Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > gsumunsn | Structured version Visualization version GIF version |
Description: Append an element to a finite group sum. (Contributed by Mario Carneiro, 19-Dec-2014.) (Proof shortened by AV, 8-Mar-2019.) |
Ref | Expression |
---|---|
gsumunsn.b | ⊢ 𝐵 = (Base‘𝐺) |
gsumunsn.p | ⊢ + = (+g‘𝐺) |
gsumunsn.g | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
gsumunsn.a | ⊢ (𝜑 → 𝐴 ∈ Fin) |
gsumunsn.f | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑋 ∈ 𝐵) |
gsumunsn.m | ⊢ (𝜑 → 𝑀 ∈ 𝑉) |
gsumunsn.d | ⊢ (𝜑 → ¬ 𝑀 ∈ 𝐴) |
gsumunsn.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
gsumunsn.s | ⊢ (𝑘 = 𝑀 → 𝑋 = 𝑌) |
Ref | Expression |
---|---|
gsumunsn | ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ (𝐴 ∪ {𝑀}) ↦ 𝑋)) = ((𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) + 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsumunsn.b | . 2 ⊢ 𝐵 = (Base‘𝐺) | |
2 | gsumunsn.p | . 2 ⊢ + = (+g‘𝐺) | |
3 | gsumunsn.g | . 2 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
4 | gsumunsn.a | . 2 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
5 | gsumunsn.f | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑋 ∈ 𝐵) | |
6 | gsumunsn.m | . 2 ⊢ (𝜑 → 𝑀 ∈ 𝑉) | |
7 | gsumunsn.d | . 2 ⊢ (𝜑 → ¬ 𝑀 ∈ 𝐴) | |
8 | gsumunsn.y | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
9 | gsumunsn.s | . . 3 ⊢ (𝑘 = 𝑀 → 𝑋 = 𝑌) | |
10 | 9 | adantl 482 | . 2 ⊢ ((𝜑 ∧ 𝑘 = 𝑀) → 𝑋 = 𝑌) |
11 | 1, 2, 3, 4, 5, 6, 7, 8, 10 | gsumunsnd 19655 | 1 ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ (𝐴 ∪ {𝑀}) ↦ 𝑋)) = ((𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) + 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ∪ cun 3896 {csn 4574 ↦ cmpt 5176 ‘cfv 6480 (class class class)co 7338 Fincfn 8805 Basecbs 17010 +gcplusg 17060 Σg cgsu 17249 CMndccmn 19482 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5230 ax-sep 5244 ax-nul 5251 ax-pow 5309 ax-pr 5373 ax-un 7651 ax-cnex 11029 ax-resscn 11030 ax-1cn 11031 ax-icn 11032 ax-addcl 11033 ax-addrcl 11034 ax-mulcl 11035 ax-mulrcl 11036 ax-mulcom 11037 ax-addass 11038 ax-mulass 11039 ax-distr 11040 ax-i2m1 11041 ax-1ne0 11042 ax-1rid 11043 ax-rnegex 11044 ax-rrecex 11045 ax-cnre 11046 ax-pre-lttri 11047 ax-pre-lttrn 11048 ax-pre-ltadd 11049 ax-pre-mulgt0 11050 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4271 df-if 4475 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4854 df-int 4896 df-iun 4944 df-iin 4945 df-br 5094 df-opab 5156 df-mpt 5177 df-tr 5211 df-id 5519 df-eprel 5525 df-po 5533 df-so 5534 df-fr 5576 df-se 5577 df-we 5578 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6239 df-ord 6306 df-on 6307 df-lim 6308 df-suc 6309 df-iota 6432 df-fun 6482 df-fn 6483 df-f 6484 df-f1 6485 df-fo 6486 df-f1o 6487 df-fv 6488 df-isom 6489 df-riota 7294 df-ov 7341 df-oprab 7342 df-mpo 7343 df-of 7596 df-om 7782 df-1st 7900 df-2nd 7901 df-supp 8049 df-frecs 8168 df-wrecs 8199 df-recs 8273 df-rdg 8312 df-1o 8368 df-er 8570 df-en 8806 df-dom 8807 df-sdom 8808 df-fin 8809 df-fsupp 9228 df-oi 9368 df-card 9797 df-pnf 11113 df-mnf 11114 df-xr 11115 df-ltxr 11116 df-le 11117 df-sub 11309 df-neg 11310 df-nn 12076 df-2 12138 df-n0 12336 df-z 12422 df-uz 12685 df-fz 13342 df-fzo 13485 df-seq 13824 df-hash 14147 df-sets 16963 df-slot 16981 df-ndx 16993 df-base 17011 df-ress 17040 df-plusg 17073 df-0g 17250 df-gsum 17251 df-mre 17393 df-mrc 17394 df-acs 17396 df-mgm 18424 df-sgrp 18473 df-mnd 18484 df-submnd 18529 df-mulg 18798 df-cntz 19020 df-cmn 19484 |
This theorem is referenced by: gsum2dlem2 19668 mplcoe1 21345 coe1fzgsumdlem 21579 evl1gsumdlem 21629 madugsum 21899 gsummatr01lem3 21913 imasdsf1olem 23633 jensenlem1 26243 jensenlem2 26244 wilthlem2 26325 gsumle 31637 mgpsumunsn 46115 |
Copyright terms: Public domain | W3C validator |