Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnfdmsn Structured version   Visualization version   GIF version

Theorem cnfdmsn 42157
Description: A function with a singleton domain is continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
cnfdmsn ((𝐴𝑉𝐵𝑊) → (𝑥 ∈ {𝐴} ↦ 𝐵) ∈ (𝒫 {𝐴} Cn 𝒫 {𝐵}))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem cnfdmsn
StepHypRef Expression
1 fmptsnxp 41417 . 2 ((𝐴𝑉𝐵𝑊) → (𝑥 ∈ {𝐴} ↦ 𝐵) = ({𝐴} × {𝐵}))
2 snex 5324 . . . 4 {𝐴} ∈ V
3 distopon 21599 . . . 4 ({𝐴} ∈ V → 𝒫 {𝐴} ∈ (TopOn‘{𝐴}))
42, 3mp1i 13 . . 3 ((𝐴𝑉𝐵𝑊) → 𝒫 {𝐴} ∈ (TopOn‘{𝐴}))
5 snex 5324 . . . 4 {𝐵} ∈ V
6 distopon 21599 . . . 4 ({𝐵} ∈ V → 𝒫 {𝐵} ∈ (TopOn‘{𝐵}))
75, 6mp1i 13 . . 3 ((𝐴𝑉𝐵𝑊) → 𝒫 {𝐵} ∈ (TopOn‘{𝐵}))
8 snidg 4593 . . . 4 (𝐵𝑊𝐵 ∈ {𝐵})
98adantl 484 . . 3 ((𝐴𝑉𝐵𝑊) → 𝐵 ∈ {𝐵})
10 cnconst2 21885 . . 3 ((𝒫 {𝐴} ∈ (TopOn‘{𝐴}) ∧ 𝒫 {𝐵} ∈ (TopOn‘{𝐵}) ∧ 𝐵 ∈ {𝐵}) → ({𝐴} × {𝐵}) ∈ (𝒫 {𝐴} Cn 𝒫 {𝐵}))
114, 7, 9, 10syl3anc 1367 . 2 ((𝐴𝑉𝐵𝑊) → ({𝐴} × {𝐵}) ∈ (𝒫 {𝐴} Cn 𝒫 {𝐵}))
121, 11eqeltrd 2913 1 ((𝐴𝑉𝐵𝑊) → (𝑥 ∈ {𝐴} ↦ 𝐵) ∈ (𝒫 {𝐴} Cn 𝒫 {𝐵}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wcel 2110  Vcvv 3495  𝒫 cpw 4539  {csn 4561  cmpt 5139   × cxp 5548  cfv 6350  (class class class)co 7150  TopOnctopon 21512   Cn ccn 21826
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4833  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-id 5455  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-ov 7153  df-oprab 7154  df-mpo 7155  df-1st 7683  df-2nd 7684  df-map 8402  df-topgen 16711  df-top 21496  df-topon 21513  df-cn 21829  df-cnp 21830
This theorem is referenced by:  cncfdmsn  42165
  Copyright terms: Public domain W3C validator