| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ltrnmw | Structured version Visualization version GIF version | ||
| Description: Property of lattice translation value. Remark below Lemma B in [Crawley] p. 112. TODO: Can this be used in more places? (Contributed by NM, 20-May-2012.) (Proof shortened by OpenAI, 25-Mar-2020.) |
| Ref | Expression |
|---|---|
| ltrnmw.l | ⊢ ≤ = (le‘𝐾) |
| ltrnmw.m | ⊢ ∧ = (meet‘𝐾) |
| ltrnmw.z | ⊢ 0 = (0.‘𝐾) |
| ltrnmw.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| ltrnmw.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| ltrnmw.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| Ref | Expression |
|---|---|
| ltrnmw | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ((𝐹‘𝑃) ∧ 𝑊) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 2 | ltrnmw.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
| 3 | ltrnmw.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 4 | ltrnmw.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 5 | ltrnmw.t | . . 3 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 6 | 2, 3, 4, 5 | ltrnel 40244 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ((𝐹‘𝑃) ∈ 𝐴 ∧ ¬ (𝐹‘𝑃) ≤ 𝑊)) |
| 7 | ltrnmw.m | . . 3 ⊢ ∧ = (meet‘𝐾) | |
| 8 | ltrnmw.z | . . 3 ⊢ 0 = (0.‘𝐾) | |
| 9 | 2, 7, 8, 3, 4 | lhpmat 40135 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝐹‘𝑃) ∈ 𝐴 ∧ ¬ (𝐹‘𝑃) ≤ 𝑊)) → ((𝐹‘𝑃) ∧ 𝑊) = 0 ) |
| 10 | 1, 6, 9 | syl2anc 584 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ((𝐹‘𝑃) ∧ 𝑊) = 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 class class class wbr 5093 ‘cfv 6487 (class class class)co 7352 lecple 17174 meetcmee 18224 0.cp0 18333 Atomscatm 39368 HLchlt 39455 LHypclh 40089 LTrncltrn 40206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-map 8758 df-proset 18206 df-poset 18225 df-plt 18240 df-lub 18256 df-glb 18257 df-join 18258 df-meet 18259 df-p0 18335 df-lat 18344 df-oposet 39281 df-ol 39283 df-oml 39284 df-covers 39371 df-ats 39372 df-atl 39403 df-cvlat 39427 df-hlat 39456 df-lhyp 40093 df-laut 40094 df-ldil 40209 df-ltrn 40210 |
| This theorem is referenced by: cdlemg2m 40709 |
| Copyright terms: Public domain | W3C validator |