| Step | Hyp | Ref
| Expression |
| 1 | | simpl3 1194 |
. . . 4
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋) ∧ 𝑅 ∈ ℝ*) → 𝐴 ∈ 𝑋) |
| 2 | | metdscn.f |
. . . . 5
⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, <
)) |
| 3 | 2 | metdsval 24869 |
. . . 4
⊢ (𝐴 ∈ 𝑋 → (𝐹‘𝐴) = inf(ran (𝑦 ∈ 𝑆 ↦ (𝐴𝐷𝑦)), ℝ*, <
)) |
| 4 | 1, 3 | syl 17 |
. . 3
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋) ∧ 𝑅 ∈ ℝ*) → (𝐹‘𝐴) = inf(ran (𝑦 ∈ 𝑆 ↦ (𝐴𝐷𝑦)), ℝ*, <
)) |
| 5 | 4 | breq2d 5155 |
. 2
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋) ∧ 𝑅 ∈ ℝ*) → (𝑅 ≤ (𝐹‘𝐴) ↔ 𝑅 ≤ inf(ran (𝑦 ∈ 𝑆 ↦ (𝐴𝐷𝑦)), ℝ*, <
))) |
| 6 | | simpll1 1213 |
. . . . . 6
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋) ∧ 𝑅 ∈ ℝ*) ∧ 𝑤 ∈ 𝑆) → 𝐷 ∈ (∞Met‘𝑋)) |
| 7 | 1 | adantr 480 |
. . . . . 6
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋) ∧ 𝑅 ∈ ℝ*) ∧ 𝑤 ∈ 𝑆) → 𝐴 ∈ 𝑋) |
| 8 | | simpl2 1193 |
. . . . . . 7
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋) ∧ 𝑅 ∈ ℝ*) → 𝑆 ⊆ 𝑋) |
| 9 | 8 | sselda 3983 |
. . . . . 6
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋) ∧ 𝑅 ∈ ℝ*) ∧ 𝑤 ∈ 𝑆) → 𝑤 ∈ 𝑋) |
| 10 | | xmetcl 24341 |
. . . . . 6
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) → (𝐴𝐷𝑤) ∈
ℝ*) |
| 11 | 6, 7, 9, 10 | syl3anc 1373 |
. . . . 5
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋) ∧ 𝑅 ∈ ℝ*) ∧ 𝑤 ∈ 𝑆) → (𝐴𝐷𝑤) ∈
ℝ*) |
| 12 | | oveq2 7439 |
. . . . . 6
⊢ (𝑦 = 𝑤 → (𝐴𝐷𝑦) = (𝐴𝐷𝑤)) |
| 13 | 12 | cbvmptv 5255 |
. . . . 5
⊢ (𝑦 ∈ 𝑆 ↦ (𝐴𝐷𝑦)) = (𝑤 ∈ 𝑆 ↦ (𝐴𝐷𝑤)) |
| 14 | 11, 13 | fmptd 7134 |
. . . 4
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋) ∧ 𝑅 ∈ ℝ*) → (𝑦 ∈ 𝑆 ↦ (𝐴𝐷𝑦)):𝑆⟶ℝ*) |
| 15 | 14 | frnd 6744 |
. . 3
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋) ∧ 𝑅 ∈ ℝ*) → ran
(𝑦 ∈ 𝑆 ↦ (𝐴𝐷𝑦)) ⊆
ℝ*) |
| 16 | | simpr 484 |
. . 3
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋) ∧ 𝑅 ∈ ℝ*) → 𝑅 ∈
ℝ*) |
| 17 | | infxrgelb 13377 |
. . 3
⊢ ((ran
(𝑦 ∈ 𝑆 ↦ (𝐴𝐷𝑦)) ⊆ ℝ* ∧ 𝑅 ∈ ℝ*)
→ (𝑅 ≤ inf(ran
(𝑦 ∈ 𝑆 ↦ (𝐴𝐷𝑦)), ℝ*, < ) ↔
∀𝑧 ∈ ran (𝑦 ∈ 𝑆 ↦ (𝐴𝐷𝑦))𝑅 ≤ 𝑧)) |
| 18 | 15, 16, 17 | syl2anc 584 |
. 2
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋) ∧ 𝑅 ∈ ℝ*) → (𝑅 ≤ inf(ran (𝑦 ∈ 𝑆 ↦ (𝐴𝐷𝑦)), ℝ*, < ) ↔
∀𝑧 ∈ ran (𝑦 ∈ 𝑆 ↦ (𝐴𝐷𝑦))𝑅 ≤ 𝑧)) |
| 19 | 16 | adantr 480 |
. . . . . . 7
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋) ∧ 𝑅 ∈ ℝ*) ∧ 𝑤 ∈ 𝑆) → 𝑅 ∈
ℝ*) |
| 20 | | elbl2 24400 |
. . . . . . 7
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ*) ∧ (𝐴 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) → (𝑤 ∈ (𝐴(ball‘𝐷)𝑅) ↔ (𝐴𝐷𝑤) < 𝑅)) |
| 21 | 6, 19, 7, 9, 20 | syl22anc 839 |
. . . . . 6
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋) ∧ 𝑅 ∈ ℝ*) ∧ 𝑤 ∈ 𝑆) → (𝑤 ∈ (𝐴(ball‘𝐷)𝑅) ↔ (𝐴𝐷𝑤) < 𝑅)) |
| 22 | | xrltnle 11328 |
. . . . . . 7
⊢ (((𝐴𝐷𝑤) ∈ ℝ* ∧ 𝑅 ∈ ℝ*)
→ ((𝐴𝐷𝑤) < 𝑅 ↔ ¬ 𝑅 ≤ (𝐴𝐷𝑤))) |
| 23 | 11, 19, 22 | syl2anc 584 |
. . . . . 6
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋) ∧ 𝑅 ∈ ℝ*) ∧ 𝑤 ∈ 𝑆) → ((𝐴𝐷𝑤) < 𝑅 ↔ ¬ 𝑅 ≤ (𝐴𝐷𝑤))) |
| 24 | 21, 23 | bitrd 279 |
. . . . 5
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋) ∧ 𝑅 ∈ ℝ*) ∧ 𝑤 ∈ 𝑆) → (𝑤 ∈ (𝐴(ball‘𝐷)𝑅) ↔ ¬ 𝑅 ≤ (𝐴𝐷𝑤))) |
| 25 | 24 | con2bid 354 |
. . . 4
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋) ∧ 𝑅 ∈ ℝ*) ∧ 𝑤 ∈ 𝑆) → (𝑅 ≤ (𝐴𝐷𝑤) ↔ ¬ 𝑤 ∈ (𝐴(ball‘𝐷)𝑅))) |
| 26 | 25 | ralbidva 3176 |
. . 3
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋) ∧ 𝑅 ∈ ℝ*) →
(∀𝑤 ∈ 𝑆 𝑅 ≤ (𝐴𝐷𝑤) ↔ ∀𝑤 ∈ 𝑆 ¬ 𝑤 ∈ (𝐴(ball‘𝐷)𝑅))) |
| 27 | | ovex 7464 |
. . . . 5
⊢ (𝐴𝐷𝑤) ∈ V |
| 28 | 27 | rgenw 3065 |
. . . 4
⊢
∀𝑤 ∈
𝑆 (𝐴𝐷𝑤) ∈ V |
| 29 | | breq2 5147 |
. . . . 5
⊢ (𝑧 = (𝐴𝐷𝑤) → (𝑅 ≤ 𝑧 ↔ 𝑅 ≤ (𝐴𝐷𝑤))) |
| 30 | 13, 29 | ralrnmptw 7114 |
. . . 4
⊢
(∀𝑤 ∈
𝑆 (𝐴𝐷𝑤) ∈ V → (∀𝑧 ∈ ran (𝑦 ∈ 𝑆 ↦ (𝐴𝐷𝑦))𝑅 ≤ 𝑧 ↔ ∀𝑤 ∈ 𝑆 𝑅 ≤ (𝐴𝐷𝑤))) |
| 31 | 28, 30 | ax-mp 5 |
. . 3
⊢
(∀𝑧 ∈
ran (𝑦 ∈ 𝑆 ↦ (𝐴𝐷𝑦))𝑅 ≤ 𝑧 ↔ ∀𝑤 ∈ 𝑆 𝑅 ≤ (𝐴𝐷𝑤)) |
| 32 | | disj 4450 |
. . 3
⊢ ((𝑆 ∩ (𝐴(ball‘𝐷)𝑅)) = ∅ ↔ ∀𝑤 ∈ 𝑆 ¬ 𝑤 ∈ (𝐴(ball‘𝐷)𝑅)) |
| 33 | 26, 31, 32 | 3bitr4g 314 |
. 2
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋) ∧ 𝑅 ∈ ℝ*) →
(∀𝑧 ∈ ran
(𝑦 ∈ 𝑆 ↦ (𝐴𝐷𝑦))𝑅 ≤ 𝑧 ↔ (𝑆 ∩ (𝐴(ball‘𝐷)𝑅)) = ∅)) |
| 34 | 5, 18, 33 | 3bitrd 305 |
1
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋) ∧ 𝑅 ∈ ℝ*) → (𝑅 ≤ (𝐹‘𝐴) ↔ (𝑆 ∩ (𝐴(ball‘𝐷)𝑅)) = ∅)) |