![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnflddsOLD | Structured version Visualization version GIF version |
Description: Obsolete version of cnfldds 21308 as of 27-Apr-2025. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revised by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cnflddsOLD | ⊢ (abs ∘ − ) = (dist‘ℂfld) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | absf 15320 | . . . 4 ⊢ abs:ℂ⟶ℝ | |
2 | subf 11494 | . . . 4 ⊢ − :(ℂ × ℂ)⟶ℂ | |
3 | fco 6747 | . . . 4 ⊢ ((abs:ℂ⟶ℝ ∧ − :(ℂ × ℂ)⟶ℂ) → (abs ∘ − ):(ℂ × ℂ)⟶ℝ) | |
4 | 1, 2, 3 | mp2an 690 | . . 3 ⊢ (abs ∘ − ):(ℂ × ℂ)⟶ℝ |
5 | cnex 11221 | . . . 4 ⊢ ℂ ∈ V | |
6 | 5, 5 | xpex 7756 | . . 3 ⊢ (ℂ × ℂ) ∈ V |
7 | reex 11231 | . . 3 ⊢ ℝ ∈ V | |
8 | fex2 7942 | . . 3 ⊢ (((abs ∘ − ):(ℂ × ℂ)⟶ℝ ∧ (ℂ × ℂ) ∈ V ∧ ℝ ∈ V) → (abs ∘ − ) ∈ V) | |
9 | 4, 6, 7, 8 | mp3an 1457 | . 2 ⊢ (abs ∘ − ) ∈ V |
10 | cnfldstrOLD 21313 | . . 3 ⊢ ℂfld Struct 〈1, ;13〉 | |
11 | dsid 17370 | . . 3 ⊢ dist = Slot (dist‘ndx) | |
12 | snsstp3 4823 | . . . 4 ⊢ {〈(dist‘ndx), (abs ∘ − )〉} ⊆ {〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} | |
13 | ssun1 4170 | . . . . 5 ⊢ {〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ⊆ ({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉}) | |
14 | ssun2 4171 | . . . . . 6 ⊢ ({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉}) ⊆ (({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(*𝑟‘ndx), ∗〉}) ∪ ({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉})) | |
15 | dfcnfldOLD 21312 | . . . . . 6 ⊢ ℂfld = (({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(*𝑟‘ndx), ∗〉}) ∪ ({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉})) | |
16 | 14, 15 | sseqtrri 4014 | . . . . 5 ⊢ ({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉}) ⊆ ℂfld |
17 | 13, 16 | sstri 3986 | . . . 4 ⊢ {〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ⊆ ℂfld |
18 | 12, 17 | sstri 3986 | . . 3 ⊢ {〈(dist‘ndx), (abs ∘ − )〉} ⊆ ℂfld |
19 | 10, 11, 18 | strfv 17176 | . 2 ⊢ ((abs ∘ − ) ∈ V → (abs ∘ − ) = (dist‘ℂfld)) |
20 | 9, 19 | ax-mp 5 | 1 ⊢ (abs ∘ − ) = (dist‘ℂfld) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 ∈ wcel 2098 Vcvv 3461 ∪ cun 3942 {csn 4630 {ctp 4634 〈cop 4636 × cxp 5676 ∘ ccom 5682 ⟶wf 6545 ‘cfv 6549 ℂcc 11138 ℝcr 11139 1c1 11141 + caddc 11143 · cmul 11145 ≤ cle 11281 − cmin 11476 3c3 12301 ;cdc 12710 ∗ccj 15079 abscabs 15217 ndxcnx 17165 Basecbs 17183 +gcplusg 17236 .rcmulr 17237 *𝑟cstv 17238 TopSetcts 17242 lecple 17243 distcds 17245 UnifSetcunif 17246 MetOpencmopn 21286 metUnifcmetu 21287 ℂfldccnfld 21296 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11196 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-addrcl 11201 ax-mulcl 11202 ax-mulrcl 11203 ax-mulcom 11204 ax-addass 11205 ax-mulass 11206 ax-distr 11207 ax-i2m1 11208 ax-1ne0 11209 ax-1rid 11210 ax-rnegex 11211 ax-rrecex 11212 ax-cnre 11213 ax-pre-lttri 11214 ax-pre-lttrn 11215 ax-pre-ltadd 11216 ax-pre-mulgt0 11217 ax-pre-sup 11218 ax-addf 11219 ax-mulf 11220 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-1st 7994 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-sup 9467 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-sub 11478 df-neg 11479 df-div 11904 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12506 df-z 12592 df-dec 12711 df-uz 12856 df-rp 13010 df-fz 13520 df-seq 14003 df-exp 14063 df-cj 15082 df-re 15083 df-im 15084 df-sqrt 15218 df-abs 15219 df-struct 17119 df-slot 17154 df-ndx 17166 df-base 17184 df-plusg 17249 df-mulr 17250 df-starv 17251 df-tset 17255 df-ple 17256 df-ds 17258 df-unif 17259 df-cnfld 21297 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |