𝑋‘(𝐿𝑃))))
188 lemuldiv 12122 . . . . . 6 ((if((√‘(𝑃𝐴)) ∈ ℕ, 1, 0) ∈ ℝ ∧ (1 − ((𝑋‘(𝐿𝑃))↑(𝐴 + 1))) ∈ ℝ ∧ ((1 − (𝑋‘(𝐿𝑃))) ∈ ℝ ∧ 0 < (1 − (𝑋‘(𝐿𝑃))))) → ((if((√‘(𝑃𝐴)) ∈ ℕ, 1, 0) · (1 − (𝑋‘(𝐿𝑃)))) ≤ (1 − ((𝑋‘(𝐿𝑃))↑(𝐴 + 1))) ↔ if((√‘(𝑃𝐴)) ∈ ℕ, 1, 0) ≤ ((1 − ((𝑋‘(𝐿𝑃))↑(𝐴 + 1))) / (1 − (𝑋‘(𝐿𝑃))))))
189178, 180, 64, 187, 188syl112anc 1376 . . . . 5 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) → ((if((√‘(𝑃𝐴)) ∈ ℕ, 1, 0) · (1 − (𝑋‘(𝐿𝑃)))) ≤ (1 − ((𝑋‘(𝐿𝑃))↑(𝐴 + 1))) ↔ if((√‘(𝑃𝐴)) ∈ ℕ, 1, 0) ≤ ((1 − ((𝑋‘(𝐿𝑃))↑(𝐴 + 1))) / (1 − (𝑋‘(𝐿𝑃))))))
190175, 189mpbid 232 . . . 4 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) → if((√‘(𝑃𝐴)) ∈ ℕ, 1, 0) ≤ ((1 − ((𝑋‘(𝐿𝑃))↑(𝐴 + 1))) / (1 − (𝑋‘(𝐿𝑃)))))
19131nn0zd 12614 . . . . . . . 8 (𝜑𝐴 ∈ ℤ)
192 fzval3 13750 . . . . . . . 8 (𝐴 ∈ ℤ → (0...𝐴) = (0..^(𝐴 + 1)))
193191, 192syl 17 . . . . . . 7 (𝜑 → (0...𝐴) = (0..^(𝐴 + 1)))
194193adantr 480 . . . . . 6 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) → (0...𝐴) = (0..^(𝐴 + 1)))
195194sumeq1d 15716 . . . . 5 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) → Σ𝑖 ∈ (0...𝐴)((𝑋‘(𝐿𝑃))↑𝑖) = Σ𝑖 ∈ (0..^(𝐴 + 1))((𝑋‘(𝐿𝑃))↑𝑖))
196 0nn0 12516 . . . . . . 7 0 ∈ ℕ0
197196a1i 11 . . . . . 6 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) → 0 ∈ ℕ0)
198153, 32eleqtrdi 2844 . . . . . . 7 (𝜑 → (𝐴 + 1) ∈ (ℤ‘0))
199198adantr 480 . . . . . 6 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) → (𝐴 + 1) ∈ (ℤ‘0))
200121, 124, 197, 199geoserg 15882 . . . . 5 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) → Σ𝑖 ∈ (0..^(𝐴 + 1))((𝑋‘(𝐿𝑃))↑𝑖) = ((((𝑋‘(𝐿𝑃))↑0) − ((𝑋‘(𝐿𝑃))↑(𝐴 + 1))) / (1 − (𝑋‘(𝐿𝑃)))))
201121exp0d 14158 . . . . . . 7 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) → ((𝑋‘(𝐿𝑃))↑0) = 1)
202201oveq1d 7420 . . . . . 6 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) → (((𝑋‘(𝐿𝑃))↑0) − ((𝑋‘(𝐿𝑃))↑(𝐴 + 1))) = (1 − ((𝑋‘(𝐿𝑃))↑(𝐴 + 1))))
203202oveq1d 7420 . . . . 5 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) → ((((𝑋‘(𝐿𝑃))↑0) − ((𝑋‘(𝐿𝑃))↑(𝐴 + 1))) / (1 − (𝑋‘(𝐿𝑃)))) = ((1 − ((𝑋‘(𝐿𝑃))↑(𝐴 + 1))) / (1 − (𝑋‘(𝐿𝑃)))))
204195, 200, 2033eqtrd 2774 . . . 4 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) → Σ𝑖 ∈ (0...𝐴)((𝑋‘(𝐿𝑃))↑𝑖) = ((1 − ((𝑋‘(𝐿𝑃))↑(𝐴 + 1))) / (1 − (𝑋‘(𝐿𝑃)))))
205190, 204breqtrrd 5147 . . 3 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) → if((√‘(𝑃𝐴)) ∈ ℕ, 1, 0) ≤ Σ𝑖 ∈ (0...𝐴)((𝑋‘(𝐿𝑃))↑𝑖))
20656, 205pm2.61dane 3019 . 2 (𝜑 → if((√‘(𝑃𝐴)) ∈ ℕ, 1, 0) ≤ Σ𝑖 ∈ (0...𝐴)((𝑋‘(𝐿𝑃))↑𝑖))
207 rpvmasum2.1 . . . . 5 1 = (0g𝐺)
208 dchrisum0f.f . . . . 5 𝐹 = (𝑏 ∈ ℕ ↦ Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝑏} (𝑋‘(𝐿𝑣)))
2099, 11, 7, 126, 127, 207, 208dchrisum0fval 27468 . . . 4 ((𝑃𝐴) ∈ ℕ → (𝐹‘(𝑃𝐴)) = Σ𝑘 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ (𝑃𝐴)} (𝑋‘(𝐿𝑘)))
21083, 209syl 17 . . 3 (𝜑 → (𝐹‘(𝑃𝐴)) = Σ𝑘 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ (𝑃𝐴)} (𝑋‘(𝐿𝑘)))
211 2fveq3 6881 . . . 4 (𝑘 = (𝑃𝑖) → (𝑋‘(𝐿𝑘)) = (𝑋‘(𝐿‘(𝑃𝑖))))
212 eqid 2735 . . . . . 6 (𝑏 ∈ (0...𝐴) ↦ (𝑃𝑏)) = (𝑏 ∈ (0...𝐴) ↦ (𝑃𝑏))
213212dvdsppwf1o 27148 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑏 ∈ (0...𝐴) ↦ (𝑃𝑏)):(0...𝐴)–1-1-onto→{𝑞 ∈ ℕ ∣ 𝑞 ∥ (𝑃𝐴)})
21415, 31, 213syl2anc 584 . . . 4 (𝜑 → (𝑏 ∈ (0...𝐴) ↦ (𝑃𝑏)):(0...𝐴)–1-1-onto→{𝑞 ∈ ℕ ∣ 𝑞 ∥ (𝑃𝐴)})
215 oveq2 7413 . . . . . 6 (𝑏 = 𝑖 → (𝑃𝑏) = (𝑃𝑖))
216 ovex 7438 . . . . . 6 (𝑃𝑏) ∈ V
217215, 212, 216fvmpt3i 6991 . . . . 5 (𝑖 ∈ (0...𝐴) → ((𝑏 ∈ (0...𝐴) ↦ (𝑃𝑏))‘𝑖) = (𝑃𝑖))
218217adantl 481 . . . 4 ((𝜑𝑖 ∈ (0...𝐴)) → ((𝑏 ∈ (0...𝐴) ↦ (𝑃𝑏))‘𝑖) = (𝑃𝑖))
2196adantr 480 . . . . . 6 ((𝜑𝑘 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ (𝑃𝐴)}) → 𝑋:(Base‘𝑍)⟶ℝ)
220 elrabi 3666 . . . . . . . 8 (𝑘 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ (𝑃𝐴)} → 𝑘 ∈ ℕ)
221220nnzd 12615 . . . . . . 7 (𝑘 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ (𝑃𝐴)} → 𝑘 ∈ ℤ)
222 ffvelcdm 7071 . . . . . . 7 ((𝐿:ℤ⟶(Base‘𝑍) ∧ 𝑘 ∈ ℤ) → (𝐿𝑘) ∈ (Base‘𝑍))
22314, 221, 222syl2an 596 . . . . . 6 ((𝜑𝑘 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ (𝑃𝐴)}) → (𝐿𝑘) ∈ (Base‘𝑍))
224219, 223ffvelcdmd 7075 . . . . 5 ((𝜑𝑘 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ (𝑃𝐴)}) → (𝑋‘(𝐿𝑘)) ∈ ℝ)
225224recnd 11263 . . . 4 ((𝜑𝑘 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ (𝑃𝐴)}) → (𝑋‘(𝐿𝑘)) ∈ ℂ)
226211, 5, 214, 218, 225fsumf1o 15739 . . 3 (𝜑 → Σ𝑘 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ (𝑃𝐴)} (𝑋‘(𝐿𝑘)) = Σ𝑖 ∈ (0...𝐴)(𝑋‘(𝐿‘(𝑃𝑖))))
227 zsubrg 21388 . . . . . . . . . . 11 ℤ ∈ (SubRing‘ℂfld)
228 eqid 2735 . . . . . . . . . . . 12 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
229228subrgsubm 20545 . . . . . . . . . . 11 (ℤ ∈ (SubRing‘ℂfld) → ℤ ∈ (SubMnd‘(mulGrp‘ℂfld)))
230227, 229mp1i 13 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0...𝐴)) → ℤ ∈ (SubMnd‘(mulGrp‘ℂfld)))
23120adantl 481 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0...𝐴)) → 𝑖 ∈ ℕ0)
23217adantr 480 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0...𝐴)) → 𝑃 ∈ ℤ)
233 eqid 2735 . . . . . . . . . . 11 (.g‘(mulGrp‘ℂfld)) = (.g‘(mulGrp‘ℂfld))
234 zringmpg 21432 . . . . . . . . . . . 12 ((mulGrp‘ℂfld) ↾s ℤ) = (mulGrp‘ℤring)
235234eqcomi 2744 . . . . . . . . . . 11 (mulGrp‘ℤring) = ((mulGrp‘ℂfld) ↾s ℤ)
236 eqid 2735 . . . . . . . . . . 11 (.g‘(mulGrp‘ℤring)) = (.g‘(mulGrp‘ℤring))
237233, 235, 236submmulg 19101 . . . . . . . . . 10 ((ℤ ∈ (SubMnd‘(mulGrp‘ℂfld)) ∧ 𝑖 ∈ ℕ0𝑃 ∈ ℤ) → (𝑖(.g‘(mulGrp‘ℂfld))𝑃) = (𝑖(.g‘(mulGrp‘ℤring))𝑃))
238230, 231, 232, 237syl3anc 1373 . . . . . . . . 9 ((𝜑𝑖 ∈ (0...𝐴)) → (𝑖(.g‘(mulGrp‘ℂfld))𝑃) = (𝑖(.g‘(mulGrp‘ℤring))𝑃))
23982nncnd 12256 . . . . . . . . . 10 (𝜑𝑃 ∈ ℂ)
240 cnfldexp 21367 . . . . . . . . . 10 ((𝑃 ∈ ℂ ∧ 𝑖 ∈ ℕ0) → (𝑖(.g‘(mulGrp‘ℂfld))𝑃) = (𝑃𝑖))
241239, 20, 240syl2an 596 . . . . . . . . 9 ((𝜑𝑖 ∈ (0...𝐴)) → (𝑖(.g‘(mulGrp‘ℂfld))𝑃) = (𝑃𝑖))
242238, 241eqtr3d 2772 . . . . . . . 8 ((𝜑𝑖 ∈ (0...𝐴)) → (𝑖(.g‘(mulGrp‘ℤring))𝑃) = (𝑃𝑖))
243242fveq2d 6880 . . . . . . 7 ((𝜑𝑖 ∈ (0...𝐴)) → (𝐿‘(𝑖(.g‘(mulGrp‘ℤring))𝑃)) = (𝐿‘(𝑃𝑖)))
2449zncrng 21505 . . . . . . . . . . 11 (𝑁 ∈ ℕ0𝑍 ∈ CRing)
245 crngring 20205 . . . . . . . . . . 11 (𝑍 ∈ CRing → 𝑍 ∈ Ring)
2468, 244, 2453syl 18 . . . . . . . . . 10 (𝜑𝑍 ∈ Ring)
24711zrhrhm 21472 . . . . . . . . . 10 (𝑍 ∈ Ring → 𝐿 ∈ (ℤring RingHom 𝑍))
248 eqid 2735 . . . . . . . . . . 11 (mulGrp‘ℤring) = (mulGrp‘ℤring)
249 eqid 2735 . . . . . . . . . . 11 (mulGrp‘𝑍) = (mulGrp‘𝑍)
250248, 249rhmmhm 20439 . . . . . . . . . 10 (𝐿 ∈ (ℤring RingHom 𝑍) → 𝐿 ∈ ((mulGrp‘ℤring) MndHom (mulGrp‘𝑍)))
251246, 247, 2503syl 18 . . . . . . . . 9 (𝜑𝐿 ∈ ((mulGrp‘ℤring) MndHom (mulGrp‘𝑍)))
252251adantr 480 . . . . . . . 8 ((𝜑𝑖 ∈ (0...𝐴)) → 𝐿 ∈ ((mulGrp‘ℤring) MndHom (mulGrp‘𝑍)))
253 zringbas 21414 . . . . . . . . . 10 ℤ = (Base‘ℤring)
254248, 253mgpbas 20105 . . . . . . . . 9 ℤ = (Base‘(mulGrp‘ℤring))
255 eqid 2735 . . . . . . . . 9 (.g‘(mulGrp‘𝑍)) = (.g‘(mulGrp‘𝑍))
256254, 236, 255mhmmulg 19098 . . . . . . . 8 ((𝐿 ∈ ((mulGrp‘ℤring) MndHom (mulGrp‘𝑍)) ∧ 𝑖 ∈ ℕ0𝑃 ∈ ℤ) → (𝐿‘(𝑖(.g‘(mulGrp‘ℤring))𝑃)) = (𝑖(.g‘(mulGrp‘𝑍))(𝐿𝑃)))
257252, 231, 232, 256syl3anc 1373 . . . . . . 7 ((𝜑𝑖 ∈ (0...𝐴)) → (𝐿‘(𝑖(.g‘(mulGrp‘ℤring))𝑃)) = (𝑖(.g‘(mulGrp‘𝑍))(𝐿𝑃)))
258243, 257eqtr3d 2772 . . . . . 6 ((𝜑𝑖 ∈ (0...𝐴)) → (𝐿‘(𝑃𝑖)) = (𝑖(.g‘(mulGrp‘𝑍))(𝐿𝑃)))
259258fveq2d 6880 . . . . 5 ((𝜑𝑖 ∈ (0...𝐴)) → (𝑋‘(𝐿‘(𝑃𝑖))) = (𝑋‘(𝑖(.g‘(mulGrp‘𝑍))(𝐿𝑃))))
260126, 9, 127dchrmhm 27204 . . . . . . . 8 𝐷 ⊆ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))
261260, 128sselid 3956 . . . . . . 7 (𝜑𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)))
262261adantr 480 . . . . . 6 ((𝜑𝑖 ∈ (0...𝐴)) → 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)))
26318adantr 480 . . . . . 6 ((𝜑𝑖 ∈ (0...𝐴)) → (𝐿𝑃) ∈ (Base‘𝑍))
264249, 10mgpbas 20105 . . . . . . 7 (Base‘𝑍) = (Base‘(mulGrp‘𝑍))
265264, 255, 233mhmmulg 19098 . . . . . 6 ((𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ 𝑖 ∈ ℕ0 ∧ (𝐿𝑃) ∈ (Base‘𝑍)) → (𝑋‘(𝑖(.g‘(mulGrp‘𝑍))(𝐿𝑃))) = (𝑖(.g‘(mulGrp‘ℂfld))(𝑋‘(𝐿𝑃))))
266262, 231, 263, 265syl3anc 1373 . . . . 5 ((𝜑𝑖 ∈ (0...𝐴)) → (𝑋‘(𝑖(.g‘(mulGrp‘𝑍))(𝐿𝑃))) = (𝑖(.g‘(mulGrp‘ℂfld))(𝑋‘(𝐿𝑃))))
267 cnfldexp 21367 . . . . . 6 (((𝑋‘(𝐿𝑃)) ∈ ℂ ∧ 𝑖 ∈ ℕ0) → (𝑖(.g‘(mulGrp‘ℂfld))(𝑋‘(𝐿𝑃))) = ((𝑋‘(𝐿𝑃))↑𝑖))
268120, 20, 267syl2an 596 . . . . 5 ((𝜑𝑖 ∈ (0...𝐴)) → (𝑖(.g‘(mulGrp‘ℂfld))(𝑋‘(𝐿𝑃))) = ((𝑋‘(𝐿𝑃))↑𝑖))
269259, 266, 2683eqtrd 2774 . . . 4 ((𝜑𝑖 ∈ (0...𝐴)) → (𝑋‘(𝐿‘(𝑃𝑖))) = ((𝑋‘(𝐿𝑃))↑𝑖))
270269sumeq2dv 15718 . . 3 (𝜑 → Σ𝑖 ∈ (0...𝐴)(𝑋‘(𝐿‘(𝑃𝑖))) = Σ𝑖 ∈ (0...𝐴)((𝑋‘(𝐿𝑃))↑𝑖))
271210, 226, 2703eqtrd 2774 . 2 (𝜑 → (𝐹‘(𝑃𝐴)) = Σ𝑖 ∈ (0...𝐴)((𝑋‘(𝐿𝑃))↑𝑖))
272206, 271breqtrrd 5147 1 (𝜑 → if((√‘(𝑃𝐴)) ∈ ℕ, 1, 0) ≤ (𝐹‘(𝑃𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2932  {crab 3415  c0 4308  ifcif 4500   class class class wbr 5119  cmpt 5201  wf 6527  ontowfo 6529  1-1-ontowf1o 6530  cfv 6531  (class class class)co 7405  Fincfn 8959  cc 11127  cr 11128  0cc0 11129  1c1 11130   + caddc 11132   · cmul 11134   < clt 11269  cle 11270  cmin 11466  -cneg 11467   / cdiv 11894  cn 12240  2c2 12295  0cn0 12501  cz 12588  cuz 12852  cq 12964  ...cfz 13524  ..^cfzo 13671  cexp 14079  chash 14348  csqrt 15252  abscabs 15253  Σcsu 15702  cdvds 16272  cprime 16690   pCnt cpc 16856  Basecbs 17228  s cress 17251  0gc0g 17453   MndHom cmhm 18759  SubMndcsubmnd 18760  .gcmg 19050  mulGrpcmgp 20100  Ringcrg 20193  CRingccrg 20194  Unitcui 20315   RingHom crh 20429  SubRingcsubrg 20529  fldccnfld 21315  ringczring 21407  ℤRHomczrh 21460  ℤ/nczn 21463  DChrcdchr 27195
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207  ax-addf 11208  ax-mulf 11209
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-disj 5087  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-tpos 8225  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-oadd 8484  df-omul 8485  df-er 8719  df-ec 8721  df-qs 8725  df-map 8842  df-pm 8843  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-fi 9423  df-sup 9454  df-inf 9455  df-oi 9524  df-card 9953  df-acn 9956  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-q 12965  df-rp 13009  df-xneg 13128  df-xadd 13129  df-xmul 13130  df-ioo 13366  df-ioc 13367  df-ico 13368  df-icc 13369  df-fz 13525  df-fzo 13672  df-fl 13809  df-mod 13887  df-seq 14020  df-exp 14080  df-fac 14292  df-bc 14321  df-hash 14349  df-shft 15086  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-limsup 15487  df-clim 15504  df-rlim 15505  df-sum 15703  df-ef 16083  df-sin 16085  df-cos 16086  df-pi 16088  df-dvds 16273  df-gcd 16514  df-prm 16691  df-pc 16857  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-starv 17286  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ds 17293  df-unif 17294  df-hom 17295  df-cco 17296  df-rest 17436  df-topn 17437  df-0g 17455  df-gsum 17456  df-topgen 17457  df-pt 17458  df-prds 17461  df-xrs 17516  df-qtop 17521  df-imas 17522  df-qus 17523  df-xps 17524  df-mre 17598  df-mrc 17599  df-acs 17601  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-mhm 18761  df-submnd 18762  df-grp 18919  df-minusg 18920  df-sbg 18921  df-mulg 19051  df-subg 19106  df-nsg 19107  df-eqg 19108  df-ghm 19196  df-cntz 19300  df-od 19509  df-cmn 19763  df-abl 19764  df-mgp 20101  df-rng 20113  df-ur 20142  df-ring 20195  df-cring 20196  df-oppr 20297  df-dvdsr 20317  df-unit 20318  df-invr 20348  df-dvr 20361  df-rhm 20432  df-subrng 20506  df-subrg 20530  df-drng 20691  df-lmod 20819  df-lss 20889  df-lsp 20929  df-sra 21131  df-rgmod 21132  df-lidl 21169  df-rsp 21170  df-2idl 21211  df-psmet 21307  df-xmet 21308  df-met 21309  df-bl 21310  df-mopn 21311  df-fbas 21312  df-fg 21313  df-cnfld 21316  df-zring 21408  df-zrh 21464  df-zn 21467  df-top 22832  df-topon 22849  df-topsp 22871  df-bases 22884  df-cld 22957  df-ntr 22958  df-cls 22959  df-nei 23036  df-lp 23074  df-perf 23075  df-cn 23165  df-cnp 23166  df-haus 23253  df-tx 23500  df-hmeo 23693  df-fil 23784  df-fm 23876  df-flim 23877  df-flf 23878  df-xms 24259  df-ms 24260  df-tms 24261  df-cncf 24822  df-limc 25819  df-dv 25820  df-log 26517  df-cxp 26518  df-dchr 27196
This theorem is referenced by:  dchrisum0flblem2  27472  dchrisum0flb  27473
  Copyright terms: Public domain W3C validator