| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cffldtocusgrOLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version of cffldtocusgr 29374 as of 27-Apr-2025. (Contributed by AV, 14-Nov-2021.) (Proof shortened by AV, 17-Nov-2021.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| cffldtocusgrOLD.p | ⊢ 𝑃 = {𝑥 ∈ 𝒫 ℂ ∣ (♯‘𝑥) = 2} |
| cffldtocusgrOLD.g | ⊢ 𝐺 = (ℂfld sSet 〈(.ef‘ndx), ( I ↾ 𝑃)〉) |
| Ref | Expression |
|---|---|
| cffldtocusgrOLD | ⊢ 𝐺 ∈ ComplUSGraph |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opex 5424 | . . . . . . 7 ⊢ 〈(Base‘ndx), ℂ〉 ∈ V | |
| 2 | 1 | tpid1 4732 | . . . . . 6 ⊢ 〈(Base‘ndx), ℂ〉 ∈ {〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} |
| 3 | 2 | orci 865 | . . . . 5 ⊢ (〈(Base‘ndx), ℂ〉 ∈ {〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∨ 〈(Base‘ndx), ℂ〉 ∈ {〈(*𝑟‘ndx), ∗〉}) |
| 4 | elun 4116 | . . . . 5 ⊢ (〈(Base‘ndx), ℂ〉 ∈ ({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(*𝑟‘ndx), ∗〉}) ↔ (〈(Base‘ndx), ℂ〉 ∈ {〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∨ 〈(Base‘ndx), ℂ〉 ∈ {〈(*𝑟‘ndx), ∗〉})) | |
| 5 | 3, 4 | mpbir 231 | . . . 4 ⊢ 〈(Base‘ndx), ℂ〉 ∈ ({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(*𝑟‘ndx), ∗〉}) |
| 6 | 5 | orci 865 | . . 3 ⊢ (〈(Base‘ndx), ℂ〉 ∈ ({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(*𝑟‘ndx), ∗〉}) ∨ 〈(Base‘ndx), ℂ〉 ∈ ({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉})) |
| 7 | dfcnfldOLD 21280 | . . . . 5 ⊢ ℂfld = (({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(*𝑟‘ndx), ∗〉}) ∪ ({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉})) | |
| 8 | 7 | eleq2i 2820 | . . . 4 ⊢ (〈(Base‘ndx), ℂ〉 ∈ ℂfld ↔ 〈(Base‘ndx), ℂ〉 ∈ (({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(*𝑟‘ndx), ∗〉}) ∪ ({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉}))) |
| 9 | elun 4116 | . . . 4 ⊢ (〈(Base‘ndx), ℂ〉 ∈ (({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(*𝑟‘ndx), ∗〉}) ∪ ({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉})) ↔ (〈(Base‘ndx), ℂ〉 ∈ ({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(*𝑟‘ndx), ∗〉}) ∨ 〈(Base‘ndx), ℂ〉 ∈ ({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉}))) | |
| 10 | 8, 9 | bitri 275 | . . 3 ⊢ (〈(Base‘ndx), ℂ〉 ∈ ℂfld ↔ (〈(Base‘ndx), ℂ〉 ∈ ({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(*𝑟‘ndx), ∗〉}) ∨ 〈(Base‘ndx), ℂ〉 ∈ ({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉}))) |
| 11 | 6, 10 | mpbir 231 | . 2 ⊢ 〈(Base‘ndx), ℂ〉 ∈ ℂfld |
| 12 | cffldtocusgrOLD.p | . . . 4 ⊢ 𝑃 = {𝑥 ∈ 𝒫 ℂ ∣ (♯‘𝑥) = 2} | |
| 13 | cnfldbas 21268 | . . . . . 6 ⊢ ℂ = (Base‘ℂfld) | |
| 14 | 13 | pweqi 4579 | . . . . 5 ⊢ 𝒫 ℂ = 𝒫 (Base‘ℂfld) |
| 15 | 14 | rabeqi 3419 | . . . 4 ⊢ {𝑥 ∈ 𝒫 ℂ ∣ (♯‘𝑥) = 2} = {𝑥 ∈ 𝒫 (Base‘ℂfld) ∣ (♯‘𝑥) = 2} |
| 16 | 12, 15 | eqtri 2752 | . . 3 ⊢ 𝑃 = {𝑥 ∈ 𝒫 (Base‘ℂfld) ∣ (♯‘𝑥) = 2} |
| 17 | cnfldstr 21266 | . . . 4 ⊢ ℂfld Struct 〈1, ;13〉 | |
| 18 | 17 | a1i 11 | . . 3 ⊢ (〈(Base‘ndx), ℂ〉 ∈ ℂfld → ℂfld Struct 〈1, ;13〉) |
| 19 | cffldtocusgrOLD.g | . . 3 ⊢ 𝐺 = (ℂfld sSet 〈(.ef‘ndx), ( I ↾ 𝑃)〉) | |
| 20 | fvex 6871 | . . . 4 ⊢ (Base‘ndx) ∈ V | |
| 21 | cnex 11149 | . . . 4 ⊢ ℂ ∈ V | |
| 22 | 20, 21 | opeldm 5871 | . . 3 ⊢ (〈(Base‘ndx), ℂ〉 ∈ ℂfld → (Base‘ndx) ∈ dom ℂfld) |
| 23 | 16, 18, 19, 22 | structtocusgr 29373 | . 2 ⊢ (〈(Base‘ndx), ℂ〉 ∈ ℂfld → 𝐺 ∈ ComplUSGraph) |
| 24 | 11, 23 | ax-mp 5 | 1 ⊢ 𝐺 ∈ ComplUSGraph |
| Colors of variables: wff setvar class |
| Syntax hints: ∨ wo 847 = wceq 1540 ∈ wcel 2109 {crab 3405 ∪ cun 3912 𝒫 cpw 4563 {csn 4589 {ctp 4593 〈cop 4595 class class class wbr 5107 I cid 5532 ↾ cres 5640 ∘ ccom 5642 ‘cfv 6511 (class class class)co 7387 ℂcc 11066 1c1 11069 + caddc 11071 · cmul 11073 ≤ cle 11209 − cmin 11405 2c2 12241 3c3 12242 ;cdc 12649 ♯chash 14295 ∗ccj 15062 abscabs 15200 Struct cstr 17116 sSet csts 17133 ndxcnx 17163 Basecbs 17179 +gcplusg 17220 .rcmulr 17221 *𝑟cstv 17222 TopSetcts 17226 lecple 17227 distcds 17229 UnifSetcunif 17230 MetOpencmopn 21254 metUnifcmetu 21255 ℂfldccnfld 21264 .efcedgf 28915 ComplUSGraphccusgr 29337 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-addf 11147 ax-mulf 11148 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-oadd 8438 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-dju 9854 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-xnn0 12516 df-z 12530 df-dec 12650 df-uz 12794 df-fz 13469 df-hash 14296 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-plusg 17233 df-mulr 17234 df-starv 17235 df-tset 17239 df-ple 17240 df-ds 17242 df-unif 17243 df-cnfld 21265 df-edgf 28916 df-vtx 28925 df-iedg 28926 df-edg 28975 df-usgr 29078 df-nbgr 29260 df-uvtx 29313 df-cplgr 29338 df-cusgr 29339 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |