| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cnfdmsn | Structured version Visualization version GIF version | ||
| Description: A function with a singleton domain is continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| cnfdmsn | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑥 ∈ {𝐴} ↦ 𝐵) ∈ (𝒫 {𝐴} Cn 𝒫 {𝐵})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fmptsnxp 45135 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑥 ∈ {𝐴} ↦ 𝐵) = ({𝐴} × {𝐵})) | |
| 2 | snex 5399 | . . . 4 ⊢ {𝐴} ∈ V | |
| 3 | distopon 22890 | . . . 4 ⊢ ({𝐴} ∈ V → 𝒫 {𝐴} ∈ (TopOn‘{𝐴})) | |
| 4 | 2, 3 | mp1i 13 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝒫 {𝐴} ∈ (TopOn‘{𝐴})) |
| 5 | snex 5399 | . . . 4 ⊢ {𝐵} ∈ V | |
| 6 | distopon 22890 | . . . 4 ⊢ ({𝐵} ∈ V → 𝒫 {𝐵} ∈ (TopOn‘{𝐵})) | |
| 7 | 5, 6 | mp1i 13 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝒫 {𝐵} ∈ (TopOn‘{𝐵})) |
| 8 | snidg 4632 | . . . 4 ⊢ (𝐵 ∈ 𝑊 → 𝐵 ∈ {𝐵}) | |
| 9 | 8 | adantl 481 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐵 ∈ {𝐵}) |
| 10 | cnconst2 23176 | . . 3 ⊢ ((𝒫 {𝐴} ∈ (TopOn‘{𝐴}) ∧ 𝒫 {𝐵} ∈ (TopOn‘{𝐵}) ∧ 𝐵 ∈ {𝐵}) → ({𝐴} × {𝐵}) ∈ (𝒫 {𝐴} Cn 𝒫 {𝐵})) | |
| 11 | 4, 7, 9, 10 | syl3anc 1373 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ({𝐴} × {𝐵}) ∈ (𝒫 {𝐴} Cn 𝒫 {𝐵})) |
| 12 | 1, 11 | eqeltrd 2829 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑥 ∈ {𝐴} ↦ 𝐵) ∈ (𝒫 {𝐴} Cn 𝒫 {𝐵})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 Vcvv 3455 𝒫 cpw 4571 {csn 4597 ↦ cmpt 5196 × cxp 5644 ‘cfv 6519 (class class class)co 7394 TopOnctopon 22803 Cn ccn 23117 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-ral 3047 df-rex 3056 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-iun 4965 df-br 5116 df-opab 5178 df-mpt 5197 df-id 5541 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-ov 7397 df-oprab 7398 df-mpo 7399 df-1st 7977 df-2nd 7978 df-map 8805 df-topgen 17412 df-top 22787 df-topon 22804 df-cn 23120 df-cnp 23121 |
| This theorem is referenced by: cncfdmsn 45861 |
| Copyright terms: Public domain | W3C validator |