Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dibval3N Structured version   Visualization version   GIF version

Theorem dibval3N 41107
Description: Value of the partial isomorphism B for a lattice 𝐾. (Contributed by NM, 24-Feb-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
dibval3.b 𝐵 = (Base‘𝐾)
dibval3.l = (le‘𝐾)
dibval3.h 𝐻 = (LHyp‘𝐾)
dibval3.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dibval3.r 𝑅 = ((trL‘𝐾)‘𝑊)
dibval3.o 0 = (𝑔𝑇 ↦ ( I ↾ 𝐵))
dibval3.i 𝐼 = ((DIsoB‘𝐾)‘𝑊)
Assertion
Ref Expression
dibval3N (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝐼𝑋) = ({𝑓𝑇 ∣ (𝑅𝑓) 𝑋} × { 0 }))
Distinct variable groups:   𝑓,𝐾   𝑔,𝐾   𝑇,𝑓   𝑓,𝑊   𝑔,𝑊   𝑓,𝑋
Allowed substitution hints:   𝐵(𝑓,𝑔)   𝑅(𝑓,𝑔)   𝑇(𝑔)   𝐻(𝑓,𝑔)   𝐼(𝑓,𝑔)   (𝑓,𝑔)   𝑉(𝑓,𝑔)   𝑋(𝑔)   0 (𝑓,𝑔)

Proof of Theorem dibval3N
StepHypRef Expression
1 dibval3.b . . 3 𝐵 = (Base‘𝐾)
2 dibval3.l . . 3 = (le‘𝐾)
3 dibval3.h . . 3 𝐻 = (LHyp‘𝐾)
4 dibval3.t . . 3 𝑇 = ((LTrn‘𝐾)‘𝑊)
5 dibval3.o . . 3 0 = (𝑔𝑇 ↦ ( I ↾ 𝐵))
6 eqid 2734 . . 3 ((DIsoA‘𝐾)‘𝑊) = ((DIsoA‘𝐾)‘𝑊)
7 dibval3.i . . 3 𝐼 = ((DIsoB‘𝐾)‘𝑊)
81, 2, 3, 4, 5, 6, 7dibval2 41105 . 2 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝐼𝑋) = ((((DIsoA‘𝐾)‘𝑊)‘𝑋) × { 0 }))
9 dibval3.r . . . 4 𝑅 = ((trL‘𝐾)‘𝑊)
101, 2, 3, 4, 9, 6diaval 40993 . . 3 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (((DIsoA‘𝐾)‘𝑊)‘𝑋) = {𝑓𝑇 ∣ (𝑅𝑓) 𝑋})
1110xpeq1d 5694 . 2 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → ((((DIsoA‘𝐾)‘𝑊)‘𝑋) × { 0 }) = ({𝑓𝑇 ∣ (𝑅𝑓) 𝑋} × { 0 }))
128, 11eqtrd 2769 1 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝐼𝑋) = ({𝑓𝑇 ∣ (𝑅𝑓) 𝑋} × { 0 }))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  {crab 3419  {csn 4606   class class class wbr 5123  cmpt 5205   I cid 5557   × cxp 5663  cres 5667  cfv 6541  Basecbs 17229  lecple 17280  LHypclh 39945  LTrncltrn 40062  trLctrl 40119  DIsoAcdia 40989  DIsoBcdib 41099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-disoa 40990  df-dib 41100
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator