Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ltrnmw | Structured version Visualization version GIF version |
Description: Property of lattice translation value. Remark below Lemma B in [Crawley] p. 112. TODO: Can this be used in more places? (Contributed by NM, 20-May-2012.) (Proof shortened by OpenAI, 25-Mar-2020.) |
Ref | Expression |
---|---|
ltrnmw.l | ⊢ ≤ = (le‘𝐾) |
ltrnmw.m | ⊢ ∧ = (meet‘𝐾) |
ltrnmw.z | ⊢ 0 = (0.‘𝐾) |
ltrnmw.a | ⊢ 𝐴 = (Atoms‘𝐾) |
ltrnmw.h | ⊢ 𝐻 = (LHyp‘𝐾) |
ltrnmw.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
ltrnmw | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ((𝐹‘𝑃) ∧ 𝑊) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1136 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
2 | ltrnmw.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
3 | ltrnmw.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
4 | ltrnmw.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
5 | ltrnmw.t | . . 3 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
6 | 2, 3, 4, 5 | ltrnel 38458 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ((𝐹‘𝑃) ∈ 𝐴 ∧ ¬ (𝐹‘𝑃) ≤ 𝑊)) |
7 | ltrnmw.m | . . 3 ⊢ ∧ = (meet‘𝐾) | |
8 | ltrnmw.z | . . 3 ⊢ 0 = (0.‘𝐾) | |
9 | 2, 7, 8, 3, 4 | lhpmat 38349 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝐹‘𝑃) ∈ 𝐴 ∧ ¬ (𝐹‘𝑃) ≤ 𝑊)) → ((𝐹‘𝑃) ∧ 𝑊) = 0 ) |
10 | 1, 6, 9 | syl2anc 585 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ((𝐹‘𝑃) ∧ 𝑊) = 0 ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 397 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 class class class wbr 5100 ‘cfv 6488 (class class class)co 7346 lecple 17071 meetcmee 18132 0.cp0 18243 Atomscatm 37581 HLchlt 37668 LHypclh 38303 LTrncltrn 38420 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5237 ax-sep 5251 ax-nul 5258 ax-pow 5315 ax-pr 5379 ax-un 7659 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3352 df-rab 3406 df-v 3445 df-sbc 3735 df-csb 3851 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4278 df-if 4482 df-pw 4557 df-sn 4582 df-pr 4584 df-op 4588 df-uni 4861 df-iun 4951 df-br 5101 df-opab 5163 df-mpt 5184 df-id 5525 df-xp 5633 df-rel 5634 df-cnv 5635 df-co 5636 df-dm 5637 df-rn 5638 df-res 5639 df-ima 5640 df-iota 6440 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-riota 7302 df-ov 7349 df-oprab 7350 df-mpo 7351 df-map 8697 df-proset 18115 df-poset 18133 df-plt 18150 df-lub 18166 df-glb 18167 df-join 18168 df-meet 18169 df-p0 18245 df-lat 18252 df-oposet 37494 df-ol 37496 df-oml 37497 df-covers 37584 df-ats 37585 df-atl 37616 df-cvlat 37640 df-hlat 37669 df-lhyp 38307 df-laut 38308 df-ldil 38423 df-ltrn 38424 |
This theorem is referenced by: cdlemg2m 38923 |
Copyright terms: Public domain | W3C validator |