Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnfdmsn Structured version   Visualization version   GIF version

Theorem cnfdmsn 45853
Description: A function with a singleton domain is continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
cnfdmsn ((𝐴𝑉𝐵𝑊) → (𝑥 ∈ {𝐴} ↦ 𝐵) ∈ (𝒫 {𝐴} Cn 𝒫 {𝐵}))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem cnfdmsn
StepHypRef Expression
1 fmptsnxp 45135 . 2 ((𝐴𝑉𝐵𝑊) → (𝑥 ∈ {𝐴} ↦ 𝐵) = ({𝐴} × {𝐵}))
2 snex 5399 . . . 4 {𝐴} ∈ V
3 distopon 22890 . . . 4 ({𝐴} ∈ V → 𝒫 {𝐴} ∈ (TopOn‘{𝐴}))
42, 3mp1i 13 . . 3 ((𝐴𝑉𝐵𝑊) → 𝒫 {𝐴} ∈ (TopOn‘{𝐴}))
5 snex 5399 . . . 4 {𝐵} ∈ V
6 distopon 22890 . . . 4 ({𝐵} ∈ V → 𝒫 {𝐵} ∈ (TopOn‘{𝐵}))
75, 6mp1i 13 . . 3 ((𝐴𝑉𝐵𝑊) → 𝒫 {𝐵} ∈ (TopOn‘{𝐵}))
8 snidg 4632 . . . 4 (𝐵𝑊𝐵 ∈ {𝐵})
98adantl 481 . . 3 ((𝐴𝑉𝐵𝑊) → 𝐵 ∈ {𝐵})
10 cnconst2 23176 . . 3 ((𝒫 {𝐴} ∈ (TopOn‘{𝐴}) ∧ 𝒫 {𝐵} ∈ (TopOn‘{𝐵}) ∧ 𝐵 ∈ {𝐵}) → ({𝐴} × {𝐵}) ∈ (𝒫 {𝐴} Cn 𝒫 {𝐵}))
114, 7, 9, 10syl3anc 1373 . 2 ((𝐴𝑉𝐵𝑊) → ({𝐴} × {𝐵}) ∈ (𝒫 {𝐴} Cn 𝒫 {𝐵}))
121, 11eqeltrd 2829 1 ((𝐴𝑉𝐵𝑊) → (𝑥 ∈ {𝐴} ↦ 𝐵) ∈ (𝒫 {𝐴} Cn 𝒫 {𝐵}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  Vcvv 3455  𝒫 cpw 4571  {csn 4597  cmpt 5196   × cxp 5644  cfv 6519  (class class class)co 7394  TopOnctopon 22803   Cn ccn 23117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5259  ax-nul 5269  ax-pow 5328  ax-pr 5395  ax-un 7718
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-ral 3047  df-rex 3056  df-reu 3358  df-rab 3412  df-v 3457  df-sbc 3762  df-csb 3871  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-iun 4965  df-br 5116  df-opab 5178  df-mpt 5197  df-id 5541  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-iota 6472  df-fun 6521  df-fn 6522  df-f 6523  df-f1 6524  df-fo 6525  df-f1o 6526  df-fv 6527  df-ov 7397  df-oprab 7398  df-mpo 7399  df-1st 7977  df-2nd 7978  df-map 8805  df-topgen 17412  df-top 22787  df-topon 22804  df-cn 23120  df-cnp 23121
This theorem is referenced by:  cncfdmsn  45861
  Copyright terms: Public domain W3C validator