| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dia1eldmN | Structured version Visualization version GIF version | ||
| Description: The fiducial hyperplane (the largest allowed lattice element) belongs to the domain of partial isomorphism A. (Contributed by NM, 5-Dec-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| dia1eldm.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| dia1eldm.i | ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) |
| Ref | Expression |
|---|---|
| dia1eldmN | ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑊 ∈ dom 𝐼) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2734 | . . . 4 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 2 | dia1eldm.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 3 | 1, 2 | lhpbase 39959 | . . 3 ⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ (Base‘𝐾)) |
| 4 | 3 | adantl 481 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑊 ∈ (Base‘𝐾)) |
| 5 | hllat 39323 | . . 3 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) | |
| 6 | eqid 2734 | . . . 4 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 7 | 1, 6 | latref 18455 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑊 ∈ (Base‘𝐾)) → 𝑊(le‘𝐾)𝑊) |
| 8 | 5, 3, 7 | syl2an 596 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑊(le‘𝐾)𝑊) |
| 9 | dia1eldm.i | . . 3 ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) | |
| 10 | 1, 6, 2, 9 | diaeldm 40997 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝑊 ∈ dom 𝐼 ↔ (𝑊 ∈ (Base‘𝐾) ∧ 𝑊(le‘𝐾)𝑊))) |
| 11 | 4, 8, 10 | mpbir2and 713 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑊 ∈ dom 𝐼) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 class class class wbr 5123 dom cdm 5665 ‘cfv 6541 Basecbs 17229 lecple 17280 Latclat 18445 HLchlt 39310 LHypclh 39945 DIsoAcdia 40989 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-ov 7416 df-proset 18310 df-poset 18329 df-lat 18446 df-atl 39258 df-cvlat 39282 df-hlat 39311 df-lhyp 39949 df-disoa 40990 |
| This theorem is referenced by: dia1elN 41015 |
| Copyright terms: Public domain | W3C validator |