| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cnfdmsn | Structured version Visualization version GIF version | ||
| Description: A function with a singleton domain is continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| cnfdmsn | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑥 ∈ {𝐴} ↦ 𝐵) ∈ (𝒫 {𝐴} Cn 𝒫 {𝐵})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fmptsnxp 45205 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑥 ∈ {𝐴} ↦ 𝐵) = ({𝐴} × {𝐵})) | |
| 2 | snex 5374 | . . . 4 ⊢ {𝐴} ∈ V | |
| 3 | distopon 22910 | . . . 4 ⊢ ({𝐴} ∈ V → 𝒫 {𝐴} ∈ (TopOn‘{𝐴})) | |
| 4 | 2, 3 | mp1i 13 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝒫 {𝐴} ∈ (TopOn‘{𝐴})) |
| 5 | snex 5374 | . . . 4 ⊢ {𝐵} ∈ V | |
| 6 | distopon 22910 | . . . 4 ⊢ ({𝐵} ∈ V → 𝒫 {𝐵} ∈ (TopOn‘{𝐵})) | |
| 7 | 5, 6 | mp1i 13 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝒫 {𝐵} ∈ (TopOn‘{𝐵})) |
| 8 | snidg 4613 | . . . 4 ⊢ (𝐵 ∈ 𝑊 → 𝐵 ∈ {𝐵}) | |
| 9 | 8 | adantl 481 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐵 ∈ {𝐵}) |
| 10 | cnconst2 23196 | . . 3 ⊢ ((𝒫 {𝐴} ∈ (TopOn‘{𝐴}) ∧ 𝒫 {𝐵} ∈ (TopOn‘{𝐵}) ∧ 𝐵 ∈ {𝐵}) → ({𝐴} × {𝐵}) ∈ (𝒫 {𝐴} Cn 𝒫 {𝐵})) | |
| 11 | 4, 7, 9, 10 | syl3anc 1373 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ({𝐴} × {𝐵}) ∈ (𝒫 {𝐴} Cn 𝒫 {𝐵})) |
| 12 | 1, 11 | eqeltrd 2831 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑥 ∈ {𝐴} ↦ 𝐵) ∈ (𝒫 {𝐴} Cn 𝒫 {𝐵})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2111 Vcvv 3436 𝒫 cpw 4550 {csn 4576 ↦ cmpt 5172 × cxp 5614 ‘cfv 6481 (class class class)co 7346 TopOnctopon 22823 Cn ccn 23137 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-map 8752 df-topgen 17344 df-top 22807 df-topon 22824 df-cn 23140 df-cnp 23141 |
| This theorem is referenced by: cncfdmsn 45927 |
| Copyright terms: Public domain | W3C validator |