![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gsumunsn | Structured version Visualization version GIF version |
Description: Append an element to a finite group sum. (Contributed by Mario Carneiro, 19-Dec-2014.) (Proof shortened by AV, 8-Mar-2019.) |
Ref | Expression |
---|---|
gsumunsn.b | ⊢ 𝐵 = (Base‘𝐺) |
gsumunsn.p | ⊢ + = (+g‘𝐺) |
gsumunsn.g | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
gsumunsn.a | ⊢ (𝜑 → 𝐴 ∈ Fin) |
gsumunsn.f | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑋 ∈ 𝐵) |
gsumunsn.m | ⊢ (𝜑 → 𝑀 ∈ 𝑉) |
gsumunsn.d | ⊢ (𝜑 → ¬ 𝑀 ∈ 𝐴) |
gsumunsn.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
gsumunsn.s | ⊢ (𝑘 = 𝑀 → 𝑋 = 𝑌) |
Ref | Expression |
---|---|
gsumunsn | ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ (𝐴 ∪ {𝑀}) ↦ 𝑋)) = ((𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) + 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsumunsn.b | . 2 ⊢ 𝐵 = (Base‘𝐺) | |
2 | gsumunsn.p | . 2 ⊢ + = (+g‘𝐺) | |
3 | gsumunsn.g | . 2 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
4 | gsumunsn.a | . 2 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
5 | gsumunsn.f | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑋 ∈ 𝐵) | |
6 | gsumunsn.m | . 2 ⊢ (𝜑 → 𝑀 ∈ 𝑉) | |
7 | gsumunsn.d | . 2 ⊢ (𝜑 → ¬ 𝑀 ∈ 𝐴) | |
8 | gsumunsn.y | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
9 | gsumunsn.s | . . 3 ⊢ (𝑘 = 𝑀 → 𝑋 = 𝑌) | |
10 | 9 | adantl 474 | . 2 ⊢ ((𝜑 ∧ 𝑘 = 𝑀) → 𝑋 = 𝑌) |
11 | 1, 2, 3, 4, 5, 6, 7, 8, 10 | gsumunsnd 18834 | 1 ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ (𝐴 ∪ {𝑀}) ↦ 𝑋)) = ((𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) + 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 387 = wceq 1507 ∈ wcel 2050 ∪ cun 3829 {csn 4442 ↦ cmpt 5009 ‘cfv 6190 (class class class)co 6978 Fincfn 8308 Basecbs 16342 +gcplusg 16424 Σg cgsu 16573 CMndccmn 18669 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2750 ax-rep 5050 ax-sep 5061 ax-nul 5068 ax-pow 5120 ax-pr 5187 ax-un 7281 ax-cnex 10393 ax-resscn 10394 ax-1cn 10395 ax-icn 10396 ax-addcl 10397 ax-addrcl 10398 ax-mulcl 10399 ax-mulrcl 10400 ax-mulcom 10401 ax-addass 10402 ax-mulass 10403 ax-distr 10404 ax-i2m1 10405 ax-1ne0 10406 ax-1rid 10407 ax-rnegex 10408 ax-rrecex 10409 ax-cnre 10410 ax-pre-lttri 10411 ax-pre-lttrn 10412 ax-pre-ltadd 10413 ax-pre-mulgt0 10414 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2583 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-ne 2968 df-nel 3074 df-ral 3093 df-rex 3094 df-reu 3095 df-rmo 3096 df-rab 3097 df-v 3417 df-sbc 3684 df-csb 3789 df-dif 3834 df-un 3836 df-in 3838 df-ss 3845 df-pss 3847 df-nul 4181 df-if 4352 df-pw 4425 df-sn 4443 df-pr 4445 df-tp 4447 df-op 4449 df-uni 4714 df-int 4751 df-iun 4795 df-iin 4796 df-br 4931 df-opab 4993 df-mpt 5010 df-tr 5032 df-id 5313 df-eprel 5318 df-po 5327 df-so 5328 df-fr 5367 df-se 5368 df-we 5369 df-xp 5414 df-rel 5415 df-cnv 5416 df-co 5417 df-dm 5418 df-rn 5419 df-res 5420 df-ima 5421 df-pred 5988 df-ord 6034 df-on 6035 df-lim 6036 df-suc 6037 df-iota 6154 df-fun 6192 df-fn 6193 df-f 6194 df-f1 6195 df-fo 6196 df-f1o 6197 df-fv 6198 df-isom 6199 df-riota 6939 df-ov 6981 df-oprab 6982 df-mpo 6983 df-of 7229 df-om 7399 df-1st 7503 df-2nd 7504 df-supp 7636 df-wrecs 7752 df-recs 7814 df-rdg 7852 df-1o 7907 df-oadd 7911 df-er 8091 df-en 8309 df-dom 8310 df-sdom 8311 df-fin 8312 df-fsupp 8631 df-oi 8771 df-card 9164 df-pnf 10478 df-mnf 10479 df-xr 10480 df-ltxr 10481 df-le 10482 df-sub 10674 df-neg 10675 df-nn 11442 df-2 11506 df-n0 11711 df-z 11797 df-uz 12062 df-fz 12712 df-fzo 12853 df-seq 13188 df-hash 13509 df-ndx 16345 df-slot 16346 df-base 16348 df-sets 16349 df-ress 16350 df-plusg 16437 df-0g 16574 df-gsum 16575 df-mre 16718 df-mrc 16719 df-acs 16721 df-mgm 17713 df-sgrp 17755 df-mnd 17766 df-submnd 17807 df-mulg 18015 df-cntz 18221 df-cmn 18671 |
This theorem is referenced by: gsum2dlem2 18847 mplcoe1 19962 coe1fzgsumdlem 20175 evl1gsumdlem 20224 madugsum 20959 gsummatr01lem3 20973 imasdsf1olem 22689 jensenlem1 25269 jensenlem2 25270 wilthlem2 25351 gsumle 30522 mgpsumunsn 43774 |
Copyright terms: Public domain | W3C validator |