MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrisum0flblem1 Structured version   Visualization version   GIF version

Theorem dchrisum0flblem1 27471
Description: Lemma for dchrisum0flb 27473. Base case, prime power. (Contributed by Mario Carneiro, 5-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z 𝑍 = (β„€/nβ„€β€˜π‘)
rpvmasum.l 𝐿 = (β„€RHomβ€˜π‘)
rpvmasum.a (πœ‘ β†’ 𝑁 ∈ β„•)
rpvmasum2.g 𝐺 = (DChrβ€˜π‘)
rpvmasum2.d 𝐷 = (Baseβ€˜πΊ)
rpvmasum2.1 1 = (0gβ€˜πΊ)
dchrisum0f.f 𝐹 = (𝑏 ∈ β„• ↦ Σ𝑣 ∈ {π‘ž ∈ β„• ∣ π‘ž βˆ₯ 𝑏} (π‘‹β€˜(πΏβ€˜π‘£)))
dchrisum0f.x (πœ‘ β†’ 𝑋 ∈ 𝐷)
dchrisum0flb.r (πœ‘ β†’ 𝑋:(Baseβ€˜π‘)βŸΆβ„)
dchrisum0flblem1.1 (πœ‘ β†’ 𝑃 ∈ β„™)
dchrisum0flblem1.2 (πœ‘ β†’ 𝐴 ∈ β„•0)
Assertion
Ref Expression
dchrisum0flblem1 (πœ‘ β†’ if((βˆšβ€˜(𝑃↑𝐴)) ∈ β„•, 1, 0) ≀ (πΉβ€˜(𝑃↑𝐴)))
Distinct variable groups:   π‘ž,𝑏,𝑣,𝐴   𝑁,π‘ž   𝑃,𝑏,π‘ž,𝑣   𝐿,𝑏,𝑣   𝑋,𝑏,𝑣
Allowed substitution hints:   πœ‘(𝑣,π‘ž,𝑏)   𝐷(𝑣,π‘ž,𝑏)   1 (𝑣,π‘ž,𝑏)   𝐹(𝑣,π‘ž,𝑏)   𝐺(𝑣,π‘ž,𝑏)   𝐿(π‘ž)   𝑁(𝑣,𝑏)   𝑋(π‘ž)   𝑍(𝑣,π‘ž,𝑏)

Proof of Theorem dchrisum0flblem1
Dummy variables π‘˜ 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1red 11245 . . . . 5 (((πœ‘ ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) = 1) ∧ (βˆšβ€˜(𝑃↑𝐴)) ∈ β„•) β†’ 1 ∈ ℝ)
2 0red 11247 . . . . 5 (((πœ‘ ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) = 1) ∧ Β¬ (βˆšβ€˜(𝑃↑𝐴)) ∈ β„•) β†’ 0 ∈ ℝ)
31, 2ifclda 4564 . . . 4 ((πœ‘ ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) = 1) β†’ if((βˆšβ€˜(𝑃↑𝐴)) ∈ β„•, 1, 0) ∈ ℝ)
4 1red 11245 . . . 4 ((πœ‘ ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) = 1) β†’ 1 ∈ ℝ)
5 fzfid 13970 . . . . . 6 (πœ‘ β†’ (0...𝐴) ∈ Fin)
6 dchrisum0flb.r . . . . . . . 8 (πœ‘ β†’ 𝑋:(Baseβ€˜π‘)βŸΆβ„)
7 rpvmasum.a . . . . . . . . . . 11 (πœ‘ β†’ 𝑁 ∈ β„•)
87nnnn0d 12562 . . . . . . . . . 10 (πœ‘ β†’ 𝑁 ∈ β„•0)
9 rpvmasum.z . . . . . . . . . . 11 𝑍 = (β„€/nβ„€β€˜π‘)
10 eqid 2725 . . . . . . . . . . 11 (Baseβ€˜π‘) = (Baseβ€˜π‘)
11 rpvmasum.l . . . . . . . . . . 11 𝐿 = (β„€RHomβ€˜π‘)
129, 10, 11znzrhfo 21485 . . . . . . . . . 10 (𝑁 ∈ β„•0 β†’ 𝐿:℀–ontoβ†’(Baseβ€˜π‘))
13 fof 6808 . . . . . . . . . 10 (𝐿:℀–ontoβ†’(Baseβ€˜π‘) β†’ 𝐿:β„€βŸΆ(Baseβ€˜π‘))
148, 12, 133syl 18 . . . . . . . . 9 (πœ‘ β†’ 𝐿:β„€βŸΆ(Baseβ€˜π‘))
15 dchrisum0flblem1.1 . . . . . . . . . 10 (πœ‘ β†’ 𝑃 ∈ β„™)
16 prmz 16645 . . . . . . . . . 10 (𝑃 ∈ β„™ β†’ 𝑃 ∈ β„€)
1715, 16syl 17 . . . . . . . . 9 (πœ‘ β†’ 𝑃 ∈ β„€)
1814, 17ffvelcdmd 7092 . . . . . . . 8 (πœ‘ β†’ (πΏβ€˜π‘ƒ) ∈ (Baseβ€˜π‘))
196, 18ffvelcdmd 7092 . . . . . . 7 (πœ‘ β†’ (π‘‹β€˜(πΏβ€˜π‘ƒ)) ∈ ℝ)
20 elfznn0 13626 . . . . . . 7 (𝑖 ∈ (0...𝐴) β†’ 𝑖 ∈ β„•0)
21 reexpcl 14075 . . . . . . 7 (((π‘‹β€˜(πΏβ€˜π‘ƒ)) ∈ ℝ ∧ 𝑖 ∈ β„•0) β†’ ((π‘‹β€˜(πΏβ€˜π‘ƒ))↑𝑖) ∈ ℝ)
2219, 20, 21syl2an 594 . . . . . 6 ((πœ‘ ∧ 𝑖 ∈ (0...𝐴)) β†’ ((π‘‹β€˜(πΏβ€˜π‘ƒ))↑𝑖) ∈ ℝ)
235, 22fsumrecl 15712 . . . . 5 (πœ‘ β†’ Σ𝑖 ∈ (0...𝐴)((π‘‹β€˜(πΏβ€˜π‘ƒ))↑𝑖) ∈ ℝ)
2423adantr 479 . . . 4 ((πœ‘ ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) = 1) β†’ Σ𝑖 ∈ (0...𝐴)((π‘‹β€˜(πΏβ€˜π‘ƒ))↑𝑖) ∈ ℝ)
25 breq1 5151 . . . . . 6 (1 = if((βˆšβ€˜(𝑃↑𝐴)) ∈ β„•, 1, 0) β†’ (1 ≀ 1 ↔ if((βˆšβ€˜(𝑃↑𝐴)) ∈ β„•, 1, 0) ≀ 1))
26 breq1 5151 . . . . . 6 (0 = if((βˆšβ€˜(𝑃↑𝐴)) ∈ β„•, 1, 0) β†’ (0 ≀ 1 ↔ if((βˆšβ€˜(𝑃↑𝐴)) ∈ β„•, 1, 0) ≀ 1))
27 1le1 11872 . . . . . 6 1 ≀ 1
28 0le1 11767 . . . . . 6 0 ≀ 1
2925, 26, 27, 28keephyp 4600 . . . . 5 if((βˆšβ€˜(𝑃↑𝐴)) ∈ β„•, 1, 0) ≀ 1
3029a1i 11 . . . 4 ((πœ‘ ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) = 1) β†’ if((βˆšβ€˜(𝑃↑𝐴)) ∈ β„•, 1, 0) ≀ 1)
31 dchrisum0flblem1.2 . . . . . . . . . 10 (πœ‘ β†’ 𝐴 ∈ β„•0)
32 nn0uz 12894 . . . . . . . . . 10 β„•0 = (β„€β‰₯β€˜0)
3331, 32eleqtrdi 2835 . . . . . . . . 9 (πœ‘ β†’ 𝐴 ∈ (β„€β‰₯β€˜0))
34 fzn0 13547 . . . . . . . . 9 ((0...𝐴) β‰  βˆ… ↔ 𝐴 ∈ (β„€β‰₯β€˜0))
3533, 34sylibr 233 . . . . . . . 8 (πœ‘ β†’ (0...𝐴) β‰  βˆ…)
36 hashnncl 14357 . . . . . . . . 9 ((0...𝐴) ∈ Fin β†’ ((β™―β€˜(0...𝐴)) ∈ β„• ↔ (0...𝐴) β‰  βˆ…))
375, 36syl 17 . . . . . . . 8 (πœ‘ β†’ ((β™―β€˜(0...𝐴)) ∈ β„• ↔ (0...𝐴) β‰  βˆ…))
3835, 37mpbird 256 . . . . . . 7 (πœ‘ β†’ (β™―β€˜(0...𝐴)) ∈ β„•)
3938adantr 479 . . . . . 6 ((πœ‘ ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) = 1) β†’ (β™―β€˜(0...𝐴)) ∈ β„•)
4039nnge1d 12290 . . . . 5 ((πœ‘ ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) = 1) β†’ 1 ≀ (β™―β€˜(0...𝐴)))
41 simpr 483 . . . . . . . . 9 ((πœ‘ ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) = 1) β†’ (π‘‹β€˜(πΏβ€˜π‘ƒ)) = 1)
4241oveq1d 7432 . . . . . . . 8 ((πœ‘ ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) = 1) β†’ ((π‘‹β€˜(πΏβ€˜π‘ƒ))↑𝑖) = (1↑𝑖))
43 elfzelz 13533 . . . . . . . . 9 (𝑖 ∈ (0...𝐴) β†’ 𝑖 ∈ β„€)
44 1exp 14088 . . . . . . . . 9 (𝑖 ∈ β„€ β†’ (1↑𝑖) = 1)
4543, 44syl 17 . . . . . . . 8 (𝑖 ∈ (0...𝐴) β†’ (1↑𝑖) = 1)
4642, 45sylan9eq 2785 . . . . . . 7 (((πœ‘ ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) = 1) ∧ 𝑖 ∈ (0...𝐴)) β†’ ((π‘‹β€˜(πΏβ€˜π‘ƒ))↑𝑖) = 1)
4746sumeq2dv 15681 . . . . . 6 ((πœ‘ ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) = 1) β†’ Σ𝑖 ∈ (0...𝐴)((π‘‹β€˜(πΏβ€˜π‘ƒ))↑𝑖) = Σ𝑖 ∈ (0...𝐴)1)
48 fzfid 13970 . . . . . . 7 ((πœ‘ ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) = 1) β†’ (0...𝐴) ∈ Fin)
49 ax-1cn 11196 . . . . . . 7 1 ∈ β„‚
50 fsumconst 15768 . . . . . . 7 (((0...𝐴) ∈ Fin ∧ 1 ∈ β„‚) β†’ Σ𝑖 ∈ (0...𝐴)1 = ((β™―β€˜(0...𝐴)) Β· 1))
5148, 49, 50sylancl 584 . . . . . 6 ((πœ‘ ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) = 1) β†’ Σ𝑖 ∈ (0...𝐴)1 = ((β™―β€˜(0...𝐴)) Β· 1))
5239nncnd 12258 . . . . . . 7 ((πœ‘ ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) = 1) β†’ (β™―β€˜(0...𝐴)) ∈ β„‚)
5352mulridd 11261 . . . . . 6 ((πœ‘ ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) = 1) β†’ ((β™―β€˜(0...𝐴)) Β· 1) = (β™―β€˜(0...𝐴)))
5447, 51, 533eqtrd 2769 . . . . 5 ((πœ‘ ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) = 1) β†’ Σ𝑖 ∈ (0...𝐴)((π‘‹β€˜(πΏβ€˜π‘ƒ))↑𝑖) = (β™―β€˜(0...𝐴)))
5540, 54breqtrrd 5176 . . . 4 ((πœ‘ ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) = 1) β†’ 1 ≀ Σ𝑖 ∈ (0...𝐴)((π‘‹β€˜(πΏβ€˜π‘ƒ))↑𝑖))
563, 4, 24, 30, 55letrd 11401 . . 3 ((πœ‘ ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) = 1) β†’ if((βˆšβ€˜(𝑃↑𝐴)) ∈ β„•, 1, 0) ≀ Σ𝑖 ∈ (0...𝐴)((π‘‹β€˜(πΏβ€˜π‘ƒ))↑𝑖))
57 oveq1 7424 . . . . . . 7 (1 = if((βˆšβ€˜(𝑃↑𝐴)) ∈ β„•, 1, 0) β†’ (1 Β· (1 βˆ’ (π‘‹β€˜(πΏβ€˜π‘ƒ)))) = (if((βˆšβ€˜(𝑃↑𝐴)) ∈ β„•, 1, 0) Β· (1 βˆ’ (π‘‹β€˜(πΏβ€˜π‘ƒ)))))
5857breq1d 5158 . . . . . 6 (1 = if((βˆšβ€˜(𝑃↑𝐴)) ∈ β„•, 1, 0) β†’ ((1 Β· (1 βˆ’ (π‘‹β€˜(πΏβ€˜π‘ƒ)))) ≀ (1 βˆ’ ((π‘‹β€˜(πΏβ€˜π‘ƒ))↑(𝐴 + 1))) ↔ (if((βˆšβ€˜(𝑃↑𝐴)) ∈ β„•, 1, 0) Β· (1 βˆ’ (π‘‹β€˜(πΏβ€˜π‘ƒ)))) ≀ (1 βˆ’ ((π‘‹β€˜(πΏβ€˜π‘ƒ))↑(𝐴 + 1)))))
59 oveq1 7424 . . . . . . 7 (0 = if((βˆšβ€˜(𝑃↑𝐴)) ∈ β„•, 1, 0) β†’ (0 Β· (1 βˆ’ (π‘‹β€˜(πΏβ€˜π‘ƒ)))) = (if((βˆšβ€˜(𝑃↑𝐴)) ∈ β„•, 1, 0) Β· (1 βˆ’ (π‘‹β€˜(πΏβ€˜π‘ƒ)))))
6059breq1d 5158 . . . . . 6 (0 = if((βˆšβ€˜(𝑃↑𝐴)) ∈ β„•, 1, 0) β†’ ((0 Β· (1 βˆ’ (π‘‹β€˜(πΏβ€˜π‘ƒ)))) ≀ (1 βˆ’ ((π‘‹β€˜(πΏβ€˜π‘ƒ))↑(𝐴 + 1))) ↔ (if((βˆšβ€˜(𝑃↑𝐴)) ∈ β„•, 1, 0) Β· (1 βˆ’ (π‘‹β€˜(πΏβ€˜π‘ƒ)))) ≀ (1 βˆ’ ((π‘‹β€˜(πΏβ€˜π‘ƒ))↑(𝐴 + 1)))))
61 1re 11244 . . . . . . . . . 10 1 ∈ ℝ
6219adantr 479 . . . . . . . . . 10 ((πœ‘ ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) β‰  1) β†’ (π‘‹β€˜(πΏβ€˜π‘ƒ)) ∈ ℝ)
63 resubcl 11554 . . . . . . . . . 10 ((1 ∈ ℝ ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) ∈ ℝ) β†’ (1 βˆ’ (π‘‹β€˜(πΏβ€˜π‘ƒ))) ∈ ℝ)
6461, 62, 63sylancr 585 . . . . . . . . 9 ((πœ‘ ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) β‰  1) β†’ (1 βˆ’ (π‘‹β€˜(πΏβ€˜π‘ƒ))) ∈ ℝ)
6564adantr 479 . . . . . . . 8 (((πœ‘ ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) β‰  1) ∧ (βˆšβ€˜(𝑃↑𝐴)) ∈ β„•) β†’ (1 βˆ’ (π‘‹β€˜(πΏβ€˜π‘ƒ))) ∈ ℝ)
6665leidd 11810 . . . . . . 7 (((πœ‘ ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) β‰  1) ∧ (βˆšβ€˜(𝑃↑𝐴)) ∈ β„•) β†’ (1 βˆ’ (π‘‹β€˜(πΏβ€˜π‘ƒ))) ≀ (1 βˆ’ (π‘‹β€˜(πΏβ€˜π‘ƒ))))
6764recnd 11272 . . . . . . . . 9 ((πœ‘ ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) β‰  1) β†’ (1 βˆ’ (π‘‹β€˜(πΏβ€˜π‘ƒ))) ∈ β„‚)
6867adantr 479 . . . . . . . 8 (((πœ‘ ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) β‰  1) ∧ (βˆšβ€˜(𝑃↑𝐴)) ∈ β„•) β†’ (1 βˆ’ (π‘‹β€˜(πΏβ€˜π‘ƒ))) ∈ β„‚)
6968mullidd 11262 . . . . . . 7 (((πœ‘ ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) β‰  1) ∧ (βˆšβ€˜(𝑃↑𝐴)) ∈ β„•) β†’ (1 Β· (1 βˆ’ (π‘‹β€˜(πΏβ€˜π‘ƒ)))) = (1 βˆ’ (π‘‹β€˜(πΏβ€˜π‘ƒ))))
70 nn0p1nn 12541 . . . . . . . . . . . . 13 (𝐴 ∈ β„•0 β†’ (𝐴 + 1) ∈ β„•)
7131, 70syl 17 . . . . . . . . . . . 12 (πœ‘ β†’ (𝐴 + 1) ∈ β„•)
7271ad3antrrr 728 . . . . . . . . . . 11 ((((πœ‘ ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) β‰  1) ∧ (βˆšβ€˜(𝑃↑𝐴)) ∈ β„•) ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) = 0) β†’ (𝐴 + 1) ∈ β„•)
73720expd 14135 . . . . . . . . . 10 ((((πœ‘ ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) β‰  1) ∧ (βˆšβ€˜(𝑃↑𝐴)) ∈ β„•) ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) = 0) β†’ (0↑(𝐴 + 1)) = 0)
74 simpr 483 . . . . . . . . . . 11 ((((πœ‘ ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) β‰  1) ∧ (βˆšβ€˜(𝑃↑𝐴)) ∈ β„•) ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) = 0) β†’ (π‘‹β€˜(πΏβ€˜π‘ƒ)) = 0)
7574oveq1d 7432 . . . . . . . . . 10 ((((πœ‘ ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) β‰  1) ∧ (βˆšβ€˜(𝑃↑𝐴)) ∈ β„•) ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) = 0) β†’ ((π‘‹β€˜(πΏβ€˜π‘ƒ))↑(𝐴 + 1)) = (0↑(𝐴 + 1)))
7673, 75, 743eqtr4d 2775 . . . . . . . . 9 ((((πœ‘ ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) β‰  1) ∧ (βˆšβ€˜(𝑃↑𝐴)) ∈ β„•) ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) = 0) β†’ ((π‘‹β€˜(πΏβ€˜π‘ƒ))↑(𝐴 + 1)) = (π‘‹β€˜(πΏβ€˜π‘ƒ)))
77 neg1cn 12356 . . . . . . . . . . . . 13 -1 ∈ β„‚
7831ad2antrr 724 . . . . . . . . . . . . 13 (((πœ‘ ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) β‰  1) ∧ (βˆšβ€˜(𝑃↑𝐴)) ∈ β„•) β†’ 𝐴 ∈ β„•0)
79 expp1 14065 . . . . . . . . . . . . 13 ((-1 ∈ β„‚ ∧ 𝐴 ∈ β„•0) β†’ (-1↑(𝐴 + 1)) = ((-1↑𝐴) Β· -1))
8077, 78, 79sylancr 585 . . . . . . . . . . . 12 (((πœ‘ ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) β‰  1) ∧ (βˆšβ€˜(𝑃↑𝐴)) ∈ β„•) β†’ (-1↑(𝐴 + 1)) = ((-1↑𝐴) Β· -1))
81 prmnn 16644 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑃 ∈ β„™ β†’ 𝑃 ∈ β„•)
8215, 81syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (πœ‘ β†’ 𝑃 ∈ β„•)
8382, 31nnexpcld 14239 . . . . . . . . . . . . . . . . . . . . 21 (πœ‘ β†’ (𝑃↑𝐴) ∈ β„•)
8483nncnd 12258 . . . . . . . . . . . . . . . . . . . 20 (πœ‘ β†’ (𝑃↑𝐴) ∈ β„‚)
8584ad2antrr 724 . . . . . . . . . . . . . . . . . . 19 (((πœ‘ ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) β‰  1) ∧ (βˆšβ€˜(𝑃↑𝐴)) ∈ β„•) β†’ (𝑃↑𝐴) ∈ β„‚)
8685sqsqrtd 15418 . . . . . . . . . . . . . . . . . 18 (((πœ‘ ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) β‰  1) ∧ (βˆšβ€˜(𝑃↑𝐴)) ∈ β„•) β†’ ((βˆšβ€˜(𝑃↑𝐴))↑2) = (𝑃↑𝐴))
8786oveq2d 7433 . . . . . . . . . . . . . . . . 17 (((πœ‘ ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) β‰  1) ∧ (βˆšβ€˜(𝑃↑𝐴)) ∈ β„•) β†’ (𝑃 pCnt ((βˆšβ€˜(𝑃↑𝐴))↑2)) = (𝑃 pCnt (𝑃↑𝐴)))
8815ad2antrr 724 . . . . . . . . . . . . . . . . . 18 (((πœ‘ ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) β‰  1) ∧ (βˆšβ€˜(𝑃↑𝐴)) ∈ β„•) β†’ 𝑃 ∈ β„™)
89 nnq 12976 . . . . . . . . . . . . . . . . . . 19 ((βˆšβ€˜(𝑃↑𝐴)) ∈ β„• β†’ (βˆšβ€˜(𝑃↑𝐴)) ∈ β„š)
9089adantl 480 . . . . . . . . . . . . . . . . . 18 (((πœ‘ ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) β‰  1) ∧ (βˆšβ€˜(𝑃↑𝐴)) ∈ β„•) β†’ (βˆšβ€˜(𝑃↑𝐴)) ∈ β„š)
91 nnne0 12276 . . . . . . . . . . . . . . . . . . 19 ((βˆšβ€˜(𝑃↑𝐴)) ∈ β„• β†’ (βˆšβ€˜(𝑃↑𝐴)) β‰  0)
9291adantl 480 . . . . . . . . . . . . . . . . . 18 (((πœ‘ ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) β‰  1) ∧ (βˆšβ€˜(𝑃↑𝐴)) ∈ β„•) β†’ (βˆšβ€˜(𝑃↑𝐴)) β‰  0)
93 2z 12624 . . . . . . . . . . . . . . . . . . 19 2 ∈ β„€
9493a1i 11 . . . . . . . . . . . . . . . . . 18 (((πœ‘ ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) β‰  1) ∧ (βˆšβ€˜(𝑃↑𝐴)) ∈ β„•) β†’ 2 ∈ β„€)
95 pcexp 16827 . . . . . . . . . . . . . . . . . 18 ((𝑃 ∈ β„™ ∧ ((βˆšβ€˜(𝑃↑𝐴)) ∈ β„š ∧ (βˆšβ€˜(𝑃↑𝐴)) β‰  0) ∧ 2 ∈ β„€) β†’ (𝑃 pCnt ((βˆšβ€˜(𝑃↑𝐴))↑2)) = (2 Β· (𝑃 pCnt (βˆšβ€˜(𝑃↑𝐴)))))
9688, 90, 92, 94, 95syl121anc 1372 . . . . . . . . . . . . . . . . 17 (((πœ‘ ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) β‰  1) ∧ (βˆšβ€˜(𝑃↑𝐴)) ∈ β„•) β†’ (𝑃 pCnt ((βˆšβ€˜(𝑃↑𝐴))↑2)) = (2 Β· (𝑃 pCnt (βˆšβ€˜(𝑃↑𝐴)))))
9778nn0zd 12614 . . . . . . . . . . . . . . . . . 18 (((πœ‘ ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) β‰  1) ∧ (βˆšβ€˜(𝑃↑𝐴)) ∈ β„•) β†’ 𝐴 ∈ β„€)
98 pcid 16841 . . . . . . . . . . . . . . . . . 18 ((𝑃 ∈ β„™ ∧ 𝐴 ∈ β„€) β†’ (𝑃 pCnt (𝑃↑𝐴)) = 𝐴)
9988, 97, 98syl2anc 582 . . . . . . . . . . . . . . . . 17 (((πœ‘ ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) β‰  1) ∧ (βˆšβ€˜(𝑃↑𝐴)) ∈ β„•) β†’ (𝑃 pCnt (𝑃↑𝐴)) = 𝐴)
10087, 96, 993eqtr3rd 2774 . . . . . . . . . . . . . . . 16 (((πœ‘ ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) β‰  1) ∧ (βˆšβ€˜(𝑃↑𝐴)) ∈ β„•) β†’ 𝐴 = (2 Β· (𝑃 pCnt (βˆšβ€˜(𝑃↑𝐴)))))
101100oveq2d 7433 . . . . . . . . . . . . . . 15 (((πœ‘ ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) β‰  1) ∧ (βˆšβ€˜(𝑃↑𝐴)) ∈ β„•) β†’ (-1↑𝐴) = (-1↑(2 Β· (𝑃 pCnt (βˆšβ€˜(𝑃↑𝐴))))))
10277a1i 11 . . . . . . . . . . . . . . . 16 (((πœ‘ ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) β‰  1) ∧ (βˆšβ€˜(𝑃↑𝐴)) ∈ β„•) β†’ -1 ∈ β„‚)
103 simpr 483 . . . . . . . . . . . . . . . . 17 (((πœ‘ ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) β‰  1) ∧ (βˆšβ€˜(𝑃↑𝐴)) ∈ β„•) β†’ (βˆšβ€˜(𝑃↑𝐴)) ∈ β„•)
10488, 103pccld 16818 . . . . . . . . . . . . . . . 16 (((πœ‘ ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) β‰  1) ∧ (βˆšβ€˜(𝑃↑𝐴)) ∈ β„•) β†’ (𝑃 pCnt (βˆšβ€˜(𝑃↑𝐴))) ∈ β„•0)
105 2nn0 12519 . . . . . . . . . . . . . . . . 17 2 ∈ β„•0
106105a1i 11 . . . . . . . . . . . . . . . 16 (((πœ‘ ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) β‰  1) ∧ (βˆšβ€˜(𝑃↑𝐴)) ∈ β„•) β†’ 2 ∈ β„•0)
107102, 104, 106expmuld 14145 . . . . . . . . . . . . . . 15 (((πœ‘ ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) β‰  1) ∧ (βˆšβ€˜(𝑃↑𝐴)) ∈ β„•) β†’ (-1↑(2 Β· (𝑃 pCnt (βˆšβ€˜(𝑃↑𝐴))))) = ((-1↑2)↑(𝑃 pCnt (βˆšβ€˜(𝑃↑𝐴)))))
108 neg1sqe1 14191 . . . . . . . . . . . . . . . . 17 (-1↑2) = 1
109108oveq1i 7427 . . . . . . . . . . . . . . . 16 ((-1↑2)↑(𝑃 pCnt (βˆšβ€˜(𝑃↑𝐴)))) = (1↑(𝑃 pCnt (βˆšβ€˜(𝑃↑𝐴))))
110104nn0zd 12614 . . . . . . . . . . . . . . . . 17 (((πœ‘ ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) β‰  1) ∧ (βˆšβ€˜(𝑃↑𝐴)) ∈ β„•) β†’ (𝑃 pCnt (βˆšβ€˜(𝑃↑𝐴))) ∈ β„€)
111 1exp 14088 . . . . . . . . . . . . . . . . 17 ((𝑃 pCnt (βˆšβ€˜(𝑃↑𝐴))) ∈ β„€ β†’ (1↑(𝑃 pCnt (βˆšβ€˜(𝑃↑𝐴)))) = 1)
112110, 111syl 17 . . . . . . . . . . . . . . . 16 (((πœ‘ ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) β‰  1) ∧ (βˆšβ€˜(𝑃↑𝐴)) ∈ β„•) β†’ (1↑(𝑃 pCnt (βˆšβ€˜(𝑃↑𝐴)))) = 1)
113109, 112eqtrid 2777 . . . . . . . . . . . . . . 15 (((πœ‘ ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) β‰  1) ∧ (βˆšβ€˜(𝑃↑𝐴)) ∈ β„•) β†’ ((-1↑2)↑(𝑃 pCnt (βˆšβ€˜(𝑃↑𝐴)))) = 1)
114101, 107, 1133eqtrd 2769 . . . . . . . . . . . . . 14 (((πœ‘ ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) β‰  1) ∧ (βˆšβ€˜(𝑃↑𝐴)) ∈ β„•) β†’ (-1↑𝐴) = 1)
115114oveq1d 7432 . . . . . . . . . . . . 13 (((πœ‘ ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) β‰  1) ∧ (βˆšβ€˜(𝑃↑𝐴)) ∈ β„•) β†’ ((-1↑𝐴) Β· -1) = (1 Β· -1))
11677mullidi 11249 . . . . . . . . . . . . 13 (1 Β· -1) = -1
117115, 116eqtrdi 2781 . . . . . . . . . . . 12 (((πœ‘ ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) β‰  1) ∧ (βˆšβ€˜(𝑃↑𝐴)) ∈ β„•) β†’ ((-1↑𝐴) Β· -1) = -1)
11880, 117eqtrd 2765 . . . . . . . . . . 11 (((πœ‘ ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) β‰  1) ∧ (βˆšβ€˜(𝑃↑𝐴)) ∈ β„•) β†’ (-1↑(𝐴 + 1)) = -1)
119118adantr 479 . . . . . . . . . 10 ((((πœ‘ ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) β‰  1) ∧ (βˆšβ€˜(𝑃↑𝐴)) ∈ β„•) ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) β‰  0) β†’ (-1↑(𝐴 + 1)) = -1)
12019recnd 11272 . . . . . . . . . . . . . . 15 (πœ‘ β†’ (π‘‹β€˜(πΏβ€˜π‘ƒ)) ∈ β„‚)
121120adantr 479 . . . . . . . . . . . . . 14 ((πœ‘ ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) β‰  1) β†’ (π‘‹β€˜(πΏβ€˜π‘ƒ)) ∈ β„‚)
122121ad2antrr 724 . . . . . . . . . . . . 13 ((((πœ‘ ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) β‰  1) ∧ (βˆšβ€˜(𝑃↑𝐴)) ∈ β„•) ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) β‰  0) β†’ (π‘‹β€˜(πΏβ€˜π‘ƒ)) ∈ β„‚)
123122negnegd 11592 . . . . . . . . . . . 12 ((((πœ‘ ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) β‰  1) ∧ (βˆšβ€˜(𝑃↑𝐴)) ∈ β„•) ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) β‰  0) β†’ --(π‘‹β€˜(πΏβ€˜π‘ƒ)) = (π‘‹β€˜(πΏβ€˜π‘ƒ)))
124 simpr 483 . . . . . . . . . . . . . . . . 17 ((πœ‘ ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) β‰  1) β†’ (π‘‹β€˜(πΏβ€˜π‘ƒ)) β‰  1)
125124ad2antrr 724 . . . . . . . . . . . . . . . 16 ((((πœ‘ ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) β‰  1) ∧ (βˆšβ€˜(𝑃↑𝐴)) ∈ β„•) ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) β‰  0) β†’ (π‘‹β€˜(πΏβ€˜π‘ƒ)) β‰  1)
126 rpvmasum2.g . . . . . . . . . . . . . . . . . . 19 𝐺 = (DChrβ€˜π‘)
127 rpvmasum2.d . . . . . . . . . . . . . . . . . . 19 𝐷 = (Baseβ€˜πΊ)
128 dchrisum0f.x . . . . . . . . . . . . . . . . . . . 20 (πœ‘ β†’ 𝑋 ∈ 𝐷)
129128ad3antrrr 728 . . . . . . . . . . . . . . . . . . 19 ((((πœ‘ ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) β‰  1) ∧ (βˆšβ€˜(𝑃↑𝐴)) ∈ β„•) ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) β‰  0) β†’ 𝑋 ∈ 𝐷)
130 eqid 2725 . . . . . . . . . . . . . . . . . . 19 (Unitβ€˜π‘) = (Unitβ€˜π‘)
131126, 9, 127, 10, 130, 128, 18dchrn0 27213 . . . . . . . . . . . . . . . . . . . . 21 (πœ‘ β†’ ((π‘‹β€˜(πΏβ€˜π‘ƒ)) β‰  0 ↔ (πΏβ€˜π‘ƒ) ∈ (Unitβ€˜π‘)))
132131ad2antrr 724 . . . . . . . . . . . . . . . . . . . 20 (((πœ‘ ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) β‰  1) ∧ (βˆšβ€˜(𝑃↑𝐴)) ∈ β„•) β†’ ((π‘‹β€˜(πΏβ€˜π‘ƒ)) β‰  0 ↔ (πΏβ€˜π‘ƒ) ∈ (Unitβ€˜π‘)))
133132biimpa 475 . . . . . . . . . . . . . . . . . . 19 ((((πœ‘ ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) β‰  1) ∧ (βˆšβ€˜(𝑃↑𝐴)) ∈ β„•) ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) β‰  0) β†’ (πΏβ€˜π‘ƒ) ∈ (Unitβ€˜π‘))
134126, 127, 129, 9, 130, 133dchrabs 27223 . . . . . . . . . . . . . . . . . 18 ((((πœ‘ ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) β‰  1) ∧ (βˆšβ€˜(𝑃↑𝐴)) ∈ β„•) ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) β‰  0) β†’ (absβ€˜(π‘‹β€˜(πΏβ€˜π‘ƒ))) = 1)
135 eqeq1 2729 . . . . . . . . . . . . . . . . . 18 ((absβ€˜(π‘‹β€˜(πΏβ€˜π‘ƒ))) = (π‘‹β€˜(πΏβ€˜π‘ƒ)) β†’ ((absβ€˜(π‘‹β€˜(πΏβ€˜π‘ƒ))) = 1 ↔ (π‘‹β€˜(πΏβ€˜π‘ƒ)) = 1))
136134, 135syl5ibcom 244 . . . . . . . . . . . . . . . . 17 ((((πœ‘ ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) β‰  1) ∧ (βˆšβ€˜(𝑃↑𝐴)) ∈ β„•) ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) β‰  0) β†’ ((absβ€˜(π‘‹β€˜(πΏβ€˜π‘ƒ))) = (π‘‹β€˜(πΏβ€˜π‘ƒ)) β†’ (π‘‹β€˜(πΏβ€˜π‘ƒ)) = 1))
137136necon3ad 2943 . . . . . . . . . . . . . . . 16 ((((πœ‘ ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) β‰  1) ∧ (βˆšβ€˜(𝑃↑𝐴)) ∈ β„•) ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) β‰  0) β†’ ((π‘‹β€˜(πΏβ€˜π‘ƒ)) β‰  1 β†’ Β¬ (absβ€˜(π‘‹β€˜(πΏβ€˜π‘ƒ))) = (π‘‹β€˜(πΏβ€˜π‘ƒ))))
138125, 137mpd 15 . . . . . . . . . . . . . . 15 ((((πœ‘ ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) β‰  1) ∧ (βˆšβ€˜(𝑃↑𝐴)) ∈ β„•) ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) β‰  0) β†’ Β¬ (absβ€˜(π‘‹β€˜(πΏβ€˜π‘ƒ))) = (π‘‹β€˜(πΏβ€˜π‘ƒ)))
13962ad2antrr 724 . . . . . . . . . . . . . . . . 17 ((((πœ‘ ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) β‰  1) ∧ (βˆšβ€˜(𝑃↑𝐴)) ∈ β„•) ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) β‰  0) β†’ (π‘‹β€˜(πΏβ€˜π‘ƒ)) ∈ ℝ)
140139absord 15394 . . . . . . . . . . . . . . . 16 ((((πœ‘ ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) β‰  1) ∧ (βˆšβ€˜(𝑃↑𝐴)) ∈ β„•) ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) β‰  0) β†’ ((absβ€˜(π‘‹β€˜(πΏβ€˜π‘ƒ))) = (π‘‹β€˜(πΏβ€˜π‘ƒ)) ∨ (absβ€˜(π‘‹β€˜(πΏβ€˜π‘ƒ))) = -(π‘‹β€˜(πΏβ€˜π‘ƒ))))
141140ord 862 . . . . . . . . . . . . . . 15 ((((πœ‘ ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) β‰  1) ∧ (βˆšβ€˜(𝑃↑𝐴)) ∈ β„•) ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) β‰  0) β†’ (Β¬ (absβ€˜(π‘‹β€˜(πΏβ€˜π‘ƒ))) = (π‘‹β€˜(πΏβ€˜π‘ƒ)) β†’ (absβ€˜(π‘‹β€˜(πΏβ€˜π‘ƒ))) = -(π‘‹β€˜(πΏβ€˜π‘ƒ))))
142138, 141mpd 15 . . . . . . . . . . . . . 14 ((((πœ‘ ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) β‰  1) ∧ (βˆšβ€˜(𝑃↑𝐴)) ∈ β„•) ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) β‰  0) β†’ (absβ€˜(π‘‹β€˜(πΏβ€˜π‘ƒ))) = -(π‘‹β€˜(πΏβ€˜π‘ƒ)))
143142, 134eqtr3d 2767 . . . . . . . . . . . . 13 ((((πœ‘ ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) β‰  1) ∧ (βˆšβ€˜(𝑃↑𝐴)) ∈ β„•) ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) β‰  0) β†’ -(π‘‹β€˜(πΏβ€˜π‘ƒ)) = 1)
144143negeqd 11484 . . . . . . . . . . . 12 ((((πœ‘ ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) β‰  1) ∧ (βˆšβ€˜(𝑃↑𝐴)) ∈ β„•) ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) β‰  0) β†’ --(π‘‹β€˜(πΏβ€˜π‘ƒ)) = -1)
145123, 144eqtr3d 2767 . . . . . . . . . . 11 ((((πœ‘ ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) β‰  1) ∧ (βˆšβ€˜(𝑃↑𝐴)) ∈ β„•) ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) β‰  0) β†’ (π‘‹β€˜(πΏβ€˜π‘ƒ)) = -1)
146145oveq1d 7432 . . . . . . . . . 10 ((((πœ‘ ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) β‰  1) ∧ (βˆšβ€˜(𝑃↑𝐴)) ∈ β„•) ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) β‰  0) β†’ ((π‘‹β€˜(πΏβ€˜π‘ƒ))↑(𝐴 + 1)) = (-1↑(𝐴 + 1)))
147119, 146, 1453eqtr4d 2775 . . . . . . . . 9 ((((πœ‘ ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) β‰  1) ∧ (βˆšβ€˜(𝑃↑𝐴)) ∈ β„•) ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) β‰  0) β†’ ((π‘‹β€˜(πΏβ€˜π‘ƒ))↑(𝐴 + 1)) = (π‘‹β€˜(πΏβ€˜π‘ƒ)))
14876, 147pm2.61dane 3019 . . . . . . . 8 (((πœ‘ ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) β‰  1) ∧ (βˆšβ€˜(𝑃↑𝐴)) ∈ β„•) β†’ ((π‘‹β€˜(πΏβ€˜π‘ƒ))↑(𝐴 + 1)) = (π‘‹β€˜(πΏβ€˜π‘ƒ)))
149148oveq2d 7433 . . . . . . 7 (((πœ‘ ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) β‰  1) ∧ (βˆšβ€˜(𝑃↑𝐴)) ∈ β„•) β†’ (1 βˆ’ ((π‘‹β€˜(πΏβ€˜π‘ƒ))↑(𝐴 + 1))) = (1 βˆ’ (π‘‹β€˜(πΏβ€˜π‘ƒ))))
15066, 69, 1493brtr4d 5180 . . . . . 6 (((πœ‘ ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) β‰  1) ∧ (βˆšβ€˜(𝑃↑𝐴)) ∈ β„•) β†’ (1 Β· (1 βˆ’ (π‘‹β€˜(πΏβ€˜π‘ƒ)))) ≀ (1 βˆ’ ((π‘‹β€˜(πΏβ€˜π‘ƒ))↑(𝐴 + 1))))
15167mul02d 11442 . . . . . . . 8 ((πœ‘ ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) β‰  1) β†’ (0 Β· (1 βˆ’ (π‘‹β€˜(πΏβ€˜π‘ƒ)))) = 0)
152 peano2nn0 12542 . . . . . . . . . . . . 13 (𝐴 ∈ β„•0 β†’ (𝐴 + 1) ∈ β„•0)
15331, 152syl 17 . . . . . . . . . . . 12 (πœ‘ β†’ (𝐴 + 1) ∈ β„•0)
15419, 153reexpcld 14159 . . . . . . . . . . 11 (πœ‘ β†’ ((π‘‹β€˜(πΏβ€˜π‘ƒ))↑(𝐴 + 1)) ∈ ℝ)
155154adantr 479 . . . . . . . . . 10 ((πœ‘ ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) β‰  1) β†’ ((π‘‹β€˜(πΏβ€˜π‘ƒ))↑(𝐴 + 1)) ∈ ℝ)
156155recnd 11272 . . . . . . . . . . 11 ((πœ‘ ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) β‰  1) β†’ ((π‘‹β€˜(πΏβ€˜π‘ƒ))↑(𝐴 + 1)) ∈ β„‚)
157156abscld 15415 . . . . . . . . . 10 ((πœ‘ ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) β‰  1) β†’ (absβ€˜((π‘‹β€˜(πΏβ€˜π‘ƒ))↑(𝐴 + 1))) ∈ ℝ)
158 1red 11245 . . . . . . . . . 10 ((πœ‘ ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) β‰  1) β†’ 1 ∈ ℝ)
159155leabsd 15393 . . . . . . . . . 10 ((πœ‘ ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) β‰  1) β†’ ((π‘‹β€˜(πΏβ€˜π‘ƒ))↑(𝐴 + 1)) ≀ (absβ€˜((π‘‹β€˜(πΏβ€˜π‘ƒ))↑(𝐴 + 1))))
160153adantr 479 . . . . . . . . . . . 12 ((πœ‘ ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) β‰  1) β†’ (𝐴 + 1) ∈ β„•0)
161121, 160absexpd 15431 . . . . . . . . . . 11 ((πœ‘ ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) β‰  1) β†’ (absβ€˜((π‘‹β€˜(πΏβ€˜π‘ƒ))↑(𝐴 + 1))) = ((absβ€˜(π‘‹β€˜(πΏβ€˜π‘ƒ)))↑(𝐴 + 1)))
162121abscld 15415 . . . . . . . . . . . 12 ((πœ‘ ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) β‰  1) β†’ (absβ€˜(π‘‹β€˜(πΏβ€˜π‘ƒ))) ∈ ℝ)
163121absge0d 15423 . . . . . . . . . . . 12 ((πœ‘ ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) β‰  1) β†’ 0 ≀ (absβ€˜(π‘‹β€˜(πΏβ€˜π‘ƒ))))
164126, 127, 9, 10, 128, 18dchrabs2 27225 . . . . . . . . . . . . 13 (πœ‘ β†’ (absβ€˜(π‘‹β€˜(πΏβ€˜π‘ƒ))) ≀ 1)
165164adantr 479 . . . . . . . . . . . 12 ((πœ‘ ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) β‰  1) β†’ (absβ€˜(π‘‹β€˜(πΏβ€˜π‘ƒ))) ≀ 1)
166 exple1 14172 . . . . . . . . . . . 12 ((((absβ€˜(π‘‹β€˜(πΏβ€˜π‘ƒ))) ∈ ℝ ∧ 0 ≀ (absβ€˜(π‘‹β€˜(πΏβ€˜π‘ƒ))) ∧ (absβ€˜(π‘‹β€˜(πΏβ€˜π‘ƒ))) ≀ 1) ∧ (𝐴 + 1) ∈ β„•0) β†’ ((absβ€˜(π‘‹β€˜(πΏβ€˜π‘ƒ)))↑(𝐴 + 1)) ≀ 1)
167162, 163, 165, 160, 166syl31anc 1370 . . . . . . . . . . 11 ((πœ‘ ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) β‰  1) β†’ ((absβ€˜(π‘‹β€˜(πΏβ€˜π‘ƒ)))↑(𝐴 + 1)) ≀ 1)
168161, 167eqbrtrd 5170 . . . . . . . . . 10 ((πœ‘ ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) β‰  1) β†’ (absβ€˜((π‘‹β€˜(πΏβ€˜π‘ƒ))↑(𝐴 + 1))) ≀ 1)
169155, 157, 158, 159, 168letrd 11401 . . . . . . . . 9 ((πœ‘ ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) β‰  1) β†’ ((π‘‹β€˜(πΏβ€˜π‘ƒ))↑(𝐴 + 1)) ≀ 1)
170 subge0 11757 . . . . . . . . . 10 ((1 ∈ ℝ ∧ ((π‘‹β€˜(πΏβ€˜π‘ƒ))↑(𝐴 + 1)) ∈ ℝ) β†’ (0 ≀ (1 βˆ’ ((π‘‹β€˜(πΏβ€˜π‘ƒ))↑(𝐴 + 1))) ↔ ((π‘‹β€˜(πΏβ€˜π‘ƒ))↑(𝐴 + 1)) ≀ 1))
17161, 155, 170sylancr 585 . . . . . . . . 9 ((πœ‘ ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) β‰  1) β†’ (0 ≀ (1 βˆ’ ((π‘‹β€˜(πΏβ€˜π‘ƒ))↑(𝐴 + 1))) ↔ ((π‘‹β€˜(πΏβ€˜π‘ƒ))↑(𝐴 + 1)) ≀ 1))
172169, 171mpbird 256 . . . . . . . 8 ((πœ‘ ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) β‰  1) β†’ 0 ≀ (1 βˆ’ ((π‘‹β€˜(πΏβ€˜π‘ƒ))↑(𝐴 + 1))))
173151, 172eqbrtrd 5170 . . . . . . 7 ((πœ‘ ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) β‰  1) β†’ (0 Β· (1 βˆ’ (π‘‹β€˜(πΏβ€˜π‘ƒ)))) ≀ (1 βˆ’ ((π‘‹β€˜(πΏβ€˜π‘ƒ))↑(𝐴 + 1))))
174173adantr 479 . . . . . 6 (((πœ‘ ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) β‰  1) ∧ Β¬ (βˆšβ€˜(𝑃↑𝐴)) ∈ β„•) β†’ (0 Β· (1 βˆ’ (π‘‹β€˜(πΏβ€˜π‘ƒ)))) ≀ (1 βˆ’ ((π‘‹β€˜(πΏβ€˜π‘ƒ))↑(𝐴 + 1))))
17558, 60, 150, 174ifbothda 4567 . . . . 5 ((πœ‘ ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) β‰  1) β†’ (if((βˆšβ€˜(𝑃↑𝐴)) ∈ β„•, 1, 0) Β· (1 βˆ’ (π‘‹β€˜(πΏβ€˜π‘ƒ)))) ≀ (1 βˆ’ ((π‘‹β€˜(πΏβ€˜π‘ƒ))↑(𝐴 + 1))))
176 0re 11246 . . . . . . . 8 0 ∈ ℝ
17761, 176ifcli 4576 . . . . . . 7 if((βˆšβ€˜(𝑃↑𝐴)) ∈ β„•, 1, 0) ∈ ℝ
178177a1i 11 . . . . . 6 ((πœ‘ ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) β‰  1) β†’ if((βˆšβ€˜(𝑃↑𝐴)) ∈ β„•, 1, 0) ∈ ℝ)
179 resubcl 11554 . . . . . . 7 ((1 ∈ ℝ ∧ ((π‘‹β€˜(πΏβ€˜π‘ƒ))↑(𝐴 + 1)) ∈ ℝ) β†’ (1 βˆ’ ((π‘‹β€˜(πΏβ€˜π‘ƒ))↑(𝐴 + 1))) ∈ ℝ)
18061, 155, 179sylancr 585 . . . . . 6 ((πœ‘ ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) β‰  1) β†’ (1 βˆ’ ((π‘‹β€˜(πΏβ€˜π‘ƒ))↑(𝐴 + 1))) ∈ ℝ)
18162leabsd 15393 . . . . . . . . 9 ((πœ‘ ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) β‰  1) β†’ (π‘‹β€˜(πΏβ€˜π‘ƒ)) ≀ (absβ€˜(π‘‹β€˜(πΏβ€˜π‘ƒ))))
18262, 162, 158, 181, 165letrd 11401 . . . . . . . 8 ((πœ‘ ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) β‰  1) β†’ (π‘‹β€˜(πΏβ€˜π‘ƒ)) ≀ 1)
183124necomd 2986 . . . . . . . 8 ((πœ‘ ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) β‰  1) β†’ 1 β‰  (π‘‹β€˜(πΏβ€˜π‘ƒ)))
18462, 158, 182, 183leneltd 11398 . . . . . . 7 ((πœ‘ ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) β‰  1) β†’ (π‘‹β€˜(πΏβ€˜π‘ƒ)) < 1)
185 posdif 11737 . . . . . . . 8 (((π‘‹β€˜(πΏβ€˜π‘ƒ)) ∈ ℝ ∧ 1 ∈ ℝ) β†’ ((π‘‹β€˜(πΏβ€˜π‘ƒ)) < 1 ↔ 0 < (1 βˆ’ (π‘‹β€˜(πΏβ€˜π‘ƒ)))))
18662, 61, 185sylancl 584 . . . . . . 7 ((πœ‘ ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) β‰  1) β†’ ((π‘‹β€˜(πΏβ€˜π‘ƒ)) < 1 ↔ 0 < (1 βˆ’ (π‘‹β€˜(πΏβ€˜π‘ƒ)))))
187184, 186mpbid 231 . . . . . 6 ((πœ‘ ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) β‰  1) β†’ 0 < (1 βˆ’ (π‘‹β€˜(πΏβ€˜π‘ƒ))))
188 lemuldiv 12124 . . . . . 6 ((if((βˆšβ€˜(𝑃↑𝐴)) ∈ β„•, 1, 0) ∈ ℝ ∧ (1 βˆ’ ((π‘‹β€˜(πΏβ€˜π‘ƒ))↑(𝐴 + 1))) ∈ ℝ ∧ ((1 βˆ’ (π‘‹β€˜(πΏβ€˜π‘ƒ))) ∈ ℝ ∧ 0 < (1 βˆ’ (π‘‹β€˜(πΏβ€˜π‘ƒ))))) β†’ ((if((βˆšβ€˜(𝑃↑𝐴)) ∈ β„•, 1, 0) Β· (1 βˆ’ (π‘‹β€˜(πΏβ€˜π‘ƒ)))) ≀ (1 βˆ’ ((π‘‹β€˜(πΏβ€˜π‘ƒ))↑(𝐴 + 1))) ↔ if((βˆšβ€˜(𝑃↑𝐴)) ∈ β„•, 1, 0) ≀ ((1 βˆ’ ((π‘‹β€˜(πΏβ€˜π‘ƒ))↑(𝐴 + 1))) / (1 βˆ’ (π‘‹β€˜(πΏβ€˜π‘ƒ))))))
189178, 180, 64, 187, 188syl112anc 1371 . . . . 5 ((πœ‘ ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) β‰  1) β†’ ((if((βˆšβ€˜(𝑃↑𝐴)) ∈ β„•, 1, 0) Β· (1 βˆ’ (π‘‹β€˜(πΏβ€˜π‘ƒ)))) ≀ (1 βˆ’ ((π‘‹β€˜(πΏβ€˜π‘ƒ))↑(𝐴 + 1))) ↔ if((βˆšβ€˜(𝑃↑𝐴)) ∈ β„•, 1, 0) ≀ ((1 βˆ’ ((π‘‹β€˜(πΏβ€˜π‘ƒ))↑(𝐴 + 1))) / (1 βˆ’ (π‘‹β€˜(πΏβ€˜π‘ƒ))))))
190175, 189mpbid 231 . . . 4 ((πœ‘ ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) β‰  1) β†’ if((βˆšβ€˜(𝑃↑𝐴)) ∈ β„•, 1, 0) ≀ ((1 βˆ’ ((π‘‹β€˜(πΏβ€˜π‘ƒ))↑(𝐴 + 1))) / (1 βˆ’ (π‘‹β€˜(πΏβ€˜π‘ƒ)))))
19131nn0zd 12614 . . . . . . . 8 (πœ‘ β†’ 𝐴 ∈ β„€)
192 fzval3 13733 . . . . . . . 8 (𝐴 ∈ β„€ β†’ (0...𝐴) = (0..^(𝐴 + 1)))
193191, 192syl 17 . . . . . . 7 (πœ‘ β†’ (0...𝐴) = (0..^(𝐴 + 1)))
194193adantr 479 . . . . . 6 ((πœ‘ ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) β‰  1) β†’ (0...𝐴) = (0..^(𝐴 + 1)))
195194sumeq1d 15679 . . . . 5 ((πœ‘ ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) β‰  1) β†’ Σ𝑖 ∈ (0...𝐴)((π‘‹β€˜(πΏβ€˜π‘ƒ))↑𝑖) = Σ𝑖 ∈ (0..^(𝐴 + 1))((π‘‹β€˜(πΏβ€˜π‘ƒ))↑𝑖))
196 0nn0 12517 . . . . . . 7 0 ∈ β„•0
197196a1i 11 . . . . . 6 ((πœ‘ ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) β‰  1) β†’ 0 ∈ β„•0)
198153, 32eleqtrdi 2835 . . . . . . 7 (πœ‘ β†’ (𝐴 + 1) ∈ (β„€β‰₯β€˜0))
199198adantr 479 . . . . . 6 ((πœ‘ ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) β‰  1) β†’ (𝐴 + 1) ∈ (β„€β‰₯β€˜0))
200121, 124, 197, 199geoserg 15844 . . . . 5 ((πœ‘ ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) β‰  1) β†’ Σ𝑖 ∈ (0..^(𝐴 + 1))((π‘‹β€˜(πΏβ€˜π‘ƒ))↑𝑖) = ((((π‘‹β€˜(πΏβ€˜π‘ƒ))↑0) βˆ’ ((π‘‹β€˜(πΏβ€˜π‘ƒ))↑(𝐴 + 1))) / (1 βˆ’ (π‘‹β€˜(πΏβ€˜π‘ƒ)))))
201121exp0d 14136 . . . . . . 7 ((πœ‘ ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) β‰  1) β†’ ((π‘‹β€˜(πΏβ€˜π‘ƒ))↑0) = 1)
202201oveq1d 7432 . . . . . 6 ((πœ‘ ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) β‰  1) β†’ (((π‘‹β€˜(πΏβ€˜π‘ƒ))↑0) βˆ’ ((π‘‹β€˜(πΏβ€˜π‘ƒ))↑(𝐴 + 1))) = (1 βˆ’ ((π‘‹β€˜(πΏβ€˜π‘ƒ))↑(𝐴 + 1))))
203202oveq1d 7432 . . . . 5 ((πœ‘ ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) β‰  1) β†’ ((((π‘‹β€˜(πΏβ€˜π‘ƒ))↑0) βˆ’ ((π‘‹β€˜(πΏβ€˜π‘ƒ))↑(𝐴 + 1))) / (1 βˆ’ (π‘‹β€˜(πΏβ€˜π‘ƒ)))) = ((1 βˆ’ ((π‘‹β€˜(πΏβ€˜π‘ƒ))↑(𝐴 + 1))) / (1 βˆ’ (π‘‹β€˜(πΏβ€˜π‘ƒ)))))
204195, 200, 2033eqtrd 2769 . . . 4 ((πœ‘ ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) β‰  1) β†’ Σ𝑖 ∈ (0...𝐴)((π‘‹β€˜(πΏβ€˜π‘ƒ))↑𝑖) = ((1 βˆ’ ((π‘‹β€˜(πΏβ€˜π‘ƒ))↑(𝐴 + 1))) / (1 βˆ’ (π‘‹β€˜(πΏβ€˜π‘ƒ)))))
205190, 204breqtrrd 5176 . . 3 ((πœ‘ ∧ (π‘‹β€˜(πΏβ€˜π‘ƒ)) β‰  1) β†’ if((βˆšβ€˜(𝑃↑𝐴)) ∈ β„•, 1, 0) ≀ Σ𝑖 ∈ (0...𝐴)((π‘‹β€˜(πΏβ€˜π‘ƒ))↑𝑖))
20656, 205pm2.61dane 3019 . 2 (πœ‘ β†’ if((βˆšβ€˜(𝑃↑𝐴)) ∈ β„•, 1, 0) ≀ Σ𝑖 ∈ (0...𝐴)((π‘‹β€˜(πΏβ€˜π‘ƒ))↑𝑖))
207 rpvmasum2.1 . . . . 5 1 = (0gβ€˜πΊ)
208 dchrisum0f.f . . . . 5 𝐹 = (𝑏 ∈ β„• ↦ Σ𝑣 ∈ {π‘ž ∈ β„• ∣ π‘ž βˆ₯ 𝑏} (π‘‹β€˜(πΏβ€˜π‘£)))
2099, 11, 7, 126, 127, 207, 208dchrisum0fval 27468 . . . 4 ((𝑃↑𝐴) ∈ β„• β†’ (πΉβ€˜(𝑃↑𝐴)) = Ξ£π‘˜ ∈ {π‘ž ∈ β„• ∣ π‘ž βˆ₯ (𝑃↑𝐴)} (π‘‹β€˜(πΏβ€˜π‘˜)))
21083, 209syl 17 . . 3 (πœ‘ β†’ (πΉβ€˜(𝑃↑𝐴)) = Ξ£π‘˜ ∈ {π‘ž ∈ β„• ∣ π‘ž βˆ₯ (𝑃↑𝐴)} (π‘‹β€˜(πΏβ€˜π‘˜)))
211 2fveq3 6899 . . . 4 (π‘˜ = (𝑃↑𝑖) β†’ (π‘‹β€˜(πΏβ€˜π‘˜)) = (π‘‹β€˜(πΏβ€˜(𝑃↑𝑖))))
212 eqid 2725 . . . . . 6 (𝑏 ∈ (0...𝐴) ↦ (𝑃↑𝑏)) = (𝑏 ∈ (0...𝐴) ↦ (𝑃↑𝑏))
213212dvdsppwf1o 27148 . . . . 5 ((𝑃 ∈ β„™ ∧ 𝐴 ∈ β„•0) β†’ (𝑏 ∈ (0...𝐴) ↦ (𝑃↑𝑏)):(0...𝐴)–1-1-ontoβ†’{π‘ž ∈ β„• ∣ π‘ž βˆ₯ (𝑃↑𝐴)})
21415, 31, 213syl2anc 582 . . . 4 (πœ‘ β†’ (𝑏 ∈ (0...𝐴) ↦ (𝑃↑𝑏)):(0...𝐴)–1-1-ontoβ†’{π‘ž ∈ β„• ∣ π‘ž βˆ₯ (𝑃↑𝐴)})
215 oveq2 7425 . . . . . 6 (𝑏 = 𝑖 β†’ (𝑃↑𝑏) = (𝑃↑𝑖))
216 ovex 7450 . . . . . 6 (𝑃↑𝑏) ∈ V
217215, 212, 216fvmpt3i 7007 . . . . 5 (𝑖 ∈ (0...𝐴) β†’ ((𝑏 ∈ (0...𝐴) ↦ (𝑃↑𝑏))β€˜π‘–) = (𝑃↑𝑖))
218217adantl 480 . . . 4 ((πœ‘ ∧ 𝑖 ∈ (0...𝐴)) β†’ ((𝑏 ∈ (0...𝐴) ↦ (𝑃↑𝑏))β€˜π‘–) = (𝑃↑𝑖))
2196adantr 479 . . . . . 6 ((πœ‘ ∧ π‘˜ ∈ {π‘ž ∈ β„• ∣ π‘ž βˆ₯ (𝑃↑𝐴)}) β†’ 𝑋:(Baseβ€˜π‘)βŸΆβ„)
220 elrabi 3674 . . . . . . . 8 (π‘˜ ∈ {π‘ž ∈ β„• ∣ π‘ž βˆ₯ (𝑃↑𝐴)} β†’ π‘˜ ∈ β„•)
221220nnzd 12615 . . . . . . 7 (π‘˜ ∈ {π‘ž ∈ β„• ∣ π‘ž βˆ₯ (𝑃↑𝐴)} β†’ π‘˜ ∈ β„€)
222 ffvelcdm 7088 . . . . . . 7 ((𝐿:β„€βŸΆ(Baseβ€˜π‘) ∧ π‘˜ ∈ β„€) β†’ (πΏβ€˜π‘˜) ∈ (Baseβ€˜π‘))
22314, 221, 222syl2an 594 . . . . . 6 ((πœ‘ ∧ π‘˜ ∈ {π‘ž ∈ β„• ∣ π‘ž βˆ₯ (𝑃↑𝐴)}) β†’ (πΏβ€˜π‘˜) ∈ (Baseβ€˜π‘))
224219, 223ffvelcdmd 7092 . . . . 5 ((πœ‘ ∧ π‘˜ ∈ {π‘ž ∈ β„• ∣ π‘ž βˆ₯ (𝑃↑𝐴)}) β†’ (π‘‹β€˜(πΏβ€˜π‘˜)) ∈ ℝ)
225224recnd 11272 . . . 4 ((πœ‘ ∧ π‘˜ ∈ {π‘ž ∈ β„• ∣ π‘ž βˆ₯ (𝑃↑𝐴)}) β†’ (π‘‹β€˜(πΏβ€˜π‘˜)) ∈ β„‚)
226211, 5, 214, 218, 225fsumf1o 15701 . . 3 (πœ‘ β†’ Ξ£π‘˜ ∈ {π‘ž ∈ β„• ∣ π‘ž βˆ₯ (𝑃↑𝐴)} (π‘‹β€˜(πΏβ€˜π‘˜)) = Σ𝑖 ∈ (0...𝐴)(π‘‹β€˜(πΏβ€˜(𝑃↑𝑖))))
227 zsubrg 21357 . . . . . . . . . . 11 β„€ ∈ (SubRingβ€˜β„‚fld)
228 eqid 2725 . . . . . . . . . . . 12 (mulGrpβ€˜β„‚fld) = (mulGrpβ€˜β„‚fld)
229228subrgsubm 20528 . . . . . . . . . . 11 (β„€ ∈ (SubRingβ€˜β„‚fld) β†’ β„€ ∈ (SubMndβ€˜(mulGrpβ€˜β„‚fld)))
230227, 229mp1i 13 . . . . . . . . . 10 ((πœ‘ ∧ 𝑖 ∈ (0...𝐴)) β†’ β„€ ∈ (SubMndβ€˜(mulGrpβ€˜β„‚fld)))
23120adantl 480 . . . . . . . . . 10 ((πœ‘ ∧ 𝑖 ∈ (0...𝐴)) β†’ 𝑖 ∈ β„•0)
23217adantr 479 . . . . . . . . . 10 ((πœ‘ ∧ 𝑖 ∈ (0...𝐴)) β†’ 𝑃 ∈ β„€)
233 eqid 2725 . . . . . . . . . . 11 (.gβ€˜(mulGrpβ€˜β„‚fld)) = (.gβ€˜(mulGrpβ€˜β„‚fld))
234 zringmpg 21401 . . . . . . . . . . . 12 ((mulGrpβ€˜β„‚fld) β†Ύs β„€) = (mulGrpβ€˜β„€ring)
235234eqcomi 2734 . . . . . . . . . . 11 (mulGrpβ€˜β„€ring) = ((mulGrpβ€˜β„‚fld) β†Ύs β„€)
236 eqid 2725 . . . . . . . . . . 11 (.gβ€˜(mulGrpβ€˜β„€ring)) = (.gβ€˜(mulGrpβ€˜β„€ring))
237233, 235, 236submmulg 19077 . . . . . . . . . 10 ((β„€ ∈ (SubMndβ€˜(mulGrpβ€˜β„‚fld)) ∧ 𝑖 ∈ β„•0 ∧ 𝑃 ∈ β„€) β†’ (𝑖(.gβ€˜(mulGrpβ€˜β„‚fld))𝑃) = (𝑖(.gβ€˜(mulGrpβ€˜β„€ring))𝑃))
238230, 231, 232, 237syl3anc 1368 . . . . . . . . 9 ((πœ‘ ∧ 𝑖 ∈ (0...𝐴)) β†’ (𝑖(.gβ€˜(mulGrpβ€˜β„‚fld))𝑃) = (𝑖(.gβ€˜(mulGrpβ€˜β„€ring))𝑃))
23982nncnd 12258 . . . . . . . . . 10 (πœ‘ β†’ 𝑃 ∈ β„‚)
240 cnfldexp 21336 . . . . . . . . . 10 ((𝑃 ∈ β„‚ ∧ 𝑖 ∈ β„•0) β†’ (𝑖(.gβ€˜(mulGrpβ€˜β„‚fld))𝑃) = (𝑃↑𝑖))
241239, 20, 240syl2an 594 . . . . . . . . 9 ((πœ‘ ∧ 𝑖 ∈ (0...𝐴)) β†’ (𝑖(.gβ€˜(mulGrpβ€˜β„‚fld))𝑃) = (𝑃↑𝑖))
242238, 241eqtr3d 2767 . . . . . . . 8 ((πœ‘ ∧ 𝑖 ∈ (0...𝐴)) β†’ (𝑖(.gβ€˜(mulGrpβ€˜β„€ring))𝑃) = (𝑃↑𝑖))
243242fveq2d 6898 . . . . . . 7 ((πœ‘ ∧ 𝑖 ∈ (0...𝐴)) β†’ (πΏβ€˜(𝑖(.gβ€˜(mulGrpβ€˜β„€ring))𝑃)) = (πΏβ€˜(𝑃↑𝑖)))
2449zncrng 21482 . . . . . . . . . . 11 (𝑁 ∈ β„•0 β†’ 𝑍 ∈ CRing)
245 crngring 20189 . . . . . . . . . . 11 (𝑍 ∈ CRing β†’ 𝑍 ∈ Ring)
2468, 244, 2453syl 18 . . . . . . . . . 10 (πœ‘ β†’ 𝑍 ∈ Ring)
24711zrhrhm 21441 . . . . . . . . . 10 (𝑍 ∈ Ring β†’ 𝐿 ∈ (β„€ring RingHom 𝑍))
248 eqid 2725 . . . . . . . . . . 11 (mulGrpβ€˜β„€ring) = (mulGrpβ€˜β„€ring)
249 eqid 2725 . . . . . . . . . . 11 (mulGrpβ€˜π‘) = (mulGrpβ€˜π‘)
250248, 249rhmmhm 20422 . . . . . . . . . 10 (𝐿 ∈ (β„€ring RingHom 𝑍) β†’ 𝐿 ∈ ((mulGrpβ€˜β„€ring) MndHom (mulGrpβ€˜π‘)))
251246, 247, 2503syl 18 . . . . . . . . 9 (πœ‘ β†’ 𝐿 ∈ ((mulGrpβ€˜β„€ring) MndHom (mulGrpβ€˜π‘)))
252251adantr 479 . . . . . . . 8 ((πœ‘ ∧ 𝑖 ∈ (0...𝐴)) β†’ 𝐿 ∈ ((mulGrpβ€˜β„€ring) MndHom (mulGrpβ€˜π‘)))
253 zringbas 21383 . . . . . . . . . 10 β„€ = (Baseβ€˜β„€ring)
254248, 253mgpbas 20084 . . . . . . . . 9 β„€ = (Baseβ€˜(mulGrpβ€˜β„€ring))
255 eqid 2725 . . . . . . . . 9 (.gβ€˜(mulGrpβ€˜π‘)) = (.gβ€˜(mulGrpβ€˜π‘))
256254, 236, 255mhmmulg 19074 . . . . . . . 8 ((𝐿 ∈ ((mulGrpβ€˜β„€ring) MndHom (mulGrpβ€˜π‘)) ∧ 𝑖 ∈ β„•0 ∧ 𝑃 ∈ β„€) β†’ (πΏβ€˜(𝑖(.gβ€˜(mulGrpβ€˜β„€ring))𝑃)) = (𝑖(.gβ€˜(mulGrpβ€˜π‘))(πΏβ€˜π‘ƒ)))
257252, 231, 232, 256syl3anc 1368 . . . . . . 7 ((πœ‘ ∧ 𝑖 ∈ (0...𝐴)) β†’ (πΏβ€˜(𝑖(.gβ€˜(mulGrpβ€˜β„€ring))𝑃)) = (𝑖(.gβ€˜(mulGrpβ€˜π‘))(πΏβ€˜π‘ƒ)))
258243, 257eqtr3d 2767 . . . . . 6 ((πœ‘ ∧ 𝑖 ∈ (0...𝐴)) β†’ (πΏβ€˜(𝑃↑𝑖)) = (𝑖(.gβ€˜(mulGrpβ€˜π‘))(πΏβ€˜π‘ƒ)))
259258fveq2d 6898 . . . . 5 ((πœ‘ ∧ 𝑖 ∈ (0...𝐴)) β†’ (π‘‹β€˜(πΏβ€˜(𝑃↑𝑖))) = (π‘‹β€˜(𝑖(.gβ€˜(mulGrpβ€˜π‘))(πΏβ€˜π‘ƒ))))
260126, 9, 127dchrmhm 27204 . . . . . . . 8 𝐷 βŠ† ((mulGrpβ€˜π‘) MndHom (mulGrpβ€˜β„‚fld))
261260, 128sselid 3975 . . . . . . 7 (πœ‘ β†’ 𝑋 ∈ ((mulGrpβ€˜π‘) MndHom (mulGrpβ€˜β„‚fld)))
262261adantr 479 . . . . . 6 ((πœ‘ ∧ 𝑖 ∈ (0...𝐴)) β†’ 𝑋 ∈ ((mulGrpβ€˜π‘) MndHom (mulGrpβ€˜β„‚fld)))
26318adantr 479 . . . . . 6 ((πœ‘ ∧ 𝑖 ∈ (0...𝐴)) β†’ (πΏβ€˜π‘ƒ) ∈ (Baseβ€˜π‘))
264249, 10mgpbas 20084 . . . . . . 7 (Baseβ€˜π‘) = (Baseβ€˜(mulGrpβ€˜π‘))
265264, 255, 233mhmmulg 19074 . . . . . 6 ((𝑋 ∈ ((mulGrpβ€˜π‘) MndHom (mulGrpβ€˜β„‚fld)) ∧ 𝑖 ∈ β„•0 ∧ (πΏβ€˜π‘ƒ) ∈ (Baseβ€˜π‘)) β†’ (π‘‹β€˜(𝑖(.gβ€˜(mulGrpβ€˜π‘))(πΏβ€˜π‘ƒ))) = (𝑖(.gβ€˜(mulGrpβ€˜β„‚fld))(π‘‹β€˜(πΏβ€˜π‘ƒ))))
266262, 231, 263, 265syl3anc 1368 . . . . 5 ((πœ‘ ∧ 𝑖 ∈ (0...𝐴)) β†’ (π‘‹β€˜(𝑖(.gβ€˜(mulGrpβ€˜π‘))(πΏβ€˜π‘ƒ))) = (𝑖(.gβ€˜(mulGrpβ€˜β„‚fld))(π‘‹β€˜(πΏβ€˜π‘ƒ))))
267 cnfldexp 21336 . . . . . 6 (((π‘‹β€˜(πΏβ€˜π‘ƒ)) ∈ β„‚ ∧ 𝑖 ∈ β„•0) β†’ (𝑖(.gβ€˜(mulGrpβ€˜β„‚fld))(π‘‹β€˜(πΏβ€˜π‘ƒ))) = ((π‘‹β€˜(πΏβ€˜π‘ƒ))↑𝑖))
268120, 20, 267syl2an 594 . . . . 5 ((πœ‘ ∧ 𝑖 ∈ (0...𝐴)) β†’ (𝑖(.gβ€˜(mulGrpβ€˜β„‚fld))(π‘‹β€˜(πΏβ€˜π‘ƒ))) = ((π‘‹β€˜(πΏβ€˜π‘ƒ))↑𝑖))
269259, 266, 2683eqtrd 2769 . . . 4 ((πœ‘ ∧ 𝑖 ∈ (0...𝐴)) β†’ (π‘‹β€˜(πΏβ€˜(𝑃↑𝑖))) = ((π‘‹β€˜(πΏβ€˜π‘ƒ))↑𝑖))
270269sumeq2dv 15681 . . 3 (πœ‘ β†’ Σ𝑖 ∈ (0...𝐴)(π‘‹β€˜(πΏβ€˜(𝑃↑𝑖))) = Σ𝑖 ∈ (0...𝐴)((π‘‹β€˜(πΏβ€˜π‘ƒ))↑𝑖))
271210, 226, 2703eqtrd 2769 . 2 (πœ‘ β†’ (πΉβ€˜(𝑃↑𝐴)) = Σ𝑖 ∈ (0...𝐴)((π‘‹β€˜(πΏβ€˜π‘ƒ))↑𝑖))
272206, 271breqtrrd 5176 1 (πœ‘ β†’ if((βˆšβ€˜(𝑃↑𝐴)) ∈ β„•, 1, 0) ≀ (πΉβ€˜(𝑃↑𝐴)))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 394   = wceq 1533   ∈ wcel 2098   β‰  wne 2930  {crab 3419  βˆ…c0 4323  ifcif 4529   class class class wbr 5148   ↦ cmpt 5231  βŸΆwf 6543  β€“ontoβ†’wfo 6545  β€“1-1-ontoβ†’wf1o 6546  β€˜cfv 6547  (class class class)co 7417  Fincfn 8962  β„‚cc 11136  β„cr 11137  0cc0 11138  1c1 11139   + caddc 11141   Β· cmul 11143   < clt 11278   ≀ cle 11279   βˆ’ cmin 11474  -cneg 11475   / cdiv 11901  β„•cn 12242  2c2 12297  β„•0cn0 12502  β„€cz 12588  β„€β‰₯cuz 12852  β„šcq 12962  ...cfz 13516  ..^cfzo 13659  β†‘cexp 14058  β™―chash 14321  βˆšcsqrt 15212  abscabs 15213  Ξ£csu 15664   βˆ₯ cdvds 16230  β„™cprime 16641   pCnt cpc 16804  Basecbs 17179   β†Ύs cress 17208  0gc0g 17420   MndHom cmhm 18737  SubMndcsubmnd 18738  .gcmg 19027  mulGrpcmgp 20078  Ringcrg 20177  CRingccrg 20178  Unitcui 20298   RingHom crh 20412  SubRingcsubrg 20510  β„‚fldccnfld 21283  β„€ringczring 21376  β„€RHomczrh 21429  β„€/nβ„€czn 21432  DChrcdchr 27195
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5364  ax-pr 5428  ax-un 7739  ax-inf2 9664  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215  ax-pre-sup 11216  ax-addf 11217  ax-mulf 11218
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3775  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3965  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-uni 4909  df-int 4950  df-iun 4998  df-iin 4999  df-disj 5114  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-se 5633  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6499  df-fun 6549  df-fn 6550  df-f 6551  df-f1 6552  df-fo 6553  df-f1o 6554  df-fv 6555  df-isom 6556  df-riota 7373  df-ov 7420  df-oprab 7421  df-mpo 7422  df-of 7683  df-om 7870  df-1st 7992  df-2nd 7993  df-supp 8164  df-tpos 8230  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-oadd 8489  df-omul 8490  df-er 8723  df-ec 8725  df-qs 8729  df-map 8845  df-pm 8846  df-ixp 8915  df-en 8963  df-dom 8964  df-sdom 8965  df-fin 8966  df-fsupp 9386  df-fi 9434  df-sup 9465  df-inf 9466  df-oi 9533  df-card 9962  df-acn 9965  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11476  df-neg 11477  df-div 11902  df-nn 12243  df-2 12305  df-3 12306  df-4 12307  df-5 12308  df-6 12309  df-7 12310  df-8 12311  df-9 12312  df-n0 12503  df-z 12589  df-dec 12708  df-uz 12853  df-q 12963  df-rp 13007  df-xneg 13124  df-xadd 13125  df-xmul 13126  df-ioo 13360  df-ioc 13361  df-ico 13362  df-icc 13363  df-fz 13517  df-fzo 13660  df-fl 13789  df-mod 13867  df-seq 13999  df-exp 14059  df-fac 14265  df-bc 14294  df-hash 14322  df-shft 15046  df-cj 15078  df-re 15079  df-im 15080  df-sqrt 15214  df-abs 15215  df-limsup 15447  df-clim 15464  df-rlim 15465  df-sum 15665  df-ef 16043  df-sin 16045  df-cos 16046  df-pi 16048  df-dvds 16231  df-gcd 16469  df-prm 16642  df-pc 16805  df-struct 17115  df-sets 17132  df-slot 17150  df-ndx 17162  df-base 17180  df-ress 17209  df-plusg 17245  df-mulr 17246  df-starv 17247  df-sca 17248  df-vsca 17249  df-ip 17250  df-tset 17251  df-ple 17252  df-ds 17254  df-unif 17255  df-hom 17256  df-cco 17257  df-rest 17403  df-topn 17404  df-0g 17422  df-gsum 17423  df-topgen 17424  df-pt 17425  df-prds 17428  df-xrs 17483  df-qtop 17488  df-imas 17489  df-qus 17490  df-xps 17491  df-mre 17565  df-mrc 17566  df-acs 17568  df-mgm 18599  df-sgrp 18678  df-mnd 18694  df-mhm 18739  df-submnd 18740  df-grp 18897  df-minusg 18898  df-sbg 18899  df-mulg 19028  df-subg 19082  df-nsg 19083  df-eqg 19084  df-ghm 19172  df-cntz 19272  df-od 19487  df-cmn 19741  df-abl 19742  df-mgp 20079  df-rng 20097  df-ur 20126  df-ring 20179  df-cring 20180  df-oppr 20277  df-dvdsr 20300  df-unit 20301  df-invr 20331  df-dvr 20344  df-rhm 20415  df-subrng 20487  df-subrg 20512  df-drng 20630  df-lmod 20749  df-lss 20820  df-lsp 20860  df-sra 21062  df-rgmod 21063  df-lidl 21108  df-rsp 21109  df-2idl 21148  df-psmet 21275  df-xmet 21276  df-met 21277  df-bl 21278  df-mopn 21279  df-fbas 21280  df-fg 21281  df-cnfld 21284  df-zring 21377  df-zrh 21433  df-zn 21436  df-top 22826  df-topon 22843  df-topsp 22865  df-bases 22879  df-cld 22953  df-ntr 22954  df-cls 22955  df-nei 23032  df-lp 23070  df-perf 23071  df-cn 23161  df-cnp 23162  df-haus 23249  df-tx 23496  df-hmeo 23689  df-fil 23780  df-fm 23872  df-flim 23873  df-flf 23874  df-xms 24256  df-ms 24257  df-tms 24258  df-cncf 24828  df-limc 25825  df-dv 25826  df-log 26520  df-cxp 26521  df-dchr 27196
This theorem is referenced by:  dchrisum0flblem2  27472  dchrisum0flb  27473
  Copyright terms: Public domain W3C validator