MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metdsge Structured version   Visualization version   GIF version

Theorem metdsge 24856
Description: The distance from the point 𝐴 to the set 𝑆 is greater than 𝑅 iff the 𝑅-ball around 𝐴 misses 𝑆. (Contributed by Mario Carneiro, 4-Sep-2015.) (Proof shortened by AV, 30-Sep-2020.)
Hypothesis
Ref Expression
metdscn.f 𝐹 = (𝑥𝑋 ↦ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ))
Assertion
Ref Expression
metdsge (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝑅 ∈ ℝ*) → (𝑅 ≤ (𝐹𝐴) ↔ (𝑆 ∩ (𝐴(ball‘𝐷)𝑅)) = ∅))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐷,𝑦   𝑥,𝑆,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝑅(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem metdsge
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl3 1190 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝑅 ∈ ℝ*) → 𝐴𝑋)
2 metdscn.f . . . . 5 𝐹 = (𝑥𝑋 ↦ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ))
32metdsval 24854 . . . 4 (𝐴𝑋 → (𝐹𝐴) = inf(ran (𝑦𝑆 ↦ (𝐴𝐷𝑦)), ℝ*, < ))
41, 3syl 17 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝑅 ∈ ℝ*) → (𝐹𝐴) = inf(ran (𝑦𝑆 ↦ (𝐴𝐷𝑦)), ℝ*, < ))
54breq2d 5165 . 2 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝑅 ∈ ℝ*) → (𝑅 ≤ (𝐹𝐴) ↔ 𝑅 ≤ inf(ran (𝑦𝑆 ↦ (𝐴𝐷𝑦)), ℝ*, < )))
6 simpll1 1209 . . . . . 6 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝑅 ∈ ℝ*) ∧ 𝑤𝑆) → 𝐷 ∈ (∞Met‘𝑋))
71adantr 479 . . . . . 6 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝑅 ∈ ℝ*) ∧ 𝑤𝑆) → 𝐴𝑋)
8 simpl2 1189 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝑅 ∈ ℝ*) → 𝑆𝑋)
98sselda 3979 . . . . . 6 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝑅 ∈ ℝ*) ∧ 𝑤𝑆) → 𝑤𝑋)
10 xmetcl 24328 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝑤𝑋) → (𝐴𝐷𝑤) ∈ ℝ*)
116, 7, 9, 10syl3anc 1368 . . . . 5 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝑅 ∈ ℝ*) ∧ 𝑤𝑆) → (𝐴𝐷𝑤) ∈ ℝ*)
12 oveq2 7432 . . . . . 6 (𝑦 = 𝑤 → (𝐴𝐷𝑦) = (𝐴𝐷𝑤))
1312cbvmptv 5266 . . . . 5 (𝑦𝑆 ↦ (𝐴𝐷𝑦)) = (𝑤𝑆 ↦ (𝐴𝐷𝑤))
1411, 13fmptd 7128 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝑅 ∈ ℝ*) → (𝑦𝑆 ↦ (𝐴𝐷𝑦)):𝑆⟶ℝ*)
1514frnd 6736 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝑅 ∈ ℝ*) → ran (𝑦𝑆 ↦ (𝐴𝐷𝑦)) ⊆ ℝ*)
16 simpr 483 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝑅 ∈ ℝ*) → 𝑅 ∈ ℝ*)
17 infxrgelb 13368 . . 3 ((ran (𝑦𝑆 ↦ (𝐴𝐷𝑦)) ⊆ ℝ*𝑅 ∈ ℝ*) → (𝑅 ≤ inf(ran (𝑦𝑆 ↦ (𝐴𝐷𝑦)), ℝ*, < ) ↔ ∀𝑧 ∈ ran (𝑦𝑆 ↦ (𝐴𝐷𝑦))𝑅𝑧))
1815, 16, 17syl2anc 582 . 2 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝑅 ∈ ℝ*) → (𝑅 ≤ inf(ran (𝑦𝑆 ↦ (𝐴𝐷𝑦)), ℝ*, < ) ↔ ∀𝑧 ∈ ran (𝑦𝑆 ↦ (𝐴𝐷𝑦))𝑅𝑧))
1916adantr 479 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝑅 ∈ ℝ*) ∧ 𝑤𝑆) → 𝑅 ∈ ℝ*)
20 elbl2 24387 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑋𝑤𝑋)) → (𝑤 ∈ (𝐴(ball‘𝐷)𝑅) ↔ (𝐴𝐷𝑤) < 𝑅))
216, 19, 7, 9, 20syl22anc 837 . . . . . 6 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝑅 ∈ ℝ*) ∧ 𝑤𝑆) → (𝑤 ∈ (𝐴(ball‘𝐷)𝑅) ↔ (𝐴𝐷𝑤) < 𝑅))
22 xrltnle 11331 . . . . . . 7 (((𝐴𝐷𝑤) ∈ ℝ*𝑅 ∈ ℝ*) → ((𝐴𝐷𝑤) < 𝑅 ↔ ¬ 𝑅 ≤ (𝐴𝐷𝑤)))
2311, 19, 22syl2anc 582 . . . . . 6 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝑅 ∈ ℝ*) ∧ 𝑤𝑆) → ((𝐴𝐷𝑤) < 𝑅 ↔ ¬ 𝑅 ≤ (𝐴𝐷𝑤)))
2421, 23bitrd 278 . . . . 5 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝑅 ∈ ℝ*) ∧ 𝑤𝑆) → (𝑤 ∈ (𝐴(ball‘𝐷)𝑅) ↔ ¬ 𝑅 ≤ (𝐴𝐷𝑤)))
2524con2bid 353 . . . 4 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝑅 ∈ ℝ*) ∧ 𝑤𝑆) → (𝑅 ≤ (𝐴𝐷𝑤) ↔ ¬ 𝑤 ∈ (𝐴(ball‘𝐷)𝑅)))
2625ralbidva 3166 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝑅 ∈ ℝ*) → (∀𝑤𝑆 𝑅 ≤ (𝐴𝐷𝑤) ↔ ∀𝑤𝑆 ¬ 𝑤 ∈ (𝐴(ball‘𝐷)𝑅)))
27 ovex 7457 . . . . 5 (𝐴𝐷𝑤) ∈ V
2827rgenw 3055 . . . 4 𝑤𝑆 (𝐴𝐷𝑤) ∈ V
29 breq2 5157 . . . . 5 (𝑧 = (𝐴𝐷𝑤) → (𝑅𝑧𝑅 ≤ (𝐴𝐷𝑤)))
3013, 29ralrnmptw 7108 . . . 4 (∀𝑤𝑆 (𝐴𝐷𝑤) ∈ V → (∀𝑧 ∈ ran (𝑦𝑆 ↦ (𝐴𝐷𝑦))𝑅𝑧 ↔ ∀𝑤𝑆 𝑅 ≤ (𝐴𝐷𝑤)))
3128, 30ax-mp 5 . . 3 (∀𝑧 ∈ ran (𝑦𝑆 ↦ (𝐴𝐷𝑦))𝑅𝑧 ↔ ∀𝑤𝑆 𝑅 ≤ (𝐴𝐷𝑤))
32 disj 4452 . . 3 ((𝑆 ∩ (𝐴(ball‘𝐷)𝑅)) = ∅ ↔ ∀𝑤𝑆 ¬ 𝑤 ∈ (𝐴(ball‘𝐷)𝑅))
3326, 31, 323bitr4g 313 . 2 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝑅 ∈ ℝ*) → (∀𝑧 ∈ ran (𝑦𝑆 ↦ (𝐴𝐷𝑦))𝑅𝑧 ↔ (𝑆 ∩ (𝐴(ball‘𝐷)𝑅)) = ∅))
345, 18, 333bitrd 304 1 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝑅 ∈ ℝ*) → (𝑅 ≤ (𝐹𝐴) ↔ (𝑆 ∩ (𝐴(ball‘𝐷)𝑅)) = ∅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  w3a 1084   = wceq 1534  wcel 2099  wral 3051  Vcvv 3462  cin 3946  wss 3947  c0 4325   class class class wbr 5153  cmpt 5236  ran crn 5683  cfv 6554  (class class class)co 7424  infcinf 9484  *cxr 11297   < clt 11298  cle 11299  ∞Metcxmet 21328  ballcbl 21330
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235  ax-pre-sup 11236
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-id 5580  df-po 5594  df-so 5595  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-1st 8003  df-2nd 8004  df-er 8734  df-map 8857  df-en 8975  df-dom 8976  df-sdom 8977  df-sup 9485  df-inf 9486  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-psmet 21335  df-xmet 21336  df-bl 21338
This theorem is referenced by:  metds0  24857  metdstri  24858  metdseq0  24861  lebnumlem3  24980
  Copyright terms: Public domain W3C validator