![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cnfdmsn | Structured version Visualization version GIF version |
Description: A function with a singleton domain is continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
cnfdmsn | β’ ((π΄ β π β§ π΅ β π) β (π₯ β {π΄} β¦ π΅) β (π« {π΄} Cn π« {π΅})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fmptsnxp 43855 | . 2 β’ ((π΄ β π β§ π΅ β π) β (π₯ β {π΄} β¦ π΅) = ({π΄} Γ {π΅})) | |
2 | snex 5431 | . . . 4 β’ {π΄} β V | |
3 | distopon 22499 | . . . 4 β’ ({π΄} β V β π« {π΄} β (TopOnβ{π΄})) | |
4 | 2, 3 | mp1i 13 | . . 3 β’ ((π΄ β π β§ π΅ β π) β π« {π΄} β (TopOnβ{π΄})) |
5 | snex 5431 | . . . 4 β’ {π΅} β V | |
6 | distopon 22499 | . . . 4 β’ ({π΅} β V β π« {π΅} β (TopOnβ{π΅})) | |
7 | 5, 6 | mp1i 13 | . . 3 β’ ((π΄ β π β§ π΅ β π) β π« {π΅} β (TopOnβ{π΅})) |
8 | snidg 4662 | . . . 4 β’ (π΅ β π β π΅ β {π΅}) | |
9 | 8 | adantl 482 | . . 3 β’ ((π΄ β π β§ π΅ β π) β π΅ β {π΅}) |
10 | cnconst2 22786 | . . 3 β’ ((π« {π΄} β (TopOnβ{π΄}) β§ π« {π΅} β (TopOnβ{π΅}) β§ π΅ β {π΅}) β ({π΄} Γ {π΅}) β (π« {π΄} Cn π« {π΅})) | |
11 | 4, 7, 9, 10 | syl3anc 1371 | . 2 β’ ((π΄ β π β§ π΅ β π) β ({π΄} Γ {π΅}) β (π« {π΄} Cn π« {π΅})) |
12 | 1, 11 | eqeltrd 2833 | 1 β’ ((π΄ β π β§ π΅ β π) β (π₯ β {π΄} β¦ π΅) β (π« {π΄} Cn π« {π΅})) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 β wcel 2106 Vcvv 3474 π« cpw 4602 {csn 4628 β¦ cmpt 5231 Γ cxp 5674 βcfv 6543 (class class class)co 7408 TopOnctopon 22411 Cn ccn 22727 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7411 df-oprab 7412 df-mpo 7413 df-1st 7974 df-2nd 7975 df-map 8821 df-topgen 17388 df-top 22395 df-topon 22412 df-cn 22730 df-cnp 22731 |
This theorem is referenced by: cncfdmsn 44596 |
Copyright terms: Public domain | W3C validator |