Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dibss Structured version   Visualization version   GIF version

Theorem dibss 40534
Description: The partial isomorphism B maps to a set of vectors in full vector space H. (Contributed by NM, 1-Jan-2014.)
Hypotheses
Ref Expression
dibss.b 𝐡 = (Baseβ€˜πΎ)
dibss.l ≀ = (leβ€˜πΎ)
dibss.h 𝐻 = (LHypβ€˜πΎ)
dibss.i 𝐼 = ((DIsoBβ€˜πΎ)β€˜π‘Š)
dibss.u π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)
dibss.v 𝑉 = (Baseβ€˜π‘ˆ)
Assertion
Ref Expression
dibss (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ 𝑋 ≀ π‘Š)) β†’ (πΌβ€˜π‘‹) βŠ† 𝑉)

Proof of Theorem dibss
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 dibss.b . . . 4 𝐡 = (Baseβ€˜πΎ)
2 dibss.l . . . 4 ≀ = (leβ€˜πΎ)
3 dibss.h . . . 4 𝐻 = (LHypβ€˜πΎ)
4 eqid 2724 . . . 4 ((LTrnβ€˜πΎ)β€˜π‘Š) = ((LTrnβ€˜πΎ)β€˜π‘Š)
5 eqid 2724 . . . 4 ((DIsoAβ€˜πΎ)β€˜π‘Š) = ((DIsoAβ€˜πΎ)β€˜π‘Š)
61, 2, 3, 4, 5diass 40407 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ 𝑋 ≀ π‘Š)) β†’ (((DIsoAβ€˜πΎ)β€˜π‘Š)β€˜π‘‹) βŠ† ((LTrnβ€˜πΎ)β€˜π‘Š))
7 eqid 2724 . . . . . 6 ((TEndoβ€˜πΎ)β€˜π‘Š) = ((TEndoβ€˜πΎ)β€˜π‘Š)
8 eqid 2724 . . . . . 6 (𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š) ↦ ( I β†Ύ 𝐡)) = (𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š) ↦ ( I β†Ύ 𝐡))
91, 3, 4, 7, 8tendo0cl 40155 . . . . 5 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ (𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š) ↦ ( I β†Ύ 𝐡)) ∈ ((TEndoβ€˜πΎ)β€˜π‘Š))
109snssd 4805 . . . 4 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ {(𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š) ↦ ( I β†Ύ 𝐡))} βŠ† ((TEndoβ€˜πΎ)β€˜π‘Š))
1110adantr 480 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ 𝑋 ≀ π‘Š)) β†’ {(𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š) ↦ ( I β†Ύ 𝐡))} βŠ† ((TEndoβ€˜πΎ)β€˜π‘Š))
12 xpss12 5682 . . 3 (((((DIsoAβ€˜πΎ)β€˜π‘Š)β€˜π‘‹) βŠ† ((LTrnβ€˜πΎ)β€˜π‘Š) ∧ {(𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š) ↦ ( I β†Ύ 𝐡))} βŠ† ((TEndoβ€˜πΎ)β€˜π‘Š)) β†’ ((((DIsoAβ€˜πΎ)β€˜π‘Š)β€˜π‘‹) Γ— {(𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š) ↦ ( I β†Ύ 𝐡))}) βŠ† (((LTrnβ€˜πΎ)β€˜π‘Š) Γ— ((TEndoβ€˜πΎ)β€˜π‘Š)))
136, 11, 12syl2anc 583 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ 𝑋 ≀ π‘Š)) β†’ ((((DIsoAβ€˜πΎ)β€˜π‘Š)β€˜π‘‹) Γ— {(𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š) ↦ ( I β†Ύ 𝐡))}) βŠ† (((LTrnβ€˜πΎ)β€˜π‘Š) Γ— ((TEndoβ€˜πΎ)β€˜π‘Š)))
14 dibss.i . . 3 𝐼 = ((DIsoBβ€˜πΎ)β€˜π‘Š)
151, 2, 3, 4, 8, 5, 14dibval2 40509 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ 𝑋 ≀ π‘Š)) β†’ (πΌβ€˜π‘‹) = ((((DIsoAβ€˜πΎ)β€˜π‘Š)β€˜π‘‹) Γ— {(𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š) ↦ ( I β†Ύ 𝐡))}))
16 dibss.u . . . 4 π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)
17 dibss.v . . . 4 𝑉 = (Baseβ€˜π‘ˆ)
183, 4, 7, 16, 17dvhvbase 40452 . . 3 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ 𝑉 = (((LTrnβ€˜πΎ)β€˜π‘Š) Γ— ((TEndoβ€˜πΎ)β€˜π‘Š)))
1918adantr 480 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ 𝑋 ≀ π‘Š)) β†’ 𝑉 = (((LTrnβ€˜πΎ)β€˜π‘Š) Γ— ((TEndoβ€˜πΎ)β€˜π‘Š)))
2013, 15, 193sstr4d 4022 1 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ 𝑋 ≀ π‘Š)) β†’ (πΌβ€˜π‘‹) βŠ† 𝑉)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   = wceq 1533   ∈ wcel 2098   βŠ† wss 3941  {csn 4621   class class class wbr 5139   ↦ cmpt 5222   I cid 5564   Γ— cxp 5665   β†Ύ cres 5669  β€˜cfv 6534  Basecbs 17145  lecple 17205  HLchlt 38714  LHypclh 39349  LTrncltrn 39466  TEndoctendo 40117  DIsoAcdia 40393  DVecHcdvh 40443  DIsoBcdib 40503
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5276  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719  ax-cnex 11163  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184  ax-riotaBAD 38317
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3960  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-tp 4626  df-op 4628  df-uni 4901  df-iun 4990  df-iin 4991  df-br 5140  df-opab 5202  df-mpt 5223  df-tr 5257  df-id 5565  df-eprel 5571  df-po 5579  df-so 5580  df-fr 5622  df-we 5624  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6291  df-ord 6358  df-on 6359  df-lim 6360  df-suc 6361  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-riota 7358  df-ov 7405  df-oprab 7406  df-mpo 7407  df-om 7850  df-1st 7969  df-2nd 7970  df-undef 8254  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8700  df-map 8819  df-en 8937  df-dom 8938  df-sdom 8939  df-fin 8940  df-pnf 11248  df-mnf 11249  df-xr 11250  df-ltxr 11251  df-le 11252  df-sub 11444  df-neg 11445  df-nn 12211  df-2 12273  df-3 12274  df-4 12275  df-5 12276  df-6 12277  df-n0 12471  df-z 12557  df-uz 12821  df-fz 13483  df-struct 17081  df-slot 17116  df-ndx 17128  df-base 17146  df-plusg 17211  df-sca 17214  df-vsca 17215  df-proset 18252  df-poset 18270  df-plt 18287  df-lub 18303  df-glb 18304  df-join 18305  df-meet 18306  df-p0 18382  df-p1 18383  df-lat 18389  df-clat 18456  df-oposet 38540  df-ol 38542  df-oml 38543  df-covers 38630  df-ats 38631  df-atl 38662  df-cvlat 38686  df-hlat 38715  df-llines 38863  df-lplanes 38864  df-lvols 38865  df-lines 38866  df-psubsp 38868  df-pmap 38869  df-padd 39161  df-lhyp 39353  df-laut 39354  df-ldil 39469  df-ltrn 39470  df-trl 39524  df-tendo 40120  df-disoa 40394  df-dvech 40444  df-dib 40504
This theorem is referenced by:  diblss  40535
  Copyright terms: Public domain W3C validator