Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dia1eldmN Structured version   Visualization version   GIF version

Theorem dia1eldmN 37195
 Description: The fiducial hyperplane (the largest allowed lattice element) belongs to the domain of partial isomorphism A. (Contributed by NM, 5-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
dia1eldm.h 𝐻 = (LHyp‘𝐾)
dia1eldm.i 𝐼 = ((DIsoA‘𝐾)‘𝑊)
Assertion
Ref Expression
dia1eldmN ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑊 ∈ dom 𝐼)

Proof of Theorem dia1eldmN
StepHypRef Expression
1 eqid 2778 . . . 4 (Base‘𝐾) = (Base‘𝐾)
2 dia1eldm.h . . . 4 𝐻 = (LHyp‘𝐾)
31, 2lhpbase 36152 . . 3 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
43adantl 475 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑊 ∈ (Base‘𝐾))
5 hllat 35517 . . 3 (𝐾 ∈ HL → 𝐾 ∈ Lat)
6 eqid 2778 . . . 4 (le‘𝐾) = (le‘𝐾)
71, 6latref 17439 . . 3 ((𝐾 ∈ Lat ∧ 𝑊 ∈ (Base‘𝐾)) → 𝑊(le‘𝐾)𝑊)
85, 3, 7syl2an 589 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑊(le‘𝐾)𝑊)
9 dia1eldm.i . . 3 𝐼 = ((DIsoA‘𝐾)‘𝑊)
101, 6, 2, 9diaeldm 37190 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑊 ∈ dom 𝐼 ↔ (𝑊 ∈ (Base‘𝐾) ∧ 𝑊(le‘𝐾)𝑊)))
114, 8, 10mpbir2and 703 1 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑊 ∈ dom 𝐼)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 386   = wceq 1601   ∈ wcel 2107   class class class wbr 4886  dom cdm 5355  ‘cfv 6135  Basecbs 16255  lecple 16345  Latclat 17431  HLchlt 35504  LHypclh 36138  DIsoAcdia 37182 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-ral 3095  df-rex 3096  df-reu 3097  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4672  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-id 5261  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-ov 6925  df-proset 17314  df-poset 17332  df-lat 17432  df-atl 35452  df-cvlat 35476  df-hlat 35505  df-lhyp 36142  df-disoa 37183 This theorem is referenced by:  dia1elN  37208
 Copyright terms: Public domain W3C validator