Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dibval3N Structured version   Visualization version   GIF version

Theorem dibval3N 39087
Description: Value of the partial isomorphism B for a lattice 𝐾. (Contributed by NM, 24-Feb-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
dibval3.b 𝐵 = (Base‘𝐾)
dibval3.l = (le‘𝐾)
dibval3.h 𝐻 = (LHyp‘𝐾)
dibval3.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dibval3.r 𝑅 = ((trL‘𝐾)‘𝑊)
dibval3.o 0 = (𝑔𝑇 ↦ ( I ↾ 𝐵))
dibval3.i 𝐼 = ((DIsoB‘𝐾)‘𝑊)
Assertion
Ref Expression
dibval3N (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝐼𝑋) = ({𝑓𝑇 ∣ (𝑅𝑓) 𝑋} × { 0 }))
Distinct variable groups:   𝑓,𝐾   𝑔,𝐾   𝑇,𝑓   𝑓,𝑊   𝑔,𝑊   𝑓,𝑋
Allowed substitution hints:   𝐵(𝑓,𝑔)   𝑅(𝑓,𝑔)   𝑇(𝑔)   𝐻(𝑓,𝑔)   𝐼(𝑓,𝑔)   (𝑓,𝑔)   𝑉(𝑓,𝑔)   𝑋(𝑔)   0 (𝑓,𝑔)

Proof of Theorem dibval3N
StepHypRef Expression
1 dibval3.b . . 3 𝐵 = (Base‘𝐾)
2 dibval3.l . . 3 = (le‘𝐾)
3 dibval3.h . . 3 𝐻 = (LHyp‘𝐾)
4 dibval3.t . . 3 𝑇 = ((LTrn‘𝐾)‘𝑊)
5 dibval3.o . . 3 0 = (𝑔𝑇 ↦ ( I ↾ 𝐵))
6 eqid 2738 . . 3 ((DIsoA‘𝐾)‘𝑊) = ((DIsoA‘𝐾)‘𝑊)
7 dibval3.i . . 3 𝐼 = ((DIsoB‘𝐾)‘𝑊)
81, 2, 3, 4, 5, 6, 7dibval2 39085 . 2 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝐼𝑋) = ((((DIsoA‘𝐾)‘𝑊)‘𝑋) × { 0 }))
9 dibval3.r . . . 4 𝑅 = ((trL‘𝐾)‘𝑊)
101, 2, 3, 4, 9, 6diaval 38973 . . 3 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (((DIsoA‘𝐾)‘𝑊)‘𝑋) = {𝑓𝑇 ∣ (𝑅𝑓) 𝑋})
1110xpeq1d 5609 . 2 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → ((((DIsoA‘𝐾)‘𝑊)‘𝑋) × { 0 }) = ({𝑓𝑇 ∣ (𝑅𝑓) 𝑋} × { 0 }))
128, 11eqtrd 2778 1 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝐼𝑋) = ({𝑓𝑇 ∣ (𝑅𝑓) 𝑋} × { 0 }))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  {crab 3067  {csn 4558   class class class wbr 5070  cmpt 5153   I cid 5479   × cxp 5578  cres 5582  cfv 6418  Basecbs 16840  lecple 16895  LHypclh 37925  LTrncltrn 38042  trLctrl 38099  DIsoAcdia 38969  DIsoBcdib 39079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-disoa 38970  df-dib 39080
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator