![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dibval3N | Structured version Visualization version GIF version |
Description: Value of the partial isomorphism B for a lattice πΎ. (Contributed by NM, 24-Feb-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dibval3.b | β’ π΅ = (BaseβπΎ) |
dibval3.l | β’ β€ = (leβπΎ) |
dibval3.h | β’ π» = (LHypβπΎ) |
dibval3.t | β’ π = ((LTrnβπΎ)βπ) |
dibval3.r | β’ π = ((trLβπΎ)βπ) |
dibval3.o | β’ 0 = (π β π β¦ ( I βΎ π΅)) |
dibval3.i | β’ πΌ = ((DIsoBβπΎ)βπ) |
Ref | Expression |
---|---|
dibval3N | β’ (((πΎ β π β§ π β π») β§ (π β π΅ β§ π β€ π)) β (πΌβπ) = ({π β π β£ (π βπ) β€ π} Γ { 0 })) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dibval3.b | . . 3 β’ π΅ = (BaseβπΎ) | |
2 | dibval3.l | . . 3 β’ β€ = (leβπΎ) | |
3 | dibval3.h | . . 3 β’ π» = (LHypβπΎ) | |
4 | dibval3.t | . . 3 β’ π = ((LTrnβπΎ)βπ) | |
5 | dibval3.o | . . 3 β’ 0 = (π β π β¦ ( I βΎ π΅)) | |
6 | eqid 2726 | . . 3 β’ ((DIsoAβπΎ)βπ) = ((DIsoAβπΎ)βπ) | |
7 | dibval3.i | . . 3 β’ πΌ = ((DIsoBβπΎ)βπ) | |
8 | 1, 2, 3, 4, 5, 6, 7 | dibval2 40527 | . 2 β’ (((πΎ β π β§ π β π») β§ (π β π΅ β§ π β€ π)) β (πΌβπ) = ((((DIsoAβπΎ)βπ)βπ) Γ { 0 })) |
9 | dibval3.r | . . . 4 β’ π = ((trLβπΎ)βπ) | |
10 | 1, 2, 3, 4, 9, 6 | diaval 40415 | . . 3 β’ (((πΎ β π β§ π β π») β§ (π β π΅ β§ π β€ π)) β (((DIsoAβπΎ)βπ)βπ) = {π β π β£ (π βπ) β€ π}) |
11 | 10 | xpeq1d 5698 | . 2 β’ (((πΎ β π β§ π β π») β§ (π β π΅ β§ π β€ π)) β ((((DIsoAβπΎ)βπ)βπ) Γ { 0 }) = ({π β π β£ (π βπ) β€ π} Γ { 0 })) |
12 | 8, 11 | eqtrd 2766 | 1 β’ (((πΎ β π β§ π β π») β§ (π β π΅ β§ π β€ π)) β (πΌβπ) = ({π β π β£ (π βπ) β€ π} Γ { 0 })) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1533 β wcel 2098 {crab 3426 {csn 4623 class class class wbr 5141 β¦ cmpt 5224 I cid 5566 Γ cxp 5667 βΎ cres 5671 βcfv 6536 Basecbs 17150 lecple 17210 LHypclh 39367 LTrncltrn 39484 trLctrl 39541 DIsoAcdia 40411 DIsoBcdib 40521 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-disoa 40412 df-dib 40522 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |