MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrisum0flblem1 Structured version   Visualization version   GIF version

Theorem dchrisum0flblem1 26856
Description: Lemma for dchrisum0flb 26858. Base case, prime power. (Contributed by Mario Carneiro, 5-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z 𝑍 = (ℤ/nℤ‘𝑁)
rpvmasum.l 𝐿 = (ℤRHom‘𝑍)
rpvmasum.a (𝜑𝑁 ∈ ℕ)
rpvmasum2.g 𝐺 = (DChr‘𝑁)
rpvmasum2.d 𝐷 = (Base‘𝐺)
rpvmasum2.1 1 = (0g𝐺)
dchrisum0f.f 𝐹 = (𝑏 ∈ ℕ ↦ Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝑏} (𝑋‘(𝐿𝑣)))
dchrisum0f.x (𝜑𝑋𝐷)
dchrisum0flb.r (𝜑𝑋:(Base‘𝑍)⟶ℝ)
dchrisum0flblem1.1 (𝜑𝑃 ∈ ℙ)
dchrisum0flblem1.2 (𝜑𝐴 ∈ ℕ0)
Assertion
Ref Expression
dchrisum0flblem1 (𝜑 → if((√‘(𝑃𝐴)) ∈ ℕ, 1, 0) ≤ (𝐹‘(𝑃𝐴)))
Distinct variable groups:   𝑞,𝑏,𝑣,𝐴   𝑁,𝑞   𝑃,𝑏,𝑞,𝑣   𝐿,𝑏,𝑣   𝑋,𝑏,𝑣
Allowed substitution hints:   𝜑(𝑣,𝑞,𝑏)   𝐷(𝑣,𝑞,𝑏)   1 (𝑣,𝑞,𝑏)   𝐹(𝑣,𝑞,𝑏)   𝐺(𝑣,𝑞,𝑏)   𝐿(𝑞)   𝑁(𝑣,𝑏)   𝑋(𝑞)   𝑍(𝑣,𝑞,𝑏)

Proof of Theorem dchrisum0flblem1
Dummy variables 𝑘 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1red 11156 . . . . 5 (((𝜑 ∧ (𝑋‘(𝐿𝑃)) = 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) → 1 ∈ ℝ)
2 0red 11158 . . . . 5 (((𝜑 ∧ (𝑋‘(𝐿𝑃)) = 1) ∧ ¬ (√‘(𝑃𝐴)) ∈ ℕ) → 0 ∈ ℝ)
31, 2ifclda 4521 . . . 4 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) = 1) → if((√‘(𝑃𝐴)) ∈ ℕ, 1, 0) ∈ ℝ)
4 1red 11156 . . . 4 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) = 1) → 1 ∈ ℝ)
5 fzfid 13878 . . . . . 6 (𝜑 → (0...𝐴) ∈ Fin)
6 dchrisum0flb.r . . . . . . . 8 (𝜑𝑋:(Base‘𝑍)⟶ℝ)
7 rpvmasum.a . . . . . . . . . . 11 (𝜑𝑁 ∈ ℕ)
87nnnn0d 12473 . . . . . . . . . 10 (𝜑𝑁 ∈ ℕ0)
9 rpvmasum.z . . . . . . . . . . 11 𝑍 = (ℤ/nℤ‘𝑁)
10 eqid 2736 . . . . . . . . . . 11 (Base‘𝑍) = (Base‘𝑍)
11 rpvmasum.l . . . . . . . . . . 11 𝐿 = (ℤRHom‘𝑍)
129, 10, 11znzrhfo 20954 . . . . . . . . . 10 (𝑁 ∈ ℕ0𝐿:ℤ–onto→(Base‘𝑍))
13 fof 6756 . . . . . . . . . 10 (𝐿:ℤ–onto→(Base‘𝑍) → 𝐿:ℤ⟶(Base‘𝑍))
148, 12, 133syl 18 . . . . . . . . 9 (𝜑𝐿:ℤ⟶(Base‘𝑍))
15 dchrisum0flblem1.1 . . . . . . . . . 10 (𝜑𝑃 ∈ ℙ)
16 prmz 16551 . . . . . . . . . 10 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
1715, 16syl 17 . . . . . . . . 9 (𝜑𝑃 ∈ ℤ)
1814, 17ffvelcdmd 7036 . . . . . . . 8 (𝜑 → (𝐿𝑃) ∈ (Base‘𝑍))
196, 18ffvelcdmd 7036 . . . . . . 7 (𝜑 → (𝑋‘(𝐿𝑃)) ∈ ℝ)
20 elfznn0 13534 . . . . . . 7 (𝑖 ∈ (0...𝐴) → 𝑖 ∈ ℕ0)
21 reexpcl 13984 . . . . . . 7 (((𝑋‘(𝐿𝑃)) ∈ ℝ ∧ 𝑖 ∈ ℕ0) → ((𝑋‘(𝐿𝑃))↑𝑖) ∈ ℝ)
2219, 20, 21syl2an 596 . . . . . 6 ((𝜑𝑖 ∈ (0...𝐴)) → ((𝑋‘(𝐿𝑃))↑𝑖) ∈ ℝ)
235, 22fsumrecl 15619 . . . . 5 (𝜑 → Σ𝑖 ∈ (0...𝐴)((𝑋‘(𝐿𝑃))↑𝑖) ∈ ℝ)
2423adantr 481 . . . 4 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) = 1) → Σ𝑖 ∈ (0...𝐴)((𝑋‘(𝐿𝑃))↑𝑖) ∈ ℝ)
25 breq1 5108 . . . . . 6 (1 = if((√‘(𝑃𝐴)) ∈ ℕ, 1, 0) → (1 ≤ 1 ↔ if((√‘(𝑃𝐴)) ∈ ℕ, 1, 0) ≤ 1))
26 breq1 5108 . . . . . 6 (0 = if((√‘(𝑃𝐴)) ∈ ℕ, 1, 0) → (0 ≤ 1 ↔ if((√‘(𝑃𝐴)) ∈ ℕ, 1, 0) ≤ 1))
27 1le1 11783 . . . . . 6 1 ≤ 1
28 0le1 11678 . . . . . 6 0 ≤ 1
2925, 26, 27, 28keephyp 4557 . . . . 5 if((√‘(𝑃𝐴)) ∈ ℕ, 1, 0) ≤ 1
3029a1i 11 . . . 4 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) = 1) → if((√‘(𝑃𝐴)) ∈ ℕ, 1, 0) ≤ 1)
31 dchrisum0flblem1.2 . . . . . . . . . 10 (𝜑𝐴 ∈ ℕ0)
32 nn0uz 12805 . . . . . . . . . 10 0 = (ℤ‘0)
3331, 32eleqtrdi 2848 . . . . . . . . 9 (𝜑𝐴 ∈ (ℤ‘0))
34 fzn0 13455 . . . . . . . . 9 ((0...𝐴) ≠ ∅ ↔ 𝐴 ∈ (ℤ‘0))
3533, 34sylibr 233 . . . . . . . 8 (𝜑 → (0...𝐴) ≠ ∅)
36 hashnncl 14266 . . . . . . . . 9 ((0...𝐴) ∈ Fin → ((♯‘(0...𝐴)) ∈ ℕ ↔ (0...𝐴) ≠ ∅))
375, 36syl 17 . . . . . . . 8 (𝜑 → ((♯‘(0...𝐴)) ∈ ℕ ↔ (0...𝐴) ≠ ∅))
3835, 37mpbird 256 . . . . . . 7 (𝜑 → (♯‘(0...𝐴)) ∈ ℕ)
3938adantr 481 . . . . . 6 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) = 1) → (♯‘(0...𝐴)) ∈ ℕ)
4039nnge1d 12201 . . . . 5 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) = 1) → 1 ≤ (♯‘(0...𝐴)))
41 simpr 485 . . . . . . . . 9 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) = 1) → (𝑋‘(𝐿𝑃)) = 1)
4241oveq1d 7372 . . . . . . . 8 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) = 1) → ((𝑋‘(𝐿𝑃))↑𝑖) = (1↑𝑖))
43 elfzelz 13441 . . . . . . . . 9 (𝑖 ∈ (0...𝐴) → 𝑖 ∈ ℤ)
44 1exp 13997 . . . . . . . . 9 (𝑖 ∈ ℤ → (1↑𝑖) = 1)
4543, 44syl 17 . . . . . . . 8 (𝑖 ∈ (0...𝐴) → (1↑𝑖) = 1)
4642, 45sylan9eq 2796 . . . . . . 7 (((𝜑 ∧ (𝑋‘(𝐿𝑃)) = 1) ∧ 𝑖 ∈ (0...𝐴)) → ((𝑋‘(𝐿𝑃))↑𝑖) = 1)
4746sumeq2dv 15588 . . . . . 6 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) = 1) → Σ𝑖 ∈ (0...𝐴)((𝑋‘(𝐿𝑃))↑𝑖) = Σ𝑖 ∈ (0...𝐴)1)
48 fzfid 13878 . . . . . . 7 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) = 1) → (0...𝐴) ∈ Fin)
49 ax-1cn 11109 . . . . . . 7 1 ∈ ℂ
50 fsumconst 15675 . . . . . . 7 (((0...𝐴) ∈ Fin ∧ 1 ∈ ℂ) → Σ𝑖 ∈ (0...𝐴)1 = ((♯‘(0...𝐴)) · 1))
5148, 49, 50sylancl 586 . . . . . 6 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) = 1) → Σ𝑖 ∈ (0...𝐴)1 = ((♯‘(0...𝐴)) · 1))
5239nncnd 12169 . . . . . . 7 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) = 1) → (♯‘(0...𝐴)) ∈ ℂ)
5352mulid1d 11172 . . . . . 6 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) = 1) → ((♯‘(0...𝐴)) · 1) = (♯‘(0...𝐴)))
5447, 51, 533eqtrd 2780 . . . . 5 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) = 1) → Σ𝑖 ∈ (0...𝐴)((𝑋‘(𝐿𝑃))↑𝑖) = (♯‘(0...𝐴)))
5540, 54breqtrrd 5133 . . . 4 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) = 1) → 1 ≤ Σ𝑖 ∈ (0...𝐴)((𝑋‘(𝐿𝑃))↑𝑖))
563, 4, 24, 30, 55letrd 11312 . . 3 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) = 1) → if((√‘(𝑃𝐴)) ∈ ℕ, 1, 0) ≤ Σ𝑖 ∈ (0...𝐴)((𝑋‘(𝐿𝑃))↑𝑖))
57 oveq1 7364 . . . . . . 7 (1 = if((√‘(𝑃𝐴)) ∈ ℕ, 1, 0) → (1 · (1 − (𝑋‘(𝐿𝑃)))) = (if((√‘(𝑃𝐴)) ∈ ℕ, 1, 0) · (1 − (𝑋‘(𝐿𝑃)))))
5857breq1d 5115 . . . . . 6 (1 = if((√‘(𝑃𝐴)) ∈ ℕ, 1, 0) → ((1 · (1 − (𝑋‘(𝐿𝑃)))) ≤ (1 − ((𝑋‘(𝐿𝑃))↑(𝐴 + 1))) ↔ (if((√‘(𝑃𝐴)) ∈ ℕ, 1, 0) · (1 − (𝑋‘(𝐿𝑃)))) ≤ (1 − ((𝑋‘(𝐿𝑃))↑(𝐴 + 1)))))
59 oveq1 7364 . . . . . . 7 (0 = if((√‘(𝑃𝐴)) ∈ ℕ, 1, 0) → (0 · (1 − (𝑋‘(𝐿𝑃)))) = (if((√‘(𝑃𝐴)) ∈ ℕ, 1, 0) · (1 − (𝑋‘(𝐿𝑃)))))
6059breq1d 5115 . . . . . 6 (0 = if((√‘(𝑃𝐴)) ∈ ℕ, 1, 0) → ((0 · (1 − (𝑋‘(𝐿𝑃)))) ≤ (1 − ((𝑋‘(𝐿𝑃))↑(𝐴 + 1))) ↔ (if((√‘(𝑃𝐴)) ∈ ℕ, 1, 0) · (1 − (𝑋‘(𝐿𝑃)))) ≤ (1 − ((𝑋‘(𝐿𝑃))↑(𝐴 + 1)))))
61 1re 11155 . . . . . . . . . 10 1 ∈ ℝ
6219adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) → (𝑋‘(𝐿𝑃)) ∈ ℝ)
63 resubcl 11465 . . . . . . . . . 10 ((1 ∈ ℝ ∧ (𝑋‘(𝐿𝑃)) ∈ ℝ) → (1 − (𝑋‘(𝐿𝑃))) ∈ ℝ)
6461, 62, 63sylancr 587 . . . . . . . . 9 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) → (1 − (𝑋‘(𝐿𝑃))) ∈ ℝ)
6564adantr 481 . . . . . . . 8 (((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) → (1 − (𝑋‘(𝐿𝑃))) ∈ ℝ)
6665leidd 11721 . . . . . . 7 (((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) → (1 − (𝑋‘(𝐿𝑃))) ≤ (1 − (𝑋‘(𝐿𝑃))))
6764recnd 11183 . . . . . . . . 9 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) → (1 − (𝑋‘(𝐿𝑃))) ∈ ℂ)
6867adantr 481 . . . . . . . 8 (((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) → (1 − (𝑋‘(𝐿𝑃))) ∈ ℂ)
6968mulid2d 11173 . . . . . . 7 (((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) → (1 · (1 − (𝑋‘(𝐿𝑃)))) = (1 − (𝑋‘(𝐿𝑃))))
70 nn0p1nn 12452 . . . . . . . . . . . . 13 (𝐴 ∈ ℕ0 → (𝐴 + 1) ∈ ℕ)
7131, 70syl 17 . . . . . . . . . . . 12 (𝜑 → (𝐴 + 1) ∈ ℕ)
7271ad3antrrr 728 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) ∧ (𝑋‘(𝐿𝑃)) = 0) → (𝐴 + 1) ∈ ℕ)
73720expd 14044 . . . . . . . . . 10 ((((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) ∧ (𝑋‘(𝐿𝑃)) = 0) → (0↑(𝐴 + 1)) = 0)
74 simpr 485 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) ∧ (𝑋‘(𝐿𝑃)) = 0) → (𝑋‘(𝐿𝑃)) = 0)
7574oveq1d 7372 . . . . . . . . . 10 ((((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) ∧ (𝑋‘(𝐿𝑃)) = 0) → ((𝑋‘(𝐿𝑃))↑(𝐴 + 1)) = (0↑(𝐴 + 1)))
7673, 75, 743eqtr4d 2786 . . . . . . . . 9 ((((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) ∧ (𝑋‘(𝐿𝑃)) = 0) → ((𝑋‘(𝐿𝑃))↑(𝐴 + 1)) = (𝑋‘(𝐿𝑃)))
77 neg1cn 12267 . . . . . . . . . . . . 13 -1 ∈ ℂ
7831ad2antrr 724 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) → 𝐴 ∈ ℕ0)
79 expp1 13974 . . . . . . . . . . . . 13 ((-1 ∈ ℂ ∧ 𝐴 ∈ ℕ0) → (-1↑(𝐴 + 1)) = ((-1↑𝐴) · -1))
8077, 78, 79sylancr 587 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) → (-1↑(𝐴 + 1)) = ((-1↑𝐴) · -1))
81 prmnn 16550 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
8215, 81syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝑃 ∈ ℕ)
8382, 31nnexpcld 14148 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑃𝐴) ∈ ℕ)
8483nncnd 12169 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑃𝐴) ∈ ℂ)
8584ad2antrr 724 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) → (𝑃𝐴) ∈ ℂ)
8685sqsqrtd 15324 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) → ((√‘(𝑃𝐴))↑2) = (𝑃𝐴))
8786oveq2d 7373 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) → (𝑃 pCnt ((√‘(𝑃𝐴))↑2)) = (𝑃 pCnt (𝑃𝐴)))
8815ad2antrr 724 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) → 𝑃 ∈ ℙ)
89 nnq 12887 . . . . . . . . . . . . . . . . . . 19 ((√‘(𝑃𝐴)) ∈ ℕ → (√‘(𝑃𝐴)) ∈ ℚ)
9089adantl 482 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) → (√‘(𝑃𝐴)) ∈ ℚ)
91 nnne0 12187 . . . . . . . . . . . . . . . . . . 19 ((√‘(𝑃𝐴)) ∈ ℕ → (√‘(𝑃𝐴)) ≠ 0)
9291adantl 482 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) → (√‘(𝑃𝐴)) ≠ 0)
93 2z 12535 . . . . . . . . . . . . . . . . . . 19 2 ∈ ℤ
9493a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) → 2 ∈ ℤ)
95 pcexp 16731 . . . . . . . . . . . . . . . . . 18 ((𝑃 ∈ ℙ ∧ ((√‘(𝑃𝐴)) ∈ ℚ ∧ (√‘(𝑃𝐴)) ≠ 0) ∧ 2 ∈ ℤ) → (𝑃 pCnt ((√‘(𝑃𝐴))↑2)) = (2 · (𝑃 pCnt (√‘(𝑃𝐴)))))
9688, 90, 92, 94, 95syl121anc 1375 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) → (𝑃 pCnt ((√‘(𝑃𝐴))↑2)) = (2 · (𝑃 pCnt (√‘(𝑃𝐴)))))
9778nn0zd 12525 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) → 𝐴 ∈ ℤ)
98 pcid 16745 . . . . . . . . . . . . . . . . . 18 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃 pCnt (𝑃𝐴)) = 𝐴)
9988, 97, 98syl2anc 584 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) → (𝑃 pCnt (𝑃𝐴)) = 𝐴)
10087, 96, 993eqtr3rd 2785 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) → 𝐴 = (2 · (𝑃 pCnt (√‘(𝑃𝐴)))))
101100oveq2d 7373 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) → (-1↑𝐴) = (-1↑(2 · (𝑃 pCnt (√‘(𝑃𝐴))))))
10277a1i 11 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) → -1 ∈ ℂ)
103 simpr 485 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) → (√‘(𝑃𝐴)) ∈ ℕ)
10488, 103pccld 16722 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) → (𝑃 pCnt (√‘(𝑃𝐴))) ∈ ℕ0)
105 2nn0 12430 . . . . . . . . . . . . . . . . 17 2 ∈ ℕ0
106105a1i 11 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) → 2 ∈ ℕ0)
107102, 104, 106expmuld 14054 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) → (-1↑(2 · (𝑃 pCnt (√‘(𝑃𝐴))))) = ((-1↑2)↑(𝑃 pCnt (√‘(𝑃𝐴)))))
108 neg1sqe1 14100 . . . . . . . . . . . . . . . . 17 (-1↑2) = 1
109108oveq1i 7367 . . . . . . . . . . . . . . . 16 ((-1↑2)↑(𝑃 pCnt (√‘(𝑃𝐴)))) = (1↑(𝑃 pCnt (√‘(𝑃𝐴))))
110104nn0zd 12525 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) → (𝑃 pCnt (√‘(𝑃𝐴))) ∈ ℤ)
111 1exp 13997 . . . . . . . . . . . . . . . . 17 ((𝑃 pCnt (√‘(𝑃𝐴))) ∈ ℤ → (1↑(𝑃 pCnt (√‘(𝑃𝐴)))) = 1)
112110, 111syl 17 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) → (1↑(𝑃 pCnt (√‘(𝑃𝐴)))) = 1)
113109, 112eqtrid 2788 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) → ((-1↑2)↑(𝑃 pCnt (√‘(𝑃𝐴)))) = 1)
114101, 107, 1133eqtrd 2780 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) → (-1↑𝐴) = 1)
115114oveq1d 7372 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) → ((-1↑𝐴) · -1) = (1 · -1))
11677mulid2i 11160 . . . . . . . . . . . . 13 (1 · -1) = -1
117115, 116eqtrdi 2792 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) → ((-1↑𝐴) · -1) = -1)
11880, 117eqtrd 2776 . . . . . . . . . . 11 (((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) → (-1↑(𝐴 + 1)) = -1)
119118adantr 481 . . . . . . . . . 10 ((((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) ∧ (𝑋‘(𝐿𝑃)) ≠ 0) → (-1↑(𝐴 + 1)) = -1)
12019recnd 11183 . . . . . . . . . . . . . . 15 (𝜑 → (𝑋‘(𝐿𝑃)) ∈ ℂ)
121120adantr 481 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) → (𝑋‘(𝐿𝑃)) ∈ ℂ)
122121ad2antrr 724 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) ∧ (𝑋‘(𝐿𝑃)) ≠ 0) → (𝑋‘(𝐿𝑃)) ∈ ℂ)
123122negnegd 11503 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) ∧ (𝑋‘(𝐿𝑃)) ≠ 0) → --(𝑋‘(𝐿𝑃)) = (𝑋‘(𝐿𝑃)))
124 simpr 485 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) → (𝑋‘(𝐿𝑃)) ≠ 1)
125124ad2antrr 724 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) ∧ (𝑋‘(𝐿𝑃)) ≠ 0) → (𝑋‘(𝐿𝑃)) ≠ 1)
126 rpvmasum2.g . . . . . . . . . . . . . . . . . . 19 𝐺 = (DChr‘𝑁)
127 rpvmasum2.d . . . . . . . . . . . . . . . . . . 19 𝐷 = (Base‘𝐺)
128 dchrisum0f.x . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑋𝐷)
129128ad3antrrr 728 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) ∧ (𝑋‘(𝐿𝑃)) ≠ 0) → 𝑋𝐷)
130 eqid 2736 . . . . . . . . . . . . . . . . . . 19 (Unit‘𝑍) = (Unit‘𝑍)
131126, 9, 127, 10, 130, 128, 18dchrn0 26598 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((𝑋‘(𝐿𝑃)) ≠ 0 ↔ (𝐿𝑃) ∈ (Unit‘𝑍)))
132131ad2antrr 724 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) → ((𝑋‘(𝐿𝑃)) ≠ 0 ↔ (𝐿𝑃) ∈ (Unit‘𝑍)))
133132biimpa 477 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) ∧ (𝑋‘(𝐿𝑃)) ≠ 0) → (𝐿𝑃) ∈ (Unit‘𝑍))
134126, 127, 129, 9, 130, 133dchrabs 26608 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) ∧ (𝑋‘(𝐿𝑃)) ≠ 0) → (abs‘(𝑋‘(𝐿𝑃))) = 1)
135 eqeq1 2740 . . . . . . . . . . . . . . . . . 18 ((abs‘(𝑋‘(𝐿𝑃))) = (𝑋‘(𝐿𝑃)) → ((abs‘(𝑋‘(𝐿𝑃))) = 1 ↔ (𝑋‘(𝐿𝑃)) = 1))
136134, 135syl5ibcom 244 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) ∧ (𝑋‘(𝐿𝑃)) ≠ 0) → ((abs‘(𝑋‘(𝐿𝑃))) = (𝑋‘(𝐿𝑃)) → (𝑋‘(𝐿𝑃)) = 1))
137136necon3ad 2956 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) ∧ (𝑋‘(𝐿𝑃)) ≠ 0) → ((𝑋‘(𝐿𝑃)) ≠ 1 → ¬ (abs‘(𝑋‘(𝐿𝑃))) = (𝑋‘(𝐿𝑃))))
138125, 137mpd 15 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) ∧ (𝑋‘(𝐿𝑃)) ≠ 0) → ¬ (abs‘(𝑋‘(𝐿𝑃))) = (𝑋‘(𝐿𝑃)))
13962ad2antrr 724 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) ∧ (𝑋‘(𝐿𝑃)) ≠ 0) → (𝑋‘(𝐿𝑃)) ∈ ℝ)
140139absord 15300 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) ∧ (𝑋‘(𝐿𝑃)) ≠ 0) → ((abs‘(𝑋‘(𝐿𝑃))) = (𝑋‘(𝐿𝑃)) ∨ (abs‘(𝑋‘(𝐿𝑃))) = -(𝑋‘(𝐿𝑃))))
141140ord 862 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) ∧ (𝑋‘(𝐿𝑃)) ≠ 0) → (¬ (abs‘(𝑋‘(𝐿𝑃))) = (𝑋‘(𝐿𝑃)) → (abs‘(𝑋‘(𝐿𝑃))) = -(𝑋‘(𝐿𝑃))))
142138, 141mpd 15 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) ∧ (𝑋‘(𝐿𝑃)) ≠ 0) → (abs‘(𝑋‘(𝐿𝑃))) = -(𝑋‘(𝐿𝑃)))
143142, 134eqtr3d 2778 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) ∧ (𝑋‘(𝐿𝑃)) ≠ 0) → -(𝑋‘(𝐿𝑃)) = 1)
144143negeqd 11395 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) ∧ (𝑋‘(𝐿𝑃)) ≠ 0) → --(𝑋‘(𝐿𝑃)) = -1)
145123, 144eqtr3d 2778 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) ∧ (𝑋‘(𝐿𝑃)) ≠ 0) → (𝑋‘(𝐿𝑃)) = -1)
146145oveq1d 7372 . . . . . . . . . 10 ((((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) ∧ (𝑋‘(𝐿𝑃)) ≠ 0) → ((𝑋‘(𝐿𝑃))↑(𝐴 + 1)) = (-1↑(𝐴 + 1)))
147119, 146, 1453eqtr4d 2786 . . . . . . . . 9 ((((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) ∧ (𝑋‘(𝐿𝑃)) ≠ 0) → ((𝑋‘(𝐿𝑃))↑(𝐴 + 1)) = (𝑋‘(𝐿𝑃)))
14876, 147pm2.61dane 3032 . . . . . . . 8 (((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) → ((𝑋‘(𝐿𝑃))↑(𝐴 + 1)) = (𝑋‘(𝐿𝑃)))
149148oveq2d 7373 . . . . . . 7 (((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) → (1 − ((𝑋‘(𝐿𝑃))↑(𝐴 + 1))) = (1 − (𝑋‘(𝐿𝑃))))
15066, 69, 1493brtr4d 5137 . . . . . 6 (((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ (√‘(𝑃𝐴)) ∈ ℕ) → (1 · (1 − (𝑋‘(𝐿𝑃)))) ≤ (1 − ((𝑋‘(𝐿𝑃))↑(𝐴 + 1))))
15167mul02d 11353 . . . . . . . 8 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) → (0 · (1 − (𝑋‘(𝐿𝑃)))) = 0)
152 peano2nn0 12453 . . . . . . . . . . . . 13 (𝐴 ∈ ℕ0 → (𝐴 + 1) ∈ ℕ0)
15331, 152syl 17 . . . . . . . . . . . 12 (𝜑 → (𝐴 + 1) ∈ ℕ0)
15419, 153reexpcld 14068 . . . . . . . . . . 11 (𝜑 → ((𝑋‘(𝐿𝑃))↑(𝐴 + 1)) ∈ ℝ)
155154adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) → ((𝑋‘(𝐿𝑃))↑(𝐴 + 1)) ∈ ℝ)
156155recnd 11183 . . . . . . . . . . 11 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) → ((𝑋‘(𝐿𝑃))↑(𝐴 + 1)) ∈ ℂ)
157156abscld 15321 . . . . . . . . . 10 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) → (abs‘((𝑋‘(𝐿𝑃))↑(𝐴 + 1))) ∈ ℝ)
158 1red 11156 . . . . . . . . . 10 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) → 1 ∈ ℝ)
159155leabsd 15299 . . . . . . . . . 10 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) → ((𝑋‘(𝐿𝑃))↑(𝐴 + 1)) ≤ (abs‘((𝑋‘(𝐿𝑃))↑(𝐴 + 1))))
160153adantr 481 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) → (𝐴 + 1) ∈ ℕ0)
161121, 160absexpd 15337 . . . . . . . . . . 11 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) → (abs‘((𝑋‘(𝐿𝑃))↑(𝐴 + 1))) = ((abs‘(𝑋‘(𝐿𝑃)))↑(𝐴 + 1)))
162121abscld 15321 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) → (abs‘(𝑋‘(𝐿𝑃))) ∈ ℝ)
163121absge0d 15329 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) → 0 ≤ (abs‘(𝑋‘(𝐿𝑃))))
164126, 127, 9, 10, 128, 18dchrabs2 26610 . . . . . . . . . . . . 13 (𝜑 → (abs‘(𝑋‘(𝐿𝑃))) ≤ 1)
165164adantr 481 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) → (abs‘(𝑋‘(𝐿𝑃))) ≤ 1)
166 exple1 14081 . . . . . . . . . . . 12 ((((abs‘(𝑋‘(𝐿𝑃))) ∈ ℝ ∧ 0 ≤ (abs‘(𝑋‘(𝐿𝑃))) ∧ (abs‘(𝑋‘(𝐿𝑃))) ≤ 1) ∧ (𝐴 + 1) ∈ ℕ0) → ((abs‘(𝑋‘(𝐿𝑃)))↑(𝐴 + 1)) ≤ 1)
167162, 163, 165, 160, 166syl31anc 1373 . . . . . . . . . . 11 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) → ((abs‘(𝑋‘(𝐿𝑃)))↑(𝐴 + 1)) ≤ 1)
168161, 167eqbrtrd 5127 . . . . . . . . . 10 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) → (abs‘((𝑋‘(𝐿𝑃))↑(𝐴 + 1))) ≤ 1)
169155, 157, 158, 159, 168letrd 11312 . . . . . . . . 9 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) → ((𝑋‘(𝐿𝑃))↑(𝐴 + 1)) ≤ 1)
170 subge0 11668 . . . . . . . . . 10 ((1 ∈ ℝ ∧ ((𝑋‘(𝐿𝑃))↑(𝐴 + 1)) ∈ ℝ) → (0 ≤ (1 − ((𝑋‘(𝐿𝑃))↑(𝐴 + 1))) ↔ ((𝑋‘(𝐿𝑃))↑(𝐴 + 1)) ≤ 1))
17161, 155, 170sylancr 587 . . . . . . . . 9 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) → (0 ≤ (1 − ((𝑋‘(𝐿𝑃))↑(𝐴 + 1))) ↔ ((𝑋‘(𝐿𝑃))↑(𝐴 + 1)) ≤ 1))
172169, 171mpbird 256 . . . . . . . 8 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) → 0 ≤ (1 − ((𝑋‘(𝐿𝑃))↑(𝐴 + 1))))
173151, 172eqbrtrd 5127 . . . . . . 7 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) → (0 · (1 − (𝑋‘(𝐿𝑃)))) ≤ (1 − ((𝑋‘(𝐿𝑃))↑(𝐴 + 1))))
174173adantr 481 . . . . . 6 (((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) ∧ ¬ (√‘(𝑃𝐴)) ∈ ℕ) → (0 · (1 − (𝑋‘(𝐿𝑃)))) ≤ (1 − ((𝑋‘(𝐿𝑃))↑(𝐴 + 1))))
17558, 60, 150, 174ifbothda 4524 . . . . 5 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) → (if((√‘(𝑃𝐴)) ∈ ℕ, 1, 0) · (1 − (𝑋‘(𝐿𝑃)))) ≤ (1 − ((𝑋‘(𝐿𝑃))↑(𝐴 + 1))))
176 0re 11157 . . . . . . . 8 0 ∈ ℝ
17761, 176ifcli 4533 . . . . . . 7 if((√‘(𝑃𝐴)) ∈ ℕ, 1, 0) ∈ ℝ
178177a1i 11 . . . . . 6 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) → if((√‘(𝑃𝐴)) ∈ ℕ, 1, 0) ∈ ℝ)
179 resubcl 11465 . . . . . . 7 ((1 ∈ ℝ ∧ ((𝑋‘(𝐿𝑃))↑(𝐴 + 1)) ∈ ℝ) → (1 − ((𝑋‘(𝐿𝑃))↑(𝐴 + 1))) ∈ ℝ)
18061, 155, 179sylancr 587 . . . . . 6 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) → (1 − ((𝑋‘(𝐿𝑃))↑(𝐴 + 1))) ∈ ℝ)
18162leabsd 15299 . . . . . . . . 9 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) → (𝑋‘(𝐿𝑃)) ≤ (abs‘(𝑋‘(𝐿𝑃))))
18262, 162, 158, 181, 165letrd 11312 . . . . . . . 8 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) → (𝑋‘(𝐿𝑃)) ≤ 1)
183124necomd 2999 . . . . . . . 8 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) → 1 ≠ (𝑋‘(𝐿𝑃)))
18462, 158, 182, 183leneltd 11309 . . . . . . 7 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) → (𝑋‘(𝐿𝑃)) < 1)
185 posdif 11648 . . . . . . . 8 (((𝑋‘(𝐿𝑃)) ∈ ℝ ∧ 1 ∈ ℝ) → ((𝑋‘(𝐿𝑃)) < 1 ↔ 0 < (1 − (𝑋‘(𝐿𝑃)))))
18662, 61, 185sylancl 586 . . . . . . 7 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) → ((𝑋‘(𝐿𝑃)) < 1 ↔ 0 < (1 − (𝑋‘(𝐿𝑃)))))
187184, 186mpbid 231 . . . . . 6 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) → 0 < (1 − (𝑋‘(𝐿𝑃))))
188 lemuldiv 12035 . . . . . 6 ((if((√‘(𝑃𝐴)) ∈ ℕ, 1, 0) ∈ ℝ ∧ (1 − ((𝑋‘(𝐿𝑃))↑(𝐴 + 1))) ∈ ℝ ∧ ((1 − (𝑋‘(𝐿𝑃))) ∈ ℝ ∧ 0 < (1 − (𝑋‘(𝐿𝑃))))) → ((if((√‘(𝑃𝐴)) ∈ ℕ, 1, 0) · (1 − (𝑋‘(𝐿𝑃)))) ≤ (1 − ((𝑋‘(𝐿𝑃))↑(𝐴 + 1))) ↔ if((√‘(𝑃𝐴)) ∈ ℕ, 1, 0) ≤ ((1 − ((𝑋‘(𝐿𝑃))↑(𝐴 + 1))) / (1 − (𝑋‘(𝐿𝑃))))))
189178, 180, 64, 187, 188syl112anc 1374 . . . . 5 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) → ((if((√‘(𝑃𝐴)) ∈ ℕ, 1, 0) · (1 − (𝑋‘(𝐿𝑃)))) ≤ (1 − ((𝑋‘(𝐿𝑃))↑(𝐴 + 1))) ↔ if((√‘(𝑃𝐴)) ∈ ℕ, 1, 0) ≤ ((1 − ((𝑋‘(𝐿𝑃))↑(𝐴 + 1))) / (1 − (𝑋‘(𝐿𝑃))))))
190175, 189mpbid 231 . . . 4 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) → if((√‘(𝑃𝐴)) ∈ ℕ, 1, 0) ≤ ((1 − ((𝑋‘(𝐿𝑃))↑(𝐴 + 1))) / (1 − (𝑋‘(𝐿𝑃)))))
19131nn0zd 12525 . . . . . . . 8 (𝜑𝐴 ∈ ℤ)
192 fzval3 13641 . . . . . . . 8 (𝐴 ∈ ℤ → (0...𝐴) = (0..^(𝐴 + 1)))
193191, 192syl 17 . . . . . . 7 (𝜑 → (0...𝐴) = (0..^(𝐴 + 1)))
194193adantr 481 . . . . . 6 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) → (0...𝐴) = (0..^(𝐴 + 1)))
195194sumeq1d 15586 . . . . 5 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) → Σ𝑖 ∈ (0...𝐴)((𝑋‘(𝐿𝑃))↑𝑖) = Σ𝑖 ∈ (0..^(𝐴 + 1))((𝑋‘(𝐿𝑃))↑𝑖))
196 0nn0 12428 . . . . . . 7 0 ∈ ℕ0
197196a1i 11 . . . . . 6 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) → 0 ∈ ℕ0)
198153, 32eleqtrdi 2848 . . . . . . 7 (𝜑 → (𝐴 + 1) ∈ (ℤ‘0))
199198adantr 481 . . . . . 6 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) → (𝐴 + 1) ∈ (ℤ‘0))
200121, 124, 197, 199geoserg 15751 . . . . 5 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) → Σ𝑖 ∈ (0..^(𝐴 + 1))((𝑋‘(𝐿𝑃))↑𝑖) = ((((𝑋‘(𝐿𝑃))↑0) − ((𝑋‘(𝐿𝑃))↑(𝐴 + 1))) / (1 − (𝑋‘(𝐿𝑃)))))
201121exp0d 14045 . . . . . . 7 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) → ((𝑋‘(𝐿𝑃))↑0) = 1)
202201oveq1d 7372 . . . . . 6 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) → (((𝑋‘(𝐿𝑃))↑0) − ((𝑋‘(𝐿𝑃))↑(𝐴 + 1))) = (1 − ((𝑋‘(𝐿𝑃))↑(𝐴 + 1))))
203202oveq1d 7372 . . . . 5 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) → ((((𝑋‘(𝐿𝑃))↑0) − ((𝑋‘(𝐿𝑃))↑(𝐴 + 1))) / (1 − (𝑋‘(𝐿𝑃)))) = ((1 − ((𝑋‘(𝐿𝑃))↑(𝐴 + 1))) / (1 − (𝑋‘(𝐿𝑃)))))
204195, 200, 2033eqtrd 2780 . . . 4 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) → Σ𝑖 ∈ (0...𝐴)((𝑋‘(𝐿𝑃))↑𝑖) = ((1 − ((𝑋‘(𝐿𝑃))↑(𝐴 + 1))) / (1 − (𝑋‘(𝐿𝑃)))))
205190, 204breqtrrd 5133 . . 3 ((𝜑 ∧ (𝑋‘(𝐿𝑃)) ≠ 1) → if((√‘(𝑃𝐴)) ∈ ℕ, 1, 0) ≤ Σ𝑖 ∈ (0...𝐴)((𝑋‘(𝐿𝑃))↑𝑖))
20656, 205pm2.61dane 3032 . 2 (𝜑 → if((√‘(𝑃𝐴)) ∈ ℕ, 1, 0) ≤ Σ𝑖 ∈ (0...𝐴)((𝑋‘(𝐿𝑃))↑𝑖))
207 rpvmasum2.1 . . . . 5 1 = (0g𝐺)
208 dchrisum0f.f . . . . 5 𝐹 = (𝑏 ∈ ℕ ↦ Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝑏} (𝑋‘(𝐿𝑣)))
2099, 11, 7, 126, 127, 207, 208dchrisum0fval 26853 . . . 4 ((𝑃𝐴) ∈ ℕ → (𝐹‘(𝑃𝐴)) = Σ𝑘 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ (𝑃𝐴)} (𝑋‘(𝐿𝑘)))
21083, 209syl 17 . . 3 (𝜑 → (𝐹‘(𝑃𝐴)) = Σ𝑘 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ (𝑃𝐴)} (𝑋‘(𝐿𝑘)))
211 2fveq3 6847 . . . 4 (𝑘 = (𝑃𝑖) → (𝑋‘(𝐿𝑘)) = (𝑋‘(𝐿‘(𝑃𝑖))))
212 eqid 2736 . . . . . 6 (𝑏 ∈ (0...𝐴) ↦ (𝑃𝑏)) = (𝑏 ∈ (0...𝐴) ↦ (𝑃𝑏))
213212dvdsppwf1o 26535 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑏 ∈ (0...𝐴) ↦ (𝑃𝑏)):(0...𝐴)–1-1-onto→{𝑞 ∈ ℕ ∣ 𝑞 ∥ (𝑃𝐴)})
21415, 31, 213syl2anc 584 . . . 4 (𝜑 → (𝑏 ∈ (0...𝐴) ↦ (𝑃𝑏)):(0...𝐴)–1-1-onto→{𝑞 ∈ ℕ ∣ 𝑞 ∥ (𝑃𝐴)})
215 oveq2 7365 . . . . . 6 (𝑏 = 𝑖 → (𝑃𝑏) = (𝑃𝑖))
216 ovex 7390 . . . . . 6 (𝑃𝑏) ∈ V
217215, 212, 216fvmpt3i 6953 . . . . 5 (𝑖 ∈ (0...𝐴) → ((𝑏 ∈ (0...𝐴) ↦ (𝑃𝑏))‘𝑖) = (𝑃𝑖))
218217adantl 482 . . . 4 ((𝜑𝑖 ∈ (0...𝐴)) → ((𝑏 ∈ (0...𝐴) ↦ (𝑃𝑏))‘𝑖) = (𝑃𝑖))
2196adantr 481 . . . . . 6 ((𝜑𝑘 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ (𝑃𝐴)}) → 𝑋:(Base‘𝑍)⟶ℝ)
220 elrabi 3639 . . . . . . . 8 (𝑘 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ (𝑃𝐴)} → 𝑘 ∈ ℕ)
221220nnzd 12526 . . . . . . 7 (𝑘 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ (𝑃𝐴)} → 𝑘 ∈ ℤ)
222 ffvelcdm 7032 . . . . . . 7 ((𝐿:ℤ⟶(Base‘𝑍) ∧ 𝑘 ∈ ℤ) → (𝐿𝑘) ∈ (Base‘𝑍))
22314, 221, 222syl2an 596 . . . . . 6 ((𝜑𝑘 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ (𝑃𝐴)}) → (𝐿𝑘) ∈ (Base‘𝑍))
224219, 223ffvelcdmd 7036 . . . . 5 ((𝜑𝑘 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ (𝑃𝐴)}) → (𝑋‘(𝐿𝑘)) ∈ ℝ)
225224recnd 11183 . . . 4 ((𝜑𝑘 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ (𝑃𝐴)}) → (𝑋‘(𝐿𝑘)) ∈ ℂ)
226211, 5, 214, 218, 225fsumf1o 15608 . . 3 (𝜑 → Σ𝑘 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ (𝑃𝐴)} (𝑋‘(𝐿𝑘)) = Σ𝑖 ∈ (0...𝐴)(𝑋‘(𝐿‘(𝑃𝑖))))
227 zsubrg 20850 . . . . . . . . . . 11 ℤ ∈ (SubRing‘ℂfld)
228 eqid 2736 . . . . . . . . . . . 12 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
229228subrgsubm 20235 . . . . . . . . . . 11 (ℤ ∈ (SubRing‘ℂfld) → ℤ ∈ (SubMnd‘(mulGrp‘ℂfld)))
230227, 229mp1i 13 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0...𝐴)) → ℤ ∈ (SubMnd‘(mulGrp‘ℂfld)))
23120adantl 482 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0...𝐴)) → 𝑖 ∈ ℕ0)
23217adantr 481 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0...𝐴)) → 𝑃 ∈ ℤ)
233 eqid 2736 . . . . . . . . . . 11 (.g‘(mulGrp‘ℂfld)) = (.g‘(mulGrp‘ℂfld))
234 zringmpg 20892 . . . . . . . . . . . 12 ((mulGrp‘ℂfld) ↾s ℤ) = (mulGrp‘ℤring)
235234eqcomi 2745 . . . . . . . . . . 11 (mulGrp‘ℤring) = ((mulGrp‘ℂfld) ↾s ℤ)
236 eqid 2736 . . . . . . . . . . 11 (.g‘(mulGrp‘ℤring)) = (.g‘(mulGrp‘ℤring))
237233, 235, 236submmulg 18920 . . . . . . . . . 10 ((ℤ ∈ (SubMnd‘(mulGrp‘ℂfld)) ∧ 𝑖 ∈ ℕ0𝑃 ∈ ℤ) → (𝑖(.g‘(mulGrp‘ℂfld))𝑃) = (𝑖(.g‘(mulGrp‘ℤring))𝑃))
238230, 231, 232, 237syl3anc 1371 . . . . . . . . 9 ((𝜑𝑖 ∈ (0...𝐴)) → (𝑖(.g‘(mulGrp‘ℂfld))𝑃) = (𝑖(.g‘(mulGrp‘ℤring))𝑃))
23982nncnd 12169 . . . . . . . . . 10 (𝜑𝑃 ∈ ℂ)
240 cnfldexp 20830 . . . . . . . . . 10 ((𝑃 ∈ ℂ ∧ 𝑖 ∈ ℕ0) → (𝑖(.g‘(mulGrp‘ℂfld))𝑃) = (𝑃𝑖))
241239, 20, 240syl2an 596 . . . . . . . . 9 ((𝜑𝑖 ∈ (0...𝐴)) → (𝑖(.g‘(mulGrp‘ℂfld))𝑃) = (𝑃𝑖))
242238, 241eqtr3d 2778 . . . . . . . 8 ((𝜑𝑖 ∈ (0...𝐴)) → (𝑖(.g‘(mulGrp‘ℤring))𝑃) = (𝑃𝑖))
243242fveq2d 6846 . . . . . . 7 ((𝜑𝑖 ∈ (0...𝐴)) → (𝐿‘(𝑖(.g‘(mulGrp‘ℤring))𝑃)) = (𝐿‘(𝑃𝑖)))
2449zncrng 20951 . . . . . . . . . . 11 (𝑁 ∈ ℕ0𝑍 ∈ CRing)
245 crngring 19976 . . . . . . . . . . 11 (𝑍 ∈ CRing → 𝑍 ∈ Ring)
2468, 244, 2453syl 18 . . . . . . . . . 10 (𝜑𝑍 ∈ Ring)
24711zrhrhm 20912 . . . . . . . . . 10 (𝑍 ∈ Ring → 𝐿 ∈ (ℤring RingHom 𝑍))
248 eqid 2736 . . . . . . . . . . 11 (mulGrp‘ℤring) = (mulGrp‘ℤring)
249 eqid 2736 . . . . . . . . . . 11 (mulGrp‘𝑍) = (mulGrp‘𝑍)
250248, 249rhmmhm 20153 . . . . . . . . . 10 (𝐿 ∈ (ℤring RingHom 𝑍) → 𝐿 ∈ ((mulGrp‘ℤring) MndHom (mulGrp‘𝑍)))
251246, 247, 2503syl 18 . . . . . . . . 9 (𝜑𝐿 ∈ ((mulGrp‘ℤring) MndHom (mulGrp‘𝑍)))
252251adantr 481 . . . . . . . 8 ((𝜑𝑖 ∈ (0...𝐴)) → 𝐿 ∈ ((mulGrp‘ℤring) MndHom (mulGrp‘𝑍)))
253 zringbas 20875 . . . . . . . . . 10 ℤ = (Base‘ℤring)
254248, 253mgpbas 19902 . . . . . . . . 9 ℤ = (Base‘(mulGrp‘ℤring))
255 eqid 2736 . . . . . . . . 9 (.g‘(mulGrp‘𝑍)) = (.g‘(mulGrp‘𝑍))
256254, 236, 255mhmmulg 18917 . . . . . . . 8 ((𝐿 ∈ ((mulGrp‘ℤring) MndHom (mulGrp‘𝑍)) ∧ 𝑖 ∈ ℕ0𝑃 ∈ ℤ) → (𝐿‘(𝑖(.g‘(mulGrp‘ℤring))𝑃)) = (𝑖(.g‘(mulGrp‘𝑍))(𝐿𝑃)))
257252, 231, 232, 256syl3anc 1371 . . . . . . 7 ((𝜑𝑖 ∈ (0...𝐴)) → (𝐿‘(𝑖(.g‘(mulGrp‘ℤring))𝑃)) = (𝑖(.g‘(mulGrp‘𝑍))(𝐿𝑃)))
258243, 257eqtr3d 2778 . . . . . 6 ((𝜑𝑖 ∈ (0...𝐴)) → (𝐿‘(𝑃𝑖)) = (𝑖(.g‘(mulGrp‘𝑍))(𝐿𝑃)))
259258fveq2d 6846 . . . . 5 ((𝜑𝑖 ∈ (0...𝐴)) → (𝑋‘(𝐿‘(𝑃𝑖))) = (𝑋‘(𝑖(.g‘(mulGrp‘𝑍))(𝐿𝑃))))
260126, 9, 127dchrmhm 26589 . . . . . . . 8 𝐷 ⊆ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))
261260, 128sselid 3942 . . . . . . 7 (𝜑𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)))
262261adantr 481 . . . . . 6 ((𝜑𝑖 ∈ (0...𝐴)) → 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)))
26318adantr 481 . . . . . 6 ((𝜑𝑖 ∈ (0...𝐴)) → (𝐿𝑃) ∈ (Base‘𝑍))
264249, 10mgpbas 19902 . . . . . . 7 (Base‘𝑍) = (Base‘(mulGrp‘𝑍))
265264, 255, 233mhmmulg 18917 . . . . . 6 ((𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ 𝑖 ∈ ℕ0 ∧ (𝐿𝑃) ∈ (Base‘𝑍)) → (𝑋‘(𝑖(.g‘(mulGrp‘𝑍))(𝐿𝑃))) = (𝑖(.g‘(mulGrp‘ℂfld))(𝑋‘(𝐿𝑃))))
266262, 231, 263, 265syl3anc 1371 . . . . 5 ((𝜑𝑖 ∈ (0...𝐴)) → (𝑋‘(𝑖(.g‘(mulGrp‘𝑍))(𝐿𝑃))) = (𝑖(.g‘(mulGrp‘ℂfld))(𝑋‘(𝐿𝑃))))
267 cnfldexp 20830 . . . . . 6 (((𝑋‘(𝐿𝑃)) ∈ ℂ ∧ 𝑖 ∈ ℕ0) → (𝑖(.g‘(mulGrp‘ℂfld))(𝑋‘(𝐿𝑃))) = ((𝑋‘(𝐿𝑃))↑𝑖))
268120, 20, 267syl2an 596 . . . . 5 ((𝜑𝑖 ∈ (0...𝐴)) → (𝑖(.g‘(mulGrp‘ℂfld))(𝑋‘(𝐿𝑃))) = ((𝑋‘(𝐿𝑃))↑𝑖))
269259, 266, 2683eqtrd 2780 . . . 4 ((𝜑𝑖 ∈ (0...𝐴)) → (𝑋‘(𝐿‘(𝑃𝑖))) = ((𝑋‘(𝐿𝑃))↑𝑖))
270269sumeq2dv 15588 . . 3 (𝜑 → Σ𝑖 ∈ (0...𝐴)(𝑋‘(𝐿‘(𝑃𝑖))) = Σ𝑖 ∈ (0...𝐴)((𝑋‘(𝐿𝑃))↑𝑖))
271210, 226, 2703eqtrd 2780 . 2 (𝜑 → (𝐹‘(𝑃𝐴)) = Σ𝑖 ∈ (0...𝐴)((𝑋‘(𝐿𝑃))↑𝑖))
272206, 271breqtrrd 5133 1 (𝜑 → if((√‘(𝑃𝐴)) ∈ ℕ, 1, 0) ≤ (𝐹‘(𝑃𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wne 2943  {crab 3407  c0 4282  ifcif 4486   class class class wbr 5105  cmpt 5188  wf 6492  ontowfo 6494  1-1-ontowf1o 6495  cfv 6496  (class class class)co 7357  Fincfn 8883  cc 11049  cr 11050  0cc0 11051  1c1 11052   + caddc 11054   · cmul 11056   < clt 11189  cle 11190  cmin 11385  -cneg 11386   / cdiv 11812  cn 12153  2c2 12208  0cn0 12413  cz 12499  cuz 12763  cq 12873  ...cfz 13424  ..^cfzo 13567  cexp 13967  chash 14230  csqrt 15118  abscabs 15119  Σcsu 15570  cdvds 16136  cprime 16547   pCnt cpc 16708  Basecbs 17083  s cress 17112  0gc0g 17321   MndHom cmhm 18599  SubMndcsubmnd 18600  .gcmg 18872  mulGrpcmgp 19896  Ringcrg 19964  CRingccrg 19965  Unitcui 20068   RingHom crh 20143  SubRingcsubrg 20218  fldccnfld 20796  ringczring 20869  ℤRHomczrh 20900  ℤ/nczn 20903  DChrcdchr 26580
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-disj 5071  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-tpos 8157  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-oadd 8416  df-omul 8417  df-er 8648  df-ec 8650  df-qs 8654  df-map 8767  df-pm 8768  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-fi 9347  df-sup 9378  df-inf 9379  df-oi 9446  df-card 9875  df-acn 9878  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-ioc 13269  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-fl 13697  df-mod 13775  df-seq 13907  df-exp 13968  df-fac 14174  df-bc 14203  df-hash 14231  df-shft 14952  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-limsup 15353  df-clim 15370  df-rlim 15371  df-sum 15571  df-ef 15950  df-sin 15952  df-cos 15953  df-pi 15955  df-dvds 16137  df-gcd 16375  df-prm 16548  df-pc 16709  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-rest 17304  df-topn 17305  df-0g 17323  df-gsum 17324  df-topgen 17325  df-pt 17326  df-prds 17329  df-xrs 17384  df-qtop 17389  df-imas 17390  df-qus 17391  df-xps 17392  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-mhm 18601  df-submnd 18602  df-grp 18751  df-minusg 18752  df-sbg 18753  df-mulg 18873  df-subg 18925  df-nsg 18926  df-eqg 18927  df-ghm 19006  df-cntz 19097  df-od 19310  df-cmn 19564  df-abl 19565  df-mgp 19897  df-ur 19914  df-ring 19966  df-cring 19967  df-oppr 20049  df-dvdsr 20070  df-unit 20071  df-invr 20101  df-dvr 20112  df-rnghom 20146  df-drng 20187  df-subrg 20220  df-lmod 20324  df-lss 20393  df-lsp 20433  df-sra 20633  df-rgmod 20634  df-lidl 20635  df-rsp 20636  df-2idl 20702  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-fbas 20793  df-fg 20794  df-cnfld 20797  df-zring 20870  df-zrh 20904  df-zn 20907  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-cld 22370  df-ntr 22371  df-cls 22372  df-nei 22449  df-lp 22487  df-perf 22488  df-cn 22578  df-cnp 22579  df-haus 22666  df-tx 22913  df-hmeo 23106  df-fil 23197  df-fm 23289  df-flim 23290  df-flf 23291  df-xms 23673  df-ms 23674  df-tms 23675  df-cncf 24241  df-limc 25230  df-dv 25231  df-log 25912  df-cxp 25913  df-dchr 26581
This theorem is referenced by:  dchrisum0flblem2  26857  dchrisum0flb  26858
  Copyright terms: Public domain W3C validator