| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnfldstrOLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version of cnfldstr 21242 as of 27-Apr-2025. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| cnfldstrOLD | ⊢ ℂfld Struct 〈1, ;13〉 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfcnfldOLD 21256 | . 2 ⊢ ℂfld = (({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(*𝑟‘ndx), ∗〉}) ∪ ({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉})) | |
| 2 | eqid 2729 | . . . 4 ⊢ ({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(*𝑟‘ndx), ∗〉}) = ({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(*𝑟‘ndx), ∗〉}) | |
| 3 | 2 | srngstr 17248 | . . 3 ⊢ ({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(*𝑟‘ndx), ∗〉}) Struct 〈1, 4〉 |
| 4 | 9nn 12260 | . . . . 5 ⊢ 9 ∈ ℕ | |
| 5 | tsetndx 17291 | . . . . 5 ⊢ (TopSet‘ndx) = 9 | |
| 6 | 9lt10 12756 | . . . . 5 ⊢ 9 < ;10 | |
| 7 | 10nn 12641 | . . . . 5 ⊢ ;10 ∈ ℕ | |
| 8 | plendx 17305 | . . . . 5 ⊢ (le‘ndx) = ;10 | |
| 9 | 1nn0 12434 | . . . . . 6 ⊢ 1 ∈ ℕ0 | |
| 10 | 0nn0 12433 | . . . . . 6 ⊢ 0 ∈ ℕ0 | |
| 11 | 2nn 12235 | . . . . . 6 ⊢ 2 ∈ ℕ | |
| 12 | 2pos 12265 | . . . . . 6 ⊢ 0 < 2 | |
| 13 | 9, 10, 11, 12 | declt 12653 | . . . . 5 ⊢ ;10 < ;12 |
| 14 | 9, 11 | decnncl 12645 | . . . . 5 ⊢ ;12 ∈ ℕ |
| 15 | dsndx 17324 | . . . . 5 ⊢ (dist‘ndx) = ;12 | |
| 16 | 4, 5, 6, 7, 8, 13, 14, 15 | strle3 17106 | . . . 4 ⊢ {〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} Struct 〈9, ;12〉 |
| 17 | 3nn 12241 | . . . . . 6 ⊢ 3 ∈ ℕ | |
| 18 | 9, 17 | decnncl 12645 | . . . . 5 ⊢ ;13 ∈ ℕ |
| 19 | unifndx 17334 | . . . . 5 ⊢ (UnifSet‘ndx) = ;13 | |
| 20 | 18, 19 | strle1 17104 | . . . 4 ⊢ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉} Struct 〈;13, ;13〉 |
| 21 | 2nn0 12435 | . . . . 5 ⊢ 2 ∈ ℕ0 | |
| 22 | 2lt3 12329 | . . . . 5 ⊢ 2 < 3 | |
| 23 | 9, 21, 17, 22 | declt 12653 | . . . 4 ⊢ ;12 < ;13 |
| 24 | 16, 20, 23 | strleun 17103 | . . 3 ⊢ ({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉}) Struct 〈9, ;13〉 |
| 25 | 4lt9 12360 | . . 3 ⊢ 4 < 9 | |
| 26 | 3, 24, 25 | strleun 17103 | . 2 ⊢ (({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(*𝑟‘ndx), ∗〉}) ∪ ({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉})) Struct 〈1, ;13〉 |
| 27 | 1, 26 | eqbrtri 5123 | 1 ⊢ ℂfld Struct 〈1, ;13〉 |
| Colors of variables: wff setvar class |
| Syntax hints: ∪ cun 3909 {csn 4585 {ctp 4589 〈cop 4591 class class class wbr 5102 ∘ ccom 5635 ‘cfv 6499 ℂcc 11042 0cc0 11044 1c1 11045 + caddc 11047 · cmul 11049 ≤ cle 11185 − cmin 11381 2c2 12217 3c3 12218 4c4 12219 9c9 12224 ;cdc 12625 ∗ccj 15038 abscabs 15176 Struct cstr 17092 ndxcnx 17139 Basecbs 17155 +gcplusg 17196 .rcmulr 17197 *𝑟cstv 17198 TopSetcts 17202 lecple 17203 distcds 17205 UnifSetcunif 17206 MetOpencmopn 21230 metUnifcmetu 21231 ℂfldccnfld 21240 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-addf 11123 ax-mulf 11124 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-fz 13445 df-struct 17093 df-slot 17128 df-ndx 17140 df-base 17156 df-plusg 17209 df-mulr 17210 df-starv 17211 df-tset 17215 df-ple 17216 df-ds 17218 df-unif 17219 df-cnfld 21241 |
| This theorem is referenced by: cnfldexOLD 21258 cnfldbasOLD 21259 cnfldaddOLD 21260 cnfldmulOLD 21261 cnfldcjOLD 21262 cnfldtsetOLD 21263 cnfldleOLD 21264 cnflddsOLD 21265 cnfldunifOLD 21266 cnfldfunOLD 21267 |
| Copyright terms: Public domain | W3C validator |