| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dia1eldmN | Structured version Visualization version GIF version | ||
| Description: The fiducial hyperplane (the largest allowed lattice element) belongs to the domain of partial isomorphism A. (Contributed by NM, 5-Dec-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| dia1eldm.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| dia1eldm.i | ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) |
| Ref | Expression |
|---|---|
| dia1eldmN | ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑊 ∈ dom 𝐼) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . . 4 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 2 | dia1eldm.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 3 | 1, 2 | lhpbase 39999 | . . 3 ⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ (Base‘𝐾)) |
| 4 | 3 | adantl 481 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑊 ∈ (Base‘𝐾)) |
| 5 | hllat 39363 | . . 3 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) | |
| 6 | eqid 2730 | . . . 4 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 7 | 1, 6 | latref 18407 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑊 ∈ (Base‘𝐾)) → 𝑊(le‘𝐾)𝑊) |
| 8 | 5, 3, 7 | syl2an 596 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑊(le‘𝐾)𝑊) |
| 9 | dia1eldm.i | . . 3 ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) | |
| 10 | 1, 6, 2, 9 | diaeldm 41037 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝑊 ∈ dom 𝐼 ↔ (𝑊 ∈ (Base‘𝐾) ∧ 𝑊(le‘𝐾)𝑊))) |
| 11 | 4, 8, 10 | mpbir2and 713 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑊 ∈ dom 𝐼) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5110 dom cdm 5641 ‘cfv 6514 Basecbs 17186 lecple 17234 Latclat 18397 HLchlt 39350 LHypclh 39985 DIsoAcdia 41029 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-proset 18262 df-poset 18281 df-lat 18398 df-atl 39298 df-cvlat 39322 df-hlat 39351 df-lhyp 39989 df-disoa 41030 |
| This theorem is referenced by: dia1elN 41055 |
| Copyright terms: Public domain | W3C validator |