| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dibval3N | Structured version Visualization version GIF version | ||
| Description: Value of the partial isomorphism B for a lattice 𝐾. (Contributed by NM, 24-Feb-2014.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| dibval3.b | ⊢ 𝐵 = (Base‘𝐾) |
| dibval3.l | ⊢ ≤ = (le‘𝐾) |
| dibval3.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| dibval3.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| dibval3.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
| dibval3.o | ⊢ 0 = (𝑔 ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
| dibval3.i | ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) |
| Ref | Expression |
|---|---|
| dibval3N | ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝐼‘𝑋) = ({𝑓 ∈ 𝑇 ∣ (𝑅‘𝑓) ≤ 𝑋} × { 0 })) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dibval3.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | dibval3.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
| 3 | dibval3.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 4 | dibval3.t | . . 3 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 5 | dibval3.o | . . 3 ⊢ 0 = (𝑔 ∈ 𝑇 ↦ ( I ↾ 𝐵)) | |
| 6 | eqid 2733 | . . 3 ⊢ ((DIsoA‘𝐾)‘𝑊) = ((DIsoA‘𝐾)‘𝑊) | |
| 7 | dibval3.i | . . 3 ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | dibval2 41266 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝐼‘𝑋) = ((((DIsoA‘𝐾)‘𝑊)‘𝑋) × { 0 })) |
| 9 | dibval3.r | . . . 4 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
| 10 | 1, 2, 3, 4, 9, 6 | diaval 41154 | . . 3 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (((DIsoA‘𝐾)‘𝑊)‘𝑋) = {𝑓 ∈ 𝑇 ∣ (𝑅‘𝑓) ≤ 𝑋}) |
| 11 | 10 | xpeq1d 5650 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → ((((DIsoA‘𝐾)‘𝑊)‘𝑋) × { 0 }) = ({𝑓 ∈ 𝑇 ∣ (𝑅‘𝑓) ≤ 𝑋} × { 0 })) |
| 12 | 8, 11 | eqtrd 2768 | 1 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝐼‘𝑋) = ({𝑓 ∈ 𝑇 ∣ (𝑅‘𝑓) ≤ 𝑋} × { 0 })) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 {crab 3396 {csn 4577 class class class wbr 5095 ↦ cmpt 5176 I cid 5515 × cxp 5619 ↾ cres 5623 ‘cfv 6488 Basecbs 17124 lecple 17172 LHypclh 40106 LTrncltrn 40223 trLctrl 40280 DIsoAcdia 41150 DIsoBcdib 41260 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-disoa 41151 df-dib 41261 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |