![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cnfdmsn | Structured version Visualization version GIF version |
Description: A function with a singleton domain is continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
cnfdmsn | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑥 ∈ {𝐴} ↦ 𝐵) ∈ (𝒫 {𝐴} Cn 𝒫 {𝐵})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fmptsnxp 45141 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑥 ∈ {𝐴} ↦ 𝐵) = ({𝐴} × {𝐵})) | |
2 | snex 5445 | . . . 4 ⊢ {𝐴} ∈ V | |
3 | distopon 23029 | . . . 4 ⊢ ({𝐴} ∈ V → 𝒫 {𝐴} ∈ (TopOn‘{𝐴})) | |
4 | 2, 3 | mp1i 13 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝒫 {𝐴} ∈ (TopOn‘{𝐴})) |
5 | snex 5445 | . . . 4 ⊢ {𝐵} ∈ V | |
6 | distopon 23029 | . . . 4 ⊢ ({𝐵} ∈ V → 𝒫 {𝐵} ∈ (TopOn‘{𝐵})) | |
7 | 5, 6 | mp1i 13 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝒫 {𝐵} ∈ (TopOn‘{𝐵})) |
8 | snidg 4668 | . . . 4 ⊢ (𝐵 ∈ 𝑊 → 𝐵 ∈ {𝐵}) | |
9 | 8 | adantl 481 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐵 ∈ {𝐵}) |
10 | cnconst2 23316 | . . 3 ⊢ ((𝒫 {𝐴} ∈ (TopOn‘{𝐴}) ∧ 𝒫 {𝐵} ∈ (TopOn‘{𝐵}) ∧ 𝐵 ∈ {𝐵}) → ({𝐴} × {𝐵}) ∈ (𝒫 {𝐴} Cn 𝒫 {𝐵})) | |
11 | 4, 7, 9, 10 | syl3anc 1372 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ({𝐴} × {𝐵}) ∈ (𝒫 {𝐴} Cn 𝒫 {𝐵})) |
12 | 1, 11 | eqeltrd 2841 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑥 ∈ {𝐴} ↦ 𝐵) ∈ (𝒫 {𝐴} Cn 𝒫 {𝐵})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 Vcvv 3481 𝒫 cpw 4608 {csn 4634 ↦ cmpt 5234 × cxp 5691 ‘cfv 6569 (class class class)co 7438 TopOnctopon 22941 Cn ccn 23257 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-id 5587 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-ov 7441 df-oprab 7442 df-mpo 7443 df-1st 8022 df-2nd 8023 df-map 8876 df-topgen 17499 df-top 22925 df-topon 22942 df-cn 23260 df-cnp 23261 |
This theorem is referenced by: cncfdmsn 45874 |
Copyright terms: Public domain | W3C validator |