Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrnmw Structured version   Visualization version   GIF version

Theorem ltrnmw 39486
Description: Property of lattice translation value. Remark below Lemma B in [Crawley] p. 112. TODO: Can this be used in more places? (Contributed by NM, 20-May-2012.) (Proof shortened by OpenAI, 25-Mar-2020.)
Hypotheses
Ref Expression
ltrnmw.l ≀ = (leβ€˜πΎ)
ltrnmw.m ∧ = (meetβ€˜πΎ)
ltrnmw.z 0 = (0.β€˜πΎ)
ltrnmw.a 𝐴 = (Atomsβ€˜πΎ)
ltrnmw.h 𝐻 = (LHypβ€˜πΎ)
ltrnmw.t 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
Assertion
Ref Expression
ltrnmw (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ ((πΉβ€˜π‘ƒ) ∧ π‘Š) = 0 )

Proof of Theorem ltrnmw
StepHypRef Expression
1 simp1 1135 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
2 ltrnmw.l . . 3 ≀ = (leβ€˜πΎ)
3 ltrnmw.a . . 3 𝐴 = (Atomsβ€˜πΎ)
4 ltrnmw.h . . 3 𝐻 = (LHypβ€˜πΎ)
5 ltrnmw.t . . 3 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
62, 3, 4, 5ltrnel 39474 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ ((πΉβ€˜π‘ƒ) ∈ 𝐴 ∧ Β¬ (πΉβ€˜π‘ƒ) ≀ π‘Š))
7 ltrnmw.m . . 3 ∧ = (meetβ€˜πΎ)
8 ltrnmw.z . . 3 0 = (0.β€˜πΎ)
92, 7, 8, 3, 4lhpmat 39365 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((πΉβ€˜π‘ƒ) ∈ 𝐴 ∧ Β¬ (πΉβ€˜π‘ƒ) ≀ π‘Š)) β†’ ((πΉβ€˜π‘ƒ) ∧ π‘Š) = 0 )
101, 6, 9syl2anc 583 1 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ ((πΉβ€˜π‘ƒ) ∧ π‘Š) = 0 )
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 395   ∧ w3a 1086   = wceq 1540   ∈ wcel 2105   class class class wbr 5148  β€˜cfv 6543  (class class class)co 7412  lecple 17211  meetcmee 18275  0.cp0 18386  Atomscatm 38597  HLchlt 38684  LHypclh 39319  LTrncltrn 39436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-map 8828  df-proset 18258  df-poset 18276  df-plt 18293  df-lub 18309  df-glb 18310  df-join 18311  df-meet 18312  df-p0 18388  df-lat 18395  df-oposet 38510  df-ol 38512  df-oml 38513  df-covers 38600  df-ats 38601  df-atl 38632  df-cvlat 38656  df-hlat 38685  df-lhyp 39323  df-laut 39324  df-ldil 39439  df-ltrn 39440
This theorem is referenced by:  cdlemg2m  39939
  Copyright terms: Public domain W3C validator