Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dia1eldmN | Structured version Visualization version GIF version |
Description: The fiducial hyperplane (the largest allowed lattice element) belongs to the domain of partial isomorphism A. (Contributed by NM, 5-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dia1eldm.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dia1eldm.i | ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
dia1eldmN | ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑊 ∈ dom 𝐼) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2733 | . . . 4 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
2 | dia1eldm.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
3 | 1, 2 | lhpbase 38038 | . . 3 ⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ (Base‘𝐾)) |
4 | 3 | adantl 481 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑊 ∈ (Base‘𝐾)) |
5 | hllat 37403 | . . 3 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) | |
6 | eqid 2733 | . . . 4 ⊢ (le‘𝐾) = (le‘𝐾) | |
7 | 1, 6 | latref 18187 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑊 ∈ (Base‘𝐾)) → 𝑊(le‘𝐾)𝑊) |
8 | 5, 3, 7 | syl2an 595 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑊(le‘𝐾)𝑊) |
9 | dia1eldm.i | . . 3 ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) | |
10 | 1, 6, 2, 9 | diaeldm 39076 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝑊 ∈ dom 𝐼 ↔ (𝑊 ∈ (Base‘𝐾) ∧ 𝑊(le‘𝐾)𝑊))) |
11 | 4, 8, 10 | mpbir2and 709 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑊 ∈ dom 𝐼) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2101 class class class wbr 5077 dom cdm 5591 ‘cfv 6447 Basecbs 16940 lecple 16997 Latclat 18177 HLchlt 37390 LHypclh 38024 DIsoAcdia 39068 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-10 2132 ax-11 2149 ax-12 2166 ax-ext 2704 ax-rep 5212 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2063 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2884 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3223 df-rab 3224 df-v 3436 df-sbc 3719 df-csb 3835 df-dif 3892 df-un 3894 df-in 3896 df-ss 3906 df-nul 4260 df-if 4463 df-sn 4565 df-pr 4567 df-op 4571 df-uni 4842 df-iun 4929 df-br 5078 df-opab 5140 df-mpt 5161 df-id 5491 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-rn 5602 df-res 5603 df-ima 5604 df-iota 6399 df-fun 6449 df-fn 6450 df-f 6451 df-f1 6452 df-fo 6453 df-f1o 6454 df-fv 6455 df-ov 7298 df-proset 18041 df-poset 18059 df-lat 18178 df-atl 37338 df-cvlat 37362 df-hlat 37391 df-lhyp 38028 df-disoa 39069 |
This theorem is referenced by: dia1elN 39094 |
Copyright terms: Public domain | W3C validator |