Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnfdmsn Structured version   Visualization version   GIF version

Theorem cnfdmsn 40828
Description: A function with a singleton domain is continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
cnfdmsn ((𝐴𝑉𝐵𝑊) → (𝑥 ∈ {𝐴} ↦ 𝐵) ∈ (𝒫 {𝐴} Cn 𝒫 {𝐵}))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem cnfdmsn
StepHypRef Expression
1 fmptsnxp 40093 . 2 ((𝐴𝑉𝐵𝑊) → (𝑥 ∈ {𝐴} ↦ 𝐵) = ({𝐴} × {𝐵}))
2 snex 5098 . . . 4 {𝐴} ∈ V
3 distopon 21127 . . . 4 ({𝐴} ∈ V → 𝒫 {𝐴} ∈ (TopOn‘{𝐴}))
42, 3mp1i 13 . . 3 ((𝐴𝑉𝐵𝑊) → 𝒫 {𝐴} ∈ (TopOn‘{𝐴}))
5 snex 5098 . . . 4 {𝐵} ∈ V
6 distopon 21127 . . . 4 ({𝐵} ∈ V → 𝒫 {𝐵} ∈ (TopOn‘{𝐵}))
75, 6mp1i 13 . . 3 ((𝐴𝑉𝐵𝑊) → 𝒫 {𝐵} ∈ (TopOn‘{𝐵}))
8 snidg 4397 . . . 4 (𝐵𝑊𝐵 ∈ {𝐵})
98adantl 474 . . 3 ((𝐴𝑉𝐵𝑊) → 𝐵 ∈ {𝐵})
10 cnconst2 21413 . . 3 ((𝒫 {𝐴} ∈ (TopOn‘{𝐴}) ∧ 𝒫 {𝐵} ∈ (TopOn‘{𝐵}) ∧ 𝐵 ∈ {𝐵}) → ({𝐴} × {𝐵}) ∈ (𝒫 {𝐴} Cn 𝒫 {𝐵}))
114, 7, 9, 10syl3anc 1491 . 2 ((𝐴𝑉𝐵𝑊) → ({𝐴} × {𝐵}) ∈ (𝒫 {𝐴} Cn 𝒫 {𝐵}))
121, 11eqeltrd 2877 1 ((𝐴𝑉𝐵𝑊) → (𝑥 ∈ {𝐴} ↦ 𝐵) ∈ (𝒫 {𝐴} Cn 𝒫 {𝐵}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 385  wcel 2157  Vcvv 3384  𝒫 cpw 4348  {csn 4367  cmpt 4921   × cxp 5309  cfv 6100  (class class class)co 6877  TopOnctopon 21040   Cn ccn 21354
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2776  ax-sep 4974  ax-nul 4982  ax-pow 5034  ax-pr 5096  ax-un 7182
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2785  df-cleq 2791  df-clel 2794  df-nfc 2929  df-ne 2971  df-ral 3093  df-rex 3094  df-reu 3095  df-rab 3097  df-v 3386  df-sbc 3633  df-csb 3728  df-dif 3771  df-un 3773  df-in 3775  df-ss 3782  df-nul 4115  df-if 4277  df-pw 4350  df-sn 4368  df-pr 4370  df-op 4374  df-uni 4628  df-iun 4711  df-br 4843  df-opab 4905  df-mpt 4922  df-id 5219  df-xp 5317  df-rel 5318  df-cnv 5319  df-co 5320  df-dm 5321  df-rn 5322  df-res 5323  df-ima 5324  df-iota 6063  df-fun 6102  df-fn 6103  df-f 6104  df-f1 6105  df-fo 6106  df-f1o 6107  df-fv 6108  df-ov 6880  df-oprab 6881  df-mpt2 6882  df-1st 7400  df-2nd 7401  df-map 8096  df-topgen 16416  df-top 21024  df-topon 21041  df-cn 21357  df-cnp 21358
This theorem is referenced by:  cncfdmsn  40836
  Copyright terms: Public domain W3C validator