MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metdsge Structured version   Visualization version   GIF version

Theorem metdsge 24745
Description: The distance from the point 𝐴 to the set 𝑆 is greater than 𝑅 iff the 𝑅-ball around 𝐴 misses 𝑆. (Contributed by Mario Carneiro, 4-Sep-2015.) (Proof shortened by AV, 30-Sep-2020.)
Hypothesis
Ref Expression
metdscn.f 𝐹 = (𝑥𝑋 ↦ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ))
Assertion
Ref Expression
metdsge (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝑅 ∈ ℝ*) → (𝑅 ≤ (𝐹𝐴) ↔ (𝑆 ∩ (𝐴(ball‘𝐷)𝑅)) = ∅))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐷,𝑦   𝑥,𝑆,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝑅(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem metdsge
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl3 1194 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝑅 ∈ ℝ*) → 𝐴𝑋)
2 metdscn.f . . . . 5 𝐹 = (𝑥𝑋 ↦ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ))
32metdsval 24743 . . . 4 (𝐴𝑋 → (𝐹𝐴) = inf(ran (𝑦𝑆 ↦ (𝐴𝐷𝑦)), ℝ*, < ))
41, 3syl 17 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝑅 ∈ ℝ*) → (𝐹𝐴) = inf(ran (𝑦𝑆 ↦ (𝐴𝐷𝑦)), ℝ*, < ))
54breq2d 5122 . 2 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝑅 ∈ ℝ*) → (𝑅 ≤ (𝐹𝐴) ↔ 𝑅 ≤ inf(ran (𝑦𝑆 ↦ (𝐴𝐷𝑦)), ℝ*, < )))
6 simpll1 1213 . . . . . 6 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝑅 ∈ ℝ*) ∧ 𝑤𝑆) → 𝐷 ∈ (∞Met‘𝑋))
71adantr 480 . . . . . 6 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝑅 ∈ ℝ*) ∧ 𝑤𝑆) → 𝐴𝑋)
8 simpl2 1193 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝑅 ∈ ℝ*) → 𝑆𝑋)
98sselda 3949 . . . . . 6 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝑅 ∈ ℝ*) ∧ 𝑤𝑆) → 𝑤𝑋)
10 xmetcl 24226 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝑤𝑋) → (𝐴𝐷𝑤) ∈ ℝ*)
116, 7, 9, 10syl3anc 1373 . . . . 5 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝑅 ∈ ℝ*) ∧ 𝑤𝑆) → (𝐴𝐷𝑤) ∈ ℝ*)
12 oveq2 7398 . . . . . 6 (𝑦 = 𝑤 → (𝐴𝐷𝑦) = (𝐴𝐷𝑤))
1312cbvmptv 5214 . . . . 5 (𝑦𝑆 ↦ (𝐴𝐷𝑦)) = (𝑤𝑆 ↦ (𝐴𝐷𝑤))
1411, 13fmptd 7089 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝑅 ∈ ℝ*) → (𝑦𝑆 ↦ (𝐴𝐷𝑦)):𝑆⟶ℝ*)
1514frnd 6699 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝑅 ∈ ℝ*) → ran (𝑦𝑆 ↦ (𝐴𝐷𝑦)) ⊆ ℝ*)
16 simpr 484 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝑅 ∈ ℝ*) → 𝑅 ∈ ℝ*)
17 infxrgelb 13303 . . 3 ((ran (𝑦𝑆 ↦ (𝐴𝐷𝑦)) ⊆ ℝ*𝑅 ∈ ℝ*) → (𝑅 ≤ inf(ran (𝑦𝑆 ↦ (𝐴𝐷𝑦)), ℝ*, < ) ↔ ∀𝑧 ∈ ran (𝑦𝑆 ↦ (𝐴𝐷𝑦))𝑅𝑧))
1815, 16, 17syl2anc 584 . 2 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝑅 ∈ ℝ*) → (𝑅 ≤ inf(ran (𝑦𝑆 ↦ (𝐴𝐷𝑦)), ℝ*, < ) ↔ ∀𝑧 ∈ ran (𝑦𝑆 ↦ (𝐴𝐷𝑦))𝑅𝑧))
1916adantr 480 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝑅 ∈ ℝ*) ∧ 𝑤𝑆) → 𝑅 ∈ ℝ*)
20 elbl2 24285 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑋𝑤𝑋)) → (𝑤 ∈ (𝐴(ball‘𝐷)𝑅) ↔ (𝐴𝐷𝑤) < 𝑅))
216, 19, 7, 9, 20syl22anc 838 . . . . . 6 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝑅 ∈ ℝ*) ∧ 𝑤𝑆) → (𝑤 ∈ (𝐴(ball‘𝐷)𝑅) ↔ (𝐴𝐷𝑤) < 𝑅))
22 xrltnle 11248 . . . . . . 7 (((𝐴𝐷𝑤) ∈ ℝ*𝑅 ∈ ℝ*) → ((𝐴𝐷𝑤) < 𝑅 ↔ ¬ 𝑅 ≤ (𝐴𝐷𝑤)))
2311, 19, 22syl2anc 584 . . . . . 6 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝑅 ∈ ℝ*) ∧ 𝑤𝑆) → ((𝐴𝐷𝑤) < 𝑅 ↔ ¬ 𝑅 ≤ (𝐴𝐷𝑤)))
2421, 23bitrd 279 . . . . 5 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝑅 ∈ ℝ*) ∧ 𝑤𝑆) → (𝑤 ∈ (𝐴(ball‘𝐷)𝑅) ↔ ¬ 𝑅 ≤ (𝐴𝐷𝑤)))
2524con2bid 354 . . . 4 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝑅 ∈ ℝ*) ∧ 𝑤𝑆) → (𝑅 ≤ (𝐴𝐷𝑤) ↔ ¬ 𝑤 ∈ (𝐴(ball‘𝐷)𝑅)))
2625ralbidva 3155 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝑅 ∈ ℝ*) → (∀𝑤𝑆 𝑅 ≤ (𝐴𝐷𝑤) ↔ ∀𝑤𝑆 ¬ 𝑤 ∈ (𝐴(ball‘𝐷)𝑅)))
27 ovex 7423 . . . . 5 (𝐴𝐷𝑤) ∈ V
2827rgenw 3049 . . . 4 𝑤𝑆 (𝐴𝐷𝑤) ∈ V
29 breq2 5114 . . . . 5 (𝑧 = (𝐴𝐷𝑤) → (𝑅𝑧𝑅 ≤ (𝐴𝐷𝑤)))
3013, 29ralrnmptw 7069 . . . 4 (∀𝑤𝑆 (𝐴𝐷𝑤) ∈ V → (∀𝑧 ∈ ran (𝑦𝑆 ↦ (𝐴𝐷𝑦))𝑅𝑧 ↔ ∀𝑤𝑆 𝑅 ≤ (𝐴𝐷𝑤)))
3128, 30ax-mp 5 . . 3 (∀𝑧 ∈ ran (𝑦𝑆 ↦ (𝐴𝐷𝑦))𝑅𝑧 ↔ ∀𝑤𝑆 𝑅 ≤ (𝐴𝐷𝑤))
32 disj 4416 . . 3 ((𝑆 ∩ (𝐴(ball‘𝐷)𝑅)) = ∅ ↔ ∀𝑤𝑆 ¬ 𝑤 ∈ (𝐴(ball‘𝐷)𝑅))
3326, 31, 323bitr4g 314 . 2 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝑅 ∈ ℝ*) → (∀𝑧 ∈ ran (𝑦𝑆 ↦ (𝐴𝐷𝑦))𝑅𝑧 ↔ (𝑆 ∩ (𝐴(ball‘𝐷)𝑅)) = ∅))
345, 18, 333bitrd 305 1 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝑅 ∈ ℝ*) → (𝑅 ≤ (𝐹𝐴) ↔ (𝑆 ∩ (𝐴(ball‘𝐷)𝑅)) = ∅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  Vcvv 3450  cin 3916  wss 3917  c0 4299   class class class wbr 5110  cmpt 5191  ran crn 5642  cfv 6514  (class class class)co 7390  infcinf 9399  *cxr 11214   < clt 11215  cle 11216  ∞Metcxmet 21256  ballcbl 21258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-po 5549  df-so 5550  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-psmet 21263  df-xmet 21264  df-bl 21266
This theorem is referenced by:  metds0  24746  metdstri  24747  metdseq0  24750  lebnumlem3  24869
  Copyright terms: Public domain W3C validator