![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnfldstrOLD | Structured version Visualization version GIF version |
Description: Obsolete version of cnfldstr 21389 as of 27-Apr-2025. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cnfldstrOLD | ⊢ ℂfld Struct 〈1, ;13〉 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfcnfldOLD 21403 | . 2 ⊢ ℂfld = (({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(*𝑟‘ndx), ∗〉}) ∪ ({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉})) | |
2 | eqid 2740 | . . . 4 ⊢ ({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(*𝑟‘ndx), ∗〉}) = ({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(*𝑟‘ndx), ∗〉}) | |
3 | 2 | srngstr 17368 | . . 3 ⊢ ({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(*𝑟‘ndx), ∗〉}) Struct 〈1, 4〉 |
4 | 9nn 12391 | . . . . 5 ⊢ 9 ∈ ℕ | |
5 | tsetndx 17411 | . . . . 5 ⊢ (TopSet‘ndx) = 9 | |
6 | 9lt10 12889 | . . . . 5 ⊢ 9 < ;10 | |
7 | 10nn 12774 | . . . . 5 ⊢ ;10 ∈ ℕ | |
8 | plendx 17425 | . . . . 5 ⊢ (le‘ndx) = ;10 | |
9 | 1nn0 12569 | . . . . . 6 ⊢ 1 ∈ ℕ0 | |
10 | 0nn0 12568 | . . . . . 6 ⊢ 0 ∈ ℕ0 | |
11 | 2nn 12366 | . . . . . 6 ⊢ 2 ∈ ℕ | |
12 | 2pos 12396 | . . . . . 6 ⊢ 0 < 2 | |
13 | 9, 10, 11, 12 | declt 12786 | . . . . 5 ⊢ ;10 < ;12 |
14 | 9, 11 | decnncl 12778 | . . . . 5 ⊢ ;12 ∈ ℕ |
15 | dsndx 17444 | . . . . 5 ⊢ (dist‘ndx) = ;12 | |
16 | 4, 5, 6, 7, 8, 13, 14, 15 | strle3 17207 | . . . 4 ⊢ {〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} Struct 〈9, ;12〉 |
17 | 3nn 12372 | . . . . . 6 ⊢ 3 ∈ ℕ | |
18 | 9, 17 | decnncl 12778 | . . . . 5 ⊢ ;13 ∈ ℕ |
19 | unifndx 17454 | . . . . 5 ⊢ (UnifSet‘ndx) = ;13 | |
20 | 18, 19 | strle1 17205 | . . . 4 ⊢ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉} Struct 〈;13, ;13〉 |
21 | 2nn0 12570 | . . . . 5 ⊢ 2 ∈ ℕ0 | |
22 | 2lt3 12465 | . . . . 5 ⊢ 2 < 3 | |
23 | 9, 21, 17, 22 | declt 12786 | . . . 4 ⊢ ;12 < ;13 |
24 | 16, 20, 23 | strleun 17204 | . . 3 ⊢ ({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉}) Struct 〈9, ;13〉 |
25 | 4lt9 12496 | . . 3 ⊢ 4 < 9 | |
26 | 3, 24, 25 | strleun 17204 | . 2 ⊢ (({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(*𝑟‘ndx), ∗〉}) ∪ ({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉})) Struct 〈1, ;13〉 |
27 | 1, 26 | eqbrtri 5187 | 1 ⊢ ℂfld Struct 〈1, ;13〉 |
Colors of variables: wff setvar class |
Syntax hints: ∪ cun 3974 {csn 4648 {ctp 4652 〈cop 4654 class class class wbr 5166 ∘ ccom 5704 ‘cfv 6573 ℂcc 11182 0cc0 11184 1c1 11185 + caddc 11187 · cmul 11189 ≤ cle 11325 − cmin 11520 2c2 12348 3c3 12349 4c4 12350 9c9 12355 ;cdc 12758 ∗ccj 15145 abscabs 15283 Struct cstr 17193 ndxcnx 17240 Basecbs 17258 +gcplusg 17311 .rcmulr 17312 *𝑟cstv 17313 TopSetcts 17317 lecple 17318 distcds 17320 UnifSetcunif 17321 MetOpencmopn 21377 metUnifcmetu 21378 ℂfldccnfld 21387 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-addf 11263 ax-mulf 11264 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-fz 13568 df-struct 17194 df-slot 17229 df-ndx 17241 df-base 17259 df-plusg 17324 df-mulr 17325 df-starv 17326 df-tset 17330 df-ple 17331 df-ds 17333 df-unif 17334 df-cnfld 21388 |
This theorem is referenced by: cnfldexOLD 21405 cnfldbasOLD 21406 cnfldaddOLD 21407 cnfldmulOLD 21408 cnfldcjOLD 21409 cnfldtsetOLD 21410 cnfldleOLD 21411 cnflddsOLD 21412 cnfldunifOLD 21413 cnfldfunOLD 21414 |
Copyright terms: Public domain | W3C validator |