Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dia1eldmN Structured version   Visualization version   GIF version

Theorem dia1eldmN 37195
Description: The fiducial hyperplane (the largest allowed lattice element) belongs to the domain of partial isomorphism A. (Contributed by NM, 5-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
dia1eldm.h 𝐻 = (LHyp‘𝐾)
dia1eldm.i 𝐼 = ((DIsoA‘𝐾)‘𝑊)
Assertion
Ref Expression
dia1eldmN ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑊 ∈ dom 𝐼)

Proof of Theorem dia1eldmN
StepHypRef Expression
1 eqid 2778 . . . 4 (Base‘𝐾) = (Base‘𝐾)
2 dia1eldm.h . . . 4 𝐻 = (LHyp‘𝐾)
31, 2lhpbase 36152 . . 3 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
43adantl 475 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑊 ∈ (Base‘𝐾))
5 hllat 35517 . . 3 (𝐾 ∈ HL → 𝐾 ∈ Lat)
6 eqid 2778 . . . 4 (le‘𝐾) = (le‘𝐾)
71, 6latref 17439 . . 3 ((𝐾 ∈ Lat ∧ 𝑊 ∈ (Base‘𝐾)) → 𝑊(le‘𝐾)𝑊)
85, 3, 7syl2an 589 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑊(le‘𝐾)𝑊)
9 dia1eldm.i . . 3 𝐼 = ((DIsoA‘𝐾)‘𝑊)
101, 6, 2, 9diaeldm 37190 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑊 ∈ dom 𝐼 ↔ (𝑊 ∈ (Base‘𝐾) ∧ 𝑊(le‘𝐾)𝑊)))
114, 8, 10mpbir2and 703 1 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑊 ∈ dom 𝐼)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1601  wcel 2107   class class class wbr 4886  dom cdm 5355  cfv 6135  Basecbs 16255  lecple 16345  Latclat 17431  HLchlt 35504  LHypclh 36138  DIsoAcdia 37182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-ral 3095  df-rex 3096  df-reu 3097  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4672  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-id 5261  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-ov 6925  df-proset 17314  df-poset 17332  df-lat 17432  df-atl 35452  df-cvlat 35476  df-hlat 35505  df-lhyp 36142  df-disoa 37183
This theorem is referenced by:  dia1elN  37208
  Copyright terms: Public domain W3C validator