![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnfldstrOLD | Structured version Visualization version GIF version |
Description: Obsolete version of cnfldstr 21384 as of 27-Apr-2025. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cnfldstrOLD | ⊢ ℂfld Struct 〈1, ;13〉 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfcnfldOLD 21398 | . 2 ⊢ ℂfld = (({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(*𝑟‘ndx), ∗〉}) ∪ ({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉})) | |
2 | eqid 2735 | . . . 4 ⊢ ({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(*𝑟‘ndx), ∗〉}) = ({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(*𝑟‘ndx), ∗〉}) | |
3 | 2 | srngstr 17355 | . . 3 ⊢ ({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(*𝑟‘ndx), ∗〉}) Struct 〈1, 4〉 |
4 | 9nn 12362 | . . . . 5 ⊢ 9 ∈ ℕ | |
5 | tsetndx 17398 | . . . . 5 ⊢ (TopSet‘ndx) = 9 | |
6 | 9lt10 12862 | . . . . 5 ⊢ 9 < ;10 | |
7 | 10nn 12747 | . . . . 5 ⊢ ;10 ∈ ℕ | |
8 | plendx 17412 | . . . . 5 ⊢ (le‘ndx) = ;10 | |
9 | 1nn0 12540 | . . . . . 6 ⊢ 1 ∈ ℕ0 | |
10 | 0nn0 12539 | . . . . . 6 ⊢ 0 ∈ ℕ0 | |
11 | 2nn 12337 | . . . . . 6 ⊢ 2 ∈ ℕ | |
12 | 2pos 12367 | . . . . . 6 ⊢ 0 < 2 | |
13 | 9, 10, 11, 12 | declt 12759 | . . . . 5 ⊢ ;10 < ;12 |
14 | 9, 11 | decnncl 12751 | . . . . 5 ⊢ ;12 ∈ ℕ |
15 | dsndx 17431 | . . . . 5 ⊢ (dist‘ndx) = ;12 | |
16 | 4, 5, 6, 7, 8, 13, 14, 15 | strle3 17194 | . . . 4 ⊢ {〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} Struct 〈9, ;12〉 |
17 | 3nn 12343 | . . . . . 6 ⊢ 3 ∈ ℕ | |
18 | 9, 17 | decnncl 12751 | . . . . 5 ⊢ ;13 ∈ ℕ |
19 | unifndx 17441 | . . . . 5 ⊢ (UnifSet‘ndx) = ;13 | |
20 | 18, 19 | strle1 17192 | . . . 4 ⊢ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉} Struct 〈;13, ;13〉 |
21 | 2nn0 12541 | . . . . 5 ⊢ 2 ∈ ℕ0 | |
22 | 2lt3 12436 | . . . . 5 ⊢ 2 < 3 | |
23 | 9, 21, 17, 22 | declt 12759 | . . . 4 ⊢ ;12 < ;13 |
24 | 16, 20, 23 | strleun 17191 | . . 3 ⊢ ({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉}) Struct 〈9, ;13〉 |
25 | 4lt9 12467 | . . 3 ⊢ 4 < 9 | |
26 | 3, 24, 25 | strleun 17191 | . 2 ⊢ (({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(*𝑟‘ndx), ∗〉}) ∪ ({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉})) Struct 〈1, ;13〉 |
27 | 1, 26 | eqbrtri 5169 | 1 ⊢ ℂfld Struct 〈1, ;13〉 |
Colors of variables: wff setvar class |
Syntax hints: ∪ cun 3961 {csn 4631 {ctp 4635 〈cop 4637 class class class wbr 5148 ∘ ccom 5693 ‘cfv 6563 ℂcc 11151 0cc0 11153 1c1 11154 + caddc 11156 · cmul 11158 ≤ cle 11294 − cmin 11490 2c2 12319 3c3 12320 4c4 12321 9c9 12326 ;cdc 12731 ∗ccj 15132 abscabs 15270 Struct cstr 17180 ndxcnx 17227 Basecbs 17245 +gcplusg 17298 .rcmulr 17299 *𝑟cstv 17300 TopSetcts 17304 lecple 17305 distcds 17307 UnifSetcunif 17308 MetOpencmopn 21372 metUnifcmetu 21373 ℂfldccnfld 21382 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-addf 11232 ax-mulf 11233 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-tp 4636 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12612 df-dec 12732 df-uz 12877 df-fz 13545 df-struct 17181 df-slot 17216 df-ndx 17228 df-base 17246 df-plusg 17311 df-mulr 17312 df-starv 17313 df-tset 17317 df-ple 17318 df-ds 17320 df-unif 17321 df-cnfld 21383 |
This theorem is referenced by: cnfldexOLD 21400 cnfldbasOLD 21401 cnfldaddOLD 21402 cnfldmulOLD 21403 cnfldcjOLD 21404 cnfldtsetOLD 21405 cnfldleOLD 21406 cnflddsOLD 21407 cnfldunifOLD 21408 cnfldfunOLD 21409 |
Copyright terms: Public domain | W3C validator |