MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metdsge Structured version   Visualization version   GIF version

Theorem metdsge 24789
Description: The distance from the point 𝐴 to the set 𝑆 is greater than 𝑅 iff the 𝑅-ball around 𝐴 misses 𝑆. (Contributed by Mario Carneiro, 4-Sep-2015.) (Proof shortened by AV, 30-Sep-2020.)
Hypothesis
Ref Expression
metdscn.f 𝐹 = (𝑥𝑋 ↦ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ))
Assertion
Ref Expression
metdsge (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝑅 ∈ ℝ*) → (𝑅 ≤ (𝐹𝐴) ↔ (𝑆 ∩ (𝐴(ball‘𝐷)𝑅)) = ∅))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐷,𝑦   𝑥,𝑆,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝑅(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem metdsge
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl3 1194 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝑅 ∈ ℝ*) → 𝐴𝑋)
2 metdscn.f . . . . 5 𝐹 = (𝑥𝑋 ↦ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ))
32metdsval 24787 . . . 4 (𝐴𝑋 → (𝐹𝐴) = inf(ran (𝑦𝑆 ↦ (𝐴𝐷𝑦)), ℝ*, < ))
41, 3syl 17 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝑅 ∈ ℝ*) → (𝐹𝐴) = inf(ran (𝑦𝑆 ↦ (𝐴𝐷𝑦)), ℝ*, < ))
54breq2d 5131 . 2 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝑅 ∈ ℝ*) → (𝑅 ≤ (𝐹𝐴) ↔ 𝑅 ≤ inf(ran (𝑦𝑆 ↦ (𝐴𝐷𝑦)), ℝ*, < )))
6 simpll1 1213 . . . . . 6 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝑅 ∈ ℝ*) ∧ 𝑤𝑆) → 𝐷 ∈ (∞Met‘𝑋))
71adantr 480 . . . . . 6 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝑅 ∈ ℝ*) ∧ 𝑤𝑆) → 𝐴𝑋)
8 simpl2 1193 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝑅 ∈ ℝ*) → 𝑆𝑋)
98sselda 3958 . . . . . 6 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝑅 ∈ ℝ*) ∧ 𝑤𝑆) → 𝑤𝑋)
10 xmetcl 24270 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝑤𝑋) → (𝐴𝐷𝑤) ∈ ℝ*)
116, 7, 9, 10syl3anc 1373 . . . . 5 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝑅 ∈ ℝ*) ∧ 𝑤𝑆) → (𝐴𝐷𝑤) ∈ ℝ*)
12 oveq2 7413 . . . . . 6 (𝑦 = 𝑤 → (𝐴𝐷𝑦) = (𝐴𝐷𝑤))
1312cbvmptv 5225 . . . . 5 (𝑦𝑆 ↦ (𝐴𝐷𝑦)) = (𝑤𝑆 ↦ (𝐴𝐷𝑤))
1411, 13fmptd 7104 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝑅 ∈ ℝ*) → (𝑦𝑆 ↦ (𝐴𝐷𝑦)):𝑆⟶ℝ*)
1514frnd 6714 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝑅 ∈ ℝ*) → ran (𝑦𝑆 ↦ (𝐴𝐷𝑦)) ⊆ ℝ*)
16 simpr 484 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝑅 ∈ ℝ*) → 𝑅 ∈ ℝ*)
17 infxrgelb 13352 . . 3 ((ran (𝑦𝑆 ↦ (𝐴𝐷𝑦)) ⊆ ℝ*𝑅 ∈ ℝ*) → (𝑅 ≤ inf(ran (𝑦𝑆 ↦ (𝐴𝐷𝑦)), ℝ*, < ) ↔ ∀𝑧 ∈ ran (𝑦𝑆 ↦ (𝐴𝐷𝑦))𝑅𝑧))
1815, 16, 17syl2anc 584 . 2 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝑅 ∈ ℝ*) → (𝑅 ≤ inf(ran (𝑦𝑆 ↦ (𝐴𝐷𝑦)), ℝ*, < ) ↔ ∀𝑧 ∈ ran (𝑦𝑆 ↦ (𝐴𝐷𝑦))𝑅𝑧))
1916adantr 480 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝑅 ∈ ℝ*) ∧ 𝑤𝑆) → 𝑅 ∈ ℝ*)
20 elbl2 24329 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑋𝑤𝑋)) → (𝑤 ∈ (𝐴(ball‘𝐷)𝑅) ↔ (𝐴𝐷𝑤) < 𝑅))
216, 19, 7, 9, 20syl22anc 838 . . . . . 6 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝑅 ∈ ℝ*) ∧ 𝑤𝑆) → (𝑤 ∈ (𝐴(ball‘𝐷)𝑅) ↔ (𝐴𝐷𝑤) < 𝑅))
22 xrltnle 11302 . . . . . . 7 (((𝐴𝐷𝑤) ∈ ℝ*𝑅 ∈ ℝ*) → ((𝐴𝐷𝑤) < 𝑅 ↔ ¬ 𝑅 ≤ (𝐴𝐷𝑤)))
2311, 19, 22syl2anc 584 . . . . . 6 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝑅 ∈ ℝ*) ∧ 𝑤𝑆) → ((𝐴𝐷𝑤) < 𝑅 ↔ ¬ 𝑅 ≤ (𝐴𝐷𝑤)))
2421, 23bitrd 279 . . . . 5 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝑅 ∈ ℝ*) ∧ 𝑤𝑆) → (𝑤 ∈ (𝐴(ball‘𝐷)𝑅) ↔ ¬ 𝑅 ≤ (𝐴𝐷𝑤)))
2524con2bid 354 . . . 4 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝑅 ∈ ℝ*) ∧ 𝑤𝑆) → (𝑅 ≤ (𝐴𝐷𝑤) ↔ ¬ 𝑤 ∈ (𝐴(ball‘𝐷)𝑅)))
2625ralbidva 3161 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝑅 ∈ ℝ*) → (∀𝑤𝑆 𝑅 ≤ (𝐴𝐷𝑤) ↔ ∀𝑤𝑆 ¬ 𝑤 ∈ (𝐴(ball‘𝐷)𝑅)))
27 ovex 7438 . . . . 5 (𝐴𝐷𝑤) ∈ V
2827rgenw 3055 . . . 4 𝑤𝑆 (𝐴𝐷𝑤) ∈ V
29 breq2 5123 . . . . 5 (𝑧 = (𝐴𝐷𝑤) → (𝑅𝑧𝑅 ≤ (𝐴𝐷𝑤)))
3013, 29ralrnmptw 7084 . . . 4 (∀𝑤𝑆 (𝐴𝐷𝑤) ∈ V → (∀𝑧 ∈ ran (𝑦𝑆 ↦ (𝐴𝐷𝑦))𝑅𝑧 ↔ ∀𝑤𝑆 𝑅 ≤ (𝐴𝐷𝑤)))
3128, 30ax-mp 5 . . 3 (∀𝑧 ∈ ran (𝑦𝑆 ↦ (𝐴𝐷𝑦))𝑅𝑧 ↔ ∀𝑤𝑆 𝑅 ≤ (𝐴𝐷𝑤))
32 disj 4425 . . 3 ((𝑆 ∩ (𝐴(ball‘𝐷)𝑅)) = ∅ ↔ ∀𝑤𝑆 ¬ 𝑤 ∈ (𝐴(ball‘𝐷)𝑅))
3326, 31, 323bitr4g 314 . 2 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝑅 ∈ ℝ*) → (∀𝑧 ∈ ran (𝑦𝑆 ↦ (𝐴𝐷𝑦))𝑅𝑧 ↔ (𝑆 ∩ (𝐴(ball‘𝐷)𝑅)) = ∅))
345, 18, 333bitrd 305 1 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝑅 ∈ ℝ*) → (𝑅 ≤ (𝐹𝐴) ↔ (𝑆 ∩ (𝐴(ball‘𝐷)𝑅)) = ∅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wral 3051  Vcvv 3459  cin 3925  wss 3926  c0 4308   class class class wbr 5119  cmpt 5201  ran crn 5655  cfv 6531  (class class class)co 7405  infcinf 9453  *cxr 11268   < clt 11269  cle 11270  ∞Metcxmet 21300  ballcbl 21302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-po 5561  df-so 5562  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7988  df-2nd 7989  df-er 8719  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-sup 9454  df-inf 9455  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-psmet 21307  df-xmet 21308  df-bl 21310
This theorem is referenced by:  metds0  24790  metdstri  24791  metdseq0  24794  lebnumlem3  24913
  Copyright terms: Public domain W3C validator