Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cnfdmsn | Structured version Visualization version GIF version |
Description: A function with a singleton domain is continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
cnfdmsn | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑥 ∈ {𝐴} ↦ 𝐵) ∈ (𝒫 {𝐴} Cn 𝒫 {𝐵})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fmptsnxp 42686 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑥 ∈ {𝐴} ↦ 𝐵) = ({𝐴} × {𝐵})) | |
2 | snex 5352 | . . . 4 ⊢ {𝐴} ∈ V | |
3 | distopon 22157 | . . . 4 ⊢ ({𝐴} ∈ V → 𝒫 {𝐴} ∈ (TopOn‘{𝐴})) | |
4 | 2, 3 | mp1i 13 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝒫 {𝐴} ∈ (TopOn‘{𝐴})) |
5 | snex 5352 | . . . 4 ⊢ {𝐵} ∈ V | |
6 | distopon 22157 | . . . 4 ⊢ ({𝐵} ∈ V → 𝒫 {𝐵} ∈ (TopOn‘{𝐵})) | |
7 | 5, 6 | mp1i 13 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝒫 {𝐵} ∈ (TopOn‘{𝐵})) |
8 | snidg 4595 | . . . 4 ⊢ (𝐵 ∈ 𝑊 → 𝐵 ∈ {𝐵}) | |
9 | 8 | adantl 482 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐵 ∈ {𝐵}) |
10 | cnconst2 22444 | . . 3 ⊢ ((𝒫 {𝐴} ∈ (TopOn‘{𝐴}) ∧ 𝒫 {𝐵} ∈ (TopOn‘{𝐵}) ∧ 𝐵 ∈ {𝐵}) → ({𝐴} × {𝐵}) ∈ (𝒫 {𝐴} Cn 𝒫 {𝐵})) | |
11 | 4, 7, 9, 10 | syl3anc 1370 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ({𝐴} × {𝐵}) ∈ (𝒫 {𝐴} Cn 𝒫 {𝐵})) |
12 | 1, 11 | eqeltrd 2839 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑥 ∈ {𝐴} ↦ 𝐵) ∈ (𝒫 {𝐴} Cn 𝒫 {𝐵})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 Vcvv 3429 𝒫 cpw 4533 {csn 4561 ↦ cmpt 5156 × cxp 5582 ‘cfv 6426 (class class class)co 7267 TopOnctopon 22069 Cn ccn 22385 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5221 ax-nul 5228 ax-pow 5286 ax-pr 5350 ax-un 7578 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3071 df-rab 3073 df-v 3431 df-sbc 3716 df-csb 3832 df-dif 3889 df-un 3891 df-in 3893 df-ss 3903 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5074 df-opab 5136 df-mpt 5157 df-id 5484 df-xp 5590 df-rel 5591 df-cnv 5592 df-co 5593 df-dm 5594 df-rn 5595 df-res 5596 df-ima 5597 df-iota 6384 df-fun 6428 df-fn 6429 df-f 6430 df-f1 6431 df-fo 6432 df-f1o 6433 df-fv 6434 df-ov 7270 df-oprab 7271 df-mpo 7272 df-1st 7820 df-2nd 7821 df-map 8604 df-topgen 17164 df-top 22053 df-topon 22070 df-cn 22388 df-cnp 22389 |
This theorem is referenced by: cncfdmsn 43412 |
Copyright terms: Public domain | W3C validator |